summaryrefslogtreecommitdiff
path: root/deps/v8/src/snapshot/embedded/embedded-data.h
blob: 12f524d154be63e7cea1154cf50d167be8e5e875 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_SNAPSHOT_EMBEDDED_EMBEDDED_DATA_H_
#define V8_SNAPSHOT_EMBEDDED_EMBEDDED_DATA_H_

#include "src/base/macros.h"
#include "src/builtins/builtins.h"
#include "src/common/globals.h"
#include "src/execution/isolate.h"
#include "src/heap/code-range.h"

namespace v8 {
namespace internal {

class Code;
class Isolate;

// Wraps an off-heap instruction stream.
// TODO(jgruber,v8:6666): Remove this class.
class InstructionStream final : public AllStatic {
 public:
  // Returns true, iff the given pc points into an off-heap instruction stream.
  static bool PcIsOffHeap(Isolate* isolate, Address pc);

  // If the address belongs to the embedded code blob, predictably converts it
  // to uint32 by calculating offset from the embedded code blob start and
  // returns true, and false otherwise.
  static bool TryGetAddressForHashing(Isolate* isolate, Address address,
                                      uint32_t* hashable_address);

  // Returns the corresponding builtin ID if lookup succeeds, and kNoBuiltinId
  // otherwise.
  static Builtins::Name TryLookupCode(Isolate* isolate, Address address);

  // During snapshot creation, we first create an executable off-heap area
  // containing all off-heap code. The area is guaranteed to be contiguous.
  // Note that this only applies when building the snapshot, e.g. for
  // mksnapshot. Otherwise, off-heap code is embedded directly into the binary.
  static void CreateOffHeapInstructionStream(Isolate* isolate, uint8_t** code,
                                             uint32_t* code_size,
                                             uint8_t** data,
                                             uint32_t* data_size);
  static void FreeOffHeapInstructionStream(uint8_t* code, uint32_t code_size,
                                           uint8_t* data, uint32_t data_size);
};

class EmbeddedData final {
 public:
  static EmbeddedData FromIsolate(Isolate* isolate);

  static EmbeddedData FromBlob() {
    return EmbeddedData(Isolate::CurrentEmbeddedBlobCode(),
                        Isolate::CurrentEmbeddedBlobCodeSize(),
                        Isolate::CurrentEmbeddedBlobData(),
                        Isolate::CurrentEmbeddedBlobDataSize());
  }

  static EmbeddedData FromBlob(Isolate* isolate) {
    return EmbeddedData(
        isolate->embedded_blob_code(), isolate->embedded_blob_code_size(),
        isolate->embedded_blob_data(), isolate->embedded_blob_data_size());
  }

  static EmbeddedData FromBlob(CodeRange* code_range) {
    return EmbeddedData(code_range->embedded_blob_code_copy(),
                        Isolate::CurrentEmbeddedBlobCodeSize(),
                        Isolate::CurrentEmbeddedBlobData(),
                        Isolate::CurrentEmbeddedBlobDataSize());
  }

  const uint8_t* code() const { return code_; }
  uint32_t code_size() const { return code_size_; }
  const uint8_t* data() const { return data_; }
  uint32_t data_size() const { return data_size_; }

  bool IsInCodeRange(Address pc) const {
    Address start = reinterpret_cast<Address>(code_);
    return (start <= pc) && (pc < start + code_size_);
  }

  // When short builtin calls optimization is enabled for the Isolate, there
  // will be two builtins instruction streams executed: the embedded one and
  // the one un-embedded into the per-Isolate code range. In most of the cases,
  // the per-Isolate instructions will be used but in some cases (like builtin
  // calls from Wasm) the embedded instruction stream could be used.
  // If the requested PC belongs to the embedded code blob - it'll be returned,
  // and the per-Isolate blob otherwise.
  // See http://crbug.com/v8/11527 for details.
  inline static EmbeddedData GetEmbeddedDataForPC(Isolate* isolate,
                                                  Address maybe_builtin_pc) {
    EmbeddedData d = EmbeddedData::FromBlob(isolate);
    if (isolate->is_short_builtin_calls_enabled() &&
        !d.IsInCodeRange(maybe_builtin_pc)) {
      EmbeddedData global_d = EmbeddedData::FromBlob();
      // If the pc does not belong to the embedded code blob we should be using
      // the un-embedded one.
      if (global_d.IsInCodeRange(maybe_builtin_pc)) return global_d;
    }
    return d;
  }

  void Dispose() {
    delete[] code_;
    code_ = nullptr;
    delete[] data_;
    data_ = nullptr;
  }

  Address InstructionStartOfBuiltin(int i) const;
  uint32_t InstructionSizeOfBuiltin(int i) const;

  Address InstructionStartOfBytecodeHandlers() const;
  Address InstructionEndOfBytecodeHandlers() const;

  Address MetadataStartOfBuiltin(int i) const;
  uint32_t MetadataSizeOfBuiltin(int i) const;

  uint32_t AddressForHashing(Address addr) {
    DCHECK(IsInCodeRange(addr));
    Address start = reinterpret_cast<Address>(code_);
    return static_cast<uint32_t>(addr - start);
  }

  // Padded with kCodeAlignment.
  // TODO(v8:11045): Consider removing code alignment.
  uint32_t PaddedInstructionSizeOfBuiltin(int i) const {
    uint32_t size = InstructionSizeOfBuiltin(i);
    CHECK_NE(size, 0);
    return PadAndAlignCode(size);
  }

  size_t CreateEmbeddedBlobDataHash() const;
  size_t CreateEmbeddedBlobCodeHash() const;
  size_t EmbeddedBlobDataHash() const {
    return *reinterpret_cast<const size_t*>(data_ +
                                            EmbeddedBlobDataHashOffset());
  }
  size_t EmbeddedBlobCodeHash() const {
    return *reinterpret_cast<const size_t*>(data_ +
                                            EmbeddedBlobCodeHashOffset());
  }

  size_t IsolateHash() const {
    return *reinterpret_cast<const size_t*>(data_ + IsolateHashOffset());
  }

  // Blob layout information for a single instruction stream. Corresponds
  // roughly to Code object layout (see the instruction and metadata area).
  struct LayoutDescription {
    // The offset and (unpadded) length of this builtin's instruction area
    // from the start of the embedded code section.
    uint32_t instruction_offset;
    uint32_t instruction_length;
    // The offset and (unpadded) length of this builtin's metadata area
    // from the start of the embedded code section.
    uint32_t metadata_offset;
    uint32_t metadata_length;
  };
  STATIC_ASSERT(offsetof(LayoutDescription, instruction_offset) ==
                0 * kUInt32Size);
  STATIC_ASSERT(offsetof(LayoutDescription, instruction_length) ==
                1 * kUInt32Size);
  STATIC_ASSERT(offsetof(LayoutDescription, metadata_offset) ==
                2 * kUInt32Size);
  STATIC_ASSERT(offsetof(LayoutDescription, metadata_length) ==
                3 * kUInt32Size);
  STATIC_ASSERT(sizeof(LayoutDescription) == 4 * kUInt32Size);

  // The layout of the blob is as follows:
  //
  // data:
  // [0] hash of the data section
  // [1] hash of the code section
  // [2] hash of embedded-blob-relevant heap objects
  // [3] layout description of instruction stream 0
  // ... layout descriptions
  // [x] metadata section of builtin 0
  // ... metadata sections
  //
  // code:
  // [0] instruction section of builtin 0
  // ... instruction sections

  static constexpr uint32_t kTableSize = Builtins::builtin_count;
  static constexpr uint32_t EmbeddedBlobDataHashOffset() { return 0; }
  static constexpr uint32_t EmbeddedBlobDataHashSize() { return kSizetSize; }
  static constexpr uint32_t EmbeddedBlobCodeHashOffset() {
    return EmbeddedBlobDataHashOffset() + EmbeddedBlobDataHashSize();
  }
  static constexpr uint32_t EmbeddedBlobCodeHashSize() { return kSizetSize; }
  static constexpr uint32_t IsolateHashOffset() {
    return EmbeddedBlobCodeHashOffset() + EmbeddedBlobCodeHashSize();
  }
  static constexpr uint32_t IsolateHashSize() { return kSizetSize; }
  static constexpr uint32_t LayoutDescriptionTableOffset() {
    return IsolateHashOffset() + IsolateHashSize();
  }
  static constexpr uint32_t LayoutDescriptionTableSize() {
    return sizeof(struct LayoutDescription) * kTableSize;
  }
  static constexpr uint32_t FixedDataSize() {
    return LayoutDescriptionTableOffset() + LayoutDescriptionTableSize();
  }
  // The variable-size data section starts here.
  static constexpr uint32_t RawMetadataOffset() { return FixedDataSize(); }

  // Code is in its own dedicated section.
  static constexpr uint32_t RawCodeOffset() { return 0; }

 private:
  EmbeddedData(const uint8_t* code, uint32_t code_size, const uint8_t* data,
               uint32_t data_size)
      : code_(code), code_size_(code_size), data_(data), data_size_(data_size) {
    DCHECK_NOT_NULL(code);
    DCHECK_LT(0, code_size);
    DCHECK_NOT_NULL(data);
    DCHECK_LT(0, data_size);
  }

  const uint8_t* RawCode() const { return code_ + RawCodeOffset(); }

  const LayoutDescription* LayoutDescription() const {
    return reinterpret_cast<const struct LayoutDescription*>(
        data_ + LayoutDescriptionTableOffset());
  }
  const uint8_t* RawMetadata() const { return data_ + RawMetadataOffset(); }

  static constexpr int PadAndAlignCode(int size) {
    // Ensure we have at least one byte trailing the actual builtin
    // instructions which we can later fill with int3.
    return RoundUp<kCodeAlignment>(size + 1);
  }
  static constexpr int PadAndAlignData(int size) {
    // Ensure we have at least one byte trailing the actual builtin
    // instructions which we can later fill with int3.
    return RoundUp<Code::kMetadataAlignment>(size);
  }

  void PrintStatistics() const;

  // The code section contains instruction streams. It is guaranteed to have
  // execute permissions, and may have read permissions.
  const uint8_t* code_;
  uint32_t code_size_;

  // The data section contains both descriptions of the code section (hashes,
  // offsets, sizes) and metadata describing Code objects (see
  // Code::MetadataStart()). It is guaranteed to have read permissions.
  const uint8_t* data_;
  uint32_t data_size_;
};

}  // namespace internal
}  // namespace v8

#endif  // V8_SNAPSHOT_EMBEDDED_EMBEDDED_DATA_H_