summaryrefslogtreecommitdiff
path: root/deps/v8/src/spaces-inl.h
blob: fbb26732e5566493c62fc034abc73c647814563f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_SPACES_INL_H_
#define V8_SPACES_INL_H_

#include "memory.h"
#include "spaces.h"

namespace v8 {
namespace internal {


// -----------------------------------------------------------------------------
// PageIterator

bool PageIterator::has_next() {
  return prev_page_ != stop_page_;
}


Page* PageIterator::next() {
  ASSERT(has_next());
  prev_page_ = (prev_page_ == NULL)
               ? space_->first_page_
               : prev_page_->next_page();
  return prev_page_;
}


// -----------------------------------------------------------------------------
// Page

Page* Page::next_page() {
  return MemoryAllocator::GetNextPage(this);
}


Address Page::AllocationTop() {
  PagedSpace* owner = MemoryAllocator::PageOwner(this);
  return owner->PageAllocationTop(this);
}


Address Page::AllocationWatermark() {
  PagedSpace* owner = MemoryAllocator::PageOwner(this);
  if (this == owner->AllocationTopPage()) {
    return owner->top();
  }
  return address() + AllocationWatermarkOffset();
}


uint32_t Page::AllocationWatermarkOffset() {
  return static_cast<uint32_t>((flags_ & kAllocationWatermarkOffsetMask) >>
                               kAllocationWatermarkOffsetShift);
}


void Page::SetAllocationWatermark(Address allocation_watermark) {
  if ((Heap::gc_state() == Heap::SCAVENGE) && IsWatermarkValid()) {
    // When iterating intergenerational references during scavenge
    // we might decide to promote an encountered young object.
    // We will allocate a space for such an object and put it
    // into the promotion queue to process it later.
    // If space for object was allocated somewhere beyond allocation
    // watermark this might cause garbage pointers to appear under allocation
    // watermark. To avoid visiting them during dirty regions iteration
    // which might be still in progress we store a valid allocation watermark
    // value and mark this page as having an invalid watermark.
    SetCachedAllocationWatermark(AllocationWatermark());
    InvalidateWatermark(true);
  }

  flags_ = (flags_ & kFlagsMask) |
           Offset(allocation_watermark) << kAllocationWatermarkOffsetShift;
  ASSERT(AllocationWatermarkOffset()
         == static_cast<uint32_t>(Offset(allocation_watermark)));
}


void Page::SetCachedAllocationWatermark(Address allocation_watermark) {
  mc_first_forwarded = allocation_watermark;
}


Address Page::CachedAllocationWatermark() {
  return mc_first_forwarded;
}


uint32_t Page::GetRegionMarks() {
  return dirty_regions_;
}


void Page::SetRegionMarks(uint32_t marks) {
  dirty_regions_ = marks;
}


int Page::GetRegionNumberForAddress(Address addr) {
  // Each page is divided into 256 byte regions. Each region has a corresponding
  // dirty mark bit in the page header. Region can contain intergenerational
  // references iff its dirty mark is set.
  // A normal 8K page contains exactly 32 regions so all region marks fit
  // into 32-bit integer field. To calculate a region number we just divide
  // offset inside page by region size.
  // A large page can contain more then 32 regions. But we want to avoid
  // additional write barrier code for distinguishing between large and normal
  // pages so we just ignore the fact that addr points into a large page and
  // calculate region number as if addr pointed into a normal 8K page. This way
  // we get a region number modulo 32 so for large pages several regions might
  // be mapped to a single dirty mark.
  ASSERT_PAGE_ALIGNED(this->address());
  STATIC_ASSERT((kPageAlignmentMask >> kRegionSizeLog2) < kBitsPerInt);

  // We are using masking with kPageAlignmentMask instead of Page::Offset()
  // to get an offset to the beginning of 8K page containing addr not to the
  // beginning of actual page which can be bigger then 8K.
  intptr_t offset_inside_normal_page = OffsetFrom(addr) & kPageAlignmentMask;
  return static_cast<int>(offset_inside_normal_page >> kRegionSizeLog2);
}


uint32_t Page::GetRegionMaskForAddress(Address addr) {
  return 1 << GetRegionNumberForAddress(addr);
}


uint32_t Page::GetRegionMaskForSpan(Address start, int length_in_bytes) {
  uint32_t result = 0;
  if (length_in_bytes >= kPageSize) {
    result = kAllRegionsDirtyMarks;
  } else if (length_in_bytes > 0) {
    int start_region = GetRegionNumberForAddress(start);
    int end_region =
        GetRegionNumberForAddress(start + length_in_bytes - kPointerSize);
    uint32_t start_mask = (~0) << start_region;
    uint32_t end_mask = ~((~1) << end_region);
    result = start_mask & end_mask;
    // if end_region < start_region, the mask is ored.
    if (result == 0) result = start_mask | end_mask;
  }
#ifdef DEBUG
  if (FLAG_enable_slow_asserts) {
    uint32_t expected = 0;
    for (Address a = start; a < start + length_in_bytes; a += kPointerSize) {
      expected |= GetRegionMaskForAddress(a);
    }
    ASSERT(expected == result);
  }
#endif
  return result;
}


void Page::MarkRegionDirty(Address address) {
  SetRegionMarks(GetRegionMarks() | GetRegionMaskForAddress(address));
}


bool Page::IsRegionDirty(Address address) {
  return GetRegionMarks() & GetRegionMaskForAddress(address);
}


void Page::ClearRegionMarks(Address start, Address end, bool reaches_limit) {
  int rstart = GetRegionNumberForAddress(start);
  int rend = GetRegionNumberForAddress(end);

  if (reaches_limit) {
    end += 1;
  }

  if ((rend - rstart) == 0) {
    return;
  }

  uint32_t bitmask = 0;

  if ((OffsetFrom(start) & kRegionAlignmentMask) == 0
      || (start == ObjectAreaStart())) {
    // First region is fully covered
    bitmask = 1 << rstart;
  }

  while (++rstart < rend) {
    bitmask |= 1 << rstart;
  }

  if (bitmask) {
    SetRegionMarks(GetRegionMarks() & ~bitmask);
  }
}


void Page::FlipMeaningOfInvalidatedWatermarkFlag() {
  watermark_invalidated_mark_ ^= 1 << WATERMARK_INVALIDATED;
}


bool Page::IsWatermarkValid() {
  return (flags_ & (1 << WATERMARK_INVALIDATED)) != watermark_invalidated_mark_;
}


void Page::InvalidateWatermark(bool value) {
  if (value) {
    flags_ = (flags_ & ~(1 << WATERMARK_INVALIDATED)) |
             watermark_invalidated_mark_;
  } else {
    flags_ = (flags_ & ~(1 << WATERMARK_INVALIDATED)) |
             (watermark_invalidated_mark_ ^ (1 << WATERMARK_INVALIDATED));
  }

  ASSERT(IsWatermarkValid() == !value);
}


bool Page::GetPageFlag(PageFlag flag) {
  return (flags_ & static_cast<intptr_t>(1 << flag)) != 0;
}


void Page::SetPageFlag(PageFlag flag, bool value) {
  if (value) {
    flags_ |= static_cast<intptr_t>(1 << flag);
  } else {
    flags_ &= ~static_cast<intptr_t>(1 << flag);
  }
}


void Page::ClearPageFlags() {
  flags_ = 0;
}


void Page::ClearGCFields() {
  InvalidateWatermark(true);
  SetAllocationWatermark(ObjectAreaStart());
  if (Heap::gc_state() == Heap::SCAVENGE) {
    SetCachedAllocationWatermark(ObjectAreaStart());
  }
  SetRegionMarks(kAllRegionsCleanMarks);
}


bool Page::WasInUseBeforeMC() {
  return GetPageFlag(WAS_IN_USE_BEFORE_MC);
}


void Page::SetWasInUseBeforeMC(bool was_in_use) {
  SetPageFlag(WAS_IN_USE_BEFORE_MC, was_in_use);
}


bool Page::IsLargeObjectPage() {
  return !GetPageFlag(IS_NORMAL_PAGE);
}


void Page::SetIsLargeObjectPage(bool is_large_object_page) {
  SetPageFlag(IS_NORMAL_PAGE, !is_large_object_page);
}

bool Page::IsPageExecutable() {
  return GetPageFlag(IS_EXECUTABLE);
}


void Page::SetIsPageExecutable(bool is_page_executable) {
  SetPageFlag(IS_EXECUTABLE, is_page_executable);
}


// -----------------------------------------------------------------------------
// MemoryAllocator

void MemoryAllocator::ChunkInfo::init(Address a, size_t s, PagedSpace* o) {
  address_ = a;
  size_ = s;
  owner_ = o;
  executable_ = (o == NULL) ? NOT_EXECUTABLE : o->executable();
}


bool MemoryAllocator::IsValidChunk(int chunk_id) {
  if (!IsValidChunkId(chunk_id)) return false;

  ChunkInfo& c = chunks_[chunk_id];
  return (c.address() != NULL) && (c.size() != 0) && (c.owner() != NULL);
}


bool MemoryAllocator::IsValidChunkId(int chunk_id) {
  return (0 <= chunk_id) && (chunk_id < max_nof_chunks_);
}


bool MemoryAllocator::IsPageInSpace(Page* p, PagedSpace* space) {
  ASSERT(p->is_valid());

  int chunk_id = GetChunkId(p);
  if (!IsValidChunkId(chunk_id)) return false;

  ChunkInfo& c = chunks_[chunk_id];
  return (c.address() <= p->address()) &&
         (p->address() < c.address() + c.size()) &&
         (space == c.owner());
}


Page* MemoryAllocator::GetNextPage(Page* p) {
  ASSERT(p->is_valid());
  intptr_t raw_addr = p->opaque_header & ~Page::kPageAlignmentMask;
  return Page::FromAddress(AddressFrom<Address>(raw_addr));
}


int MemoryAllocator::GetChunkId(Page* p) {
  ASSERT(p->is_valid());
  return static_cast<int>(p->opaque_header & Page::kPageAlignmentMask);
}


void MemoryAllocator::SetNextPage(Page* prev, Page* next) {
  ASSERT(prev->is_valid());
  int chunk_id = GetChunkId(prev);
  ASSERT_PAGE_ALIGNED(next->address());
  prev->opaque_header = OffsetFrom(next->address()) | chunk_id;
}


PagedSpace* MemoryAllocator::PageOwner(Page* page) {
  int chunk_id = GetChunkId(page);
  ASSERT(IsValidChunk(chunk_id));
  return chunks_[chunk_id].owner();
}


bool MemoryAllocator::InInitialChunk(Address address) {
  if (initial_chunk_ == NULL) return false;

  Address start = static_cast<Address>(initial_chunk_->address());
  return (start <= address) && (address < start + initial_chunk_->size());
}


#ifdef ENABLE_HEAP_PROTECTION

void MemoryAllocator::Protect(Address start, size_t size) {
  OS::Protect(start, size);
}


void MemoryAllocator::Unprotect(Address start,
                                size_t size,
                                Executability executable) {
  OS::Unprotect(start, size, executable);
}


void MemoryAllocator::ProtectChunkFromPage(Page* page) {
  int id = GetChunkId(page);
  OS::Protect(chunks_[id].address(), chunks_[id].size());
}


void MemoryAllocator::UnprotectChunkFromPage(Page* page) {
  int id = GetChunkId(page);
  OS::Unprotect(chunks_[id].address(), chunks_[id].size(),
                chunks_[id].owner()->executable() == EXECUTABLE);
}

#endif


// --------------------------------------------------------------------------
// PagedSpace

bool PagedSpace::Contains(Address addr) {
  Page* p = Page::FromAddress(addr);
  ASSERT(p->is_valid());

  return MemoryAllocator::IsPageInSpace(p, this);
}


// Try linear allocation in the page of alloc_info's allocation top.  Does
// not contain slow case logic (eg, move to the next page or try free list
// allocation) so it can be used by all the allocation functions and for all
// the paged spaces.
HeapObject* PagedSpace::AllocateLinearly(AllocationInfo* alloc_info,
                                         int size_in_bytes) {
  Address current_top = alloc_info->top;
  Address new_top = current_top + size_in_bytes;
  if (new_top > alloc_info->limit) return NULL;

  alloc_info->top = new_top;
  ASSERT(alloc_info->VerifyPagedAllocation());
  accounting_stats_.AllocateBytes(size_in_bytes);
  return HeapObject::FromAddress(current_top);
}


// Raw allocation.
Object* PagedSpace::AllocateRaw(int size_in_bytes) {
  ASSERT(HasBeenSetup());
  ASSERT_OBJECT_SIZE(size_in_bytes);
  HeapObject* object = AllocateLinearly(&allocation_info_, size_in_bytes);
  if (object != NULL) return object;

  object = SlowAllocateRaw(size_in_bytes);
  if (object != NULL) return object;

  return Failure::RetryAfterGC(size_in_bytes, identity());
}


// Reallocating (and promoting) objects during a compacting collection.
Object* PagedSpace::MCAllocateRaw(int size_in_bytes) {
  ASSERT(HasBeenSetup());
  ASSERT_OBJECT_SIZE(size_in_bytes);
  HeapObject* object = AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
  if (object != NULL) return object;

  object = SlowMCAllocateRaw(size_in_bytes);
  if (object != NULL) return object;

  return Failure::RetryAfterGC(size_in_bytes, identity());
}


// -----------------------------------------------------------------------------
// LargeObjectChunk

HeapObject* LargeObjectChunk::GetObject() {
  // Round the chunk address up to the nearest page-aligned address
  // and return the heap object in that page.
  Page* page = Page::FromAddress(RoundUp(address(), Page::kPageSize));
  return HeapObject::FromAddress(page->ObjectAreaStart());
}


// -----------------------------------------------------------------------------
// LargeObjectSpace

Object* NewSpace::AllocateRawInternal(int size_in_bytes,
                                      AllocationInfo* alloc_info) {
  Address new_top = alloc_info->top + size_in_bytes;
  if (new_top > alloc_info->limit) return Failure::RetryAfterGC(size_in_bytes);

  Object* obj = HeapObject::FromAddress(alloc_info->top);
  alloc_info->top = new_top;
#ifdef DEBUG
  SemiSpace* space =
      (alloc_info == &allocation_info_) ? &to_space_ : &from_space_;
  ASSERT(space->low() <= alloc_info->top
         && alloc_info->top <= space->high()
         && alloc_info->limit == space->high());
#endif
  return obj;
}


bool FreeListNode::IsFreeListNode(HeapObject* object) {
  return object->map() == Heap::raw_unchecked_byte_array_map()
      || object->map() == Heap::raw_unchecked_one_pointer_filler_map()
      || object->map() == Heap::raw_unchecked_two_pointer_filler_map();
}

} }  // namespace v8::internal

#endif  // V8_SPACES_INL_H_