summaryrefslogtreecommitdiff
path: root/deps/v8/src/spaces.h
blob: 770b88a9fba85e8ae8c37bee3880a63cf56a6f84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_SPACES_H_
#define V8_SPACES_H_

#include "allocation.h"
#include "hashmap.h"
#include "list.h"
#include "log.h"
#include "platform/mutex.h"
#include "v8utils.h"

namespace v8 {
namespace internal {

class Isolate;

// -----------------------------------------------------------------------------
// Heap structures:
//
// A JS heap consists of a young generation, an old generation, and a large
// object space. The young generation is divided into two semispaces. A
// scavenger implements Cheney's copying algorithm. The old generation is
// separated into a map space and an old object space. The map space contains
// all (and only) map objects, the rest of old objects go into the old space.
// The old generation is collected by a mark-sweep-compact collector.
//
// The semispaces of the young generation are contiguous.  The old and map
// spaces consists of a list of pages. A page has a page header and an object
// area.
//
// There is a separate large object space for objects larger than
// Page::kMaxHeapObjectSize, so that they do not have to move during
// collection. The large object space is paged. Pages in large object space
// may be larger than the page size.
//
// A store-buffer based write barrier is used to keep track of intergenerational
// references.  See store-buffer.h.
//
// During scavenges and mark-sweep collections we sometimes (after a store
// buffer overflow) iterate intergenerational pointers without decoding heap
// object maps so if the page belongs to old pointer space or large object
// space it is essential to guarantee that the page does not contain any
// garbage pointers to new space: every pointer aligned word which satisfies
// the Heap::InNewSpace() predicate must be a pointer to a live heap object in
// new space. Thus objects in old pointer and large object spaces should have a
// special layout (e.g. no bare integer fields). This requirement does not
// apply to map space which is iterated in a special fashion. However we still
// require pointer fields of dead maps to be cleaned.
//
// To enable lazy cleaning of old space pages we can mark chunks of the page
// as being garbage.  Garbage sections are marked with a special map.  These
// sections are skipped when scanning the page, even if we are otherwise
// scanning without regard for object boundaries.  Garbage sections are chained
// together to form a free list after a GC.  Garbage sections created outside
// of GCs by object trunctation etc. may not be in the free list chain.  Very
// small free spaces are ignored, they need only be cleaned of bogus pointers
// into new space.
//
// Each page may have up to one special garbage section.  The start of this
// section is denoted by the top field in the space.  The end of the section
// is denoted by the limit field in the space.  This special garbage section
// is not marked with a free space map in the data.  The point of this section
// is to enable linear allocation without having to constantly update the byte
// array every time the top field is updated and a new object is created.  The
// special garbage section is not in the chain of garbage sections.
//
// Since the top and limit fields are in the space, not the page, only one page
// has a special garbage section, and if the top and limit are equal then there
// is no special garbage section.

// Some assertion macros used in the debugging mode.

#define ASSERT_PAGE_ALIGNED(address)                                           \
  ASSERT((OffsetFrom(address) & Page::kPageAlignmentMask) == 0)

#define ASSERT_OBJECT_ALIGNED(address)                                         \
  ASSERT((OffsetFrom(address) & kObjectAlignmentMask) == 0)

#define ASSERT_OBJECT_SIZE(size)                                               \
  ASSERT((0 < size) && (size <= Page::kMaxRegularHeapObjectSize))

#define ASSERT_PAGE_OFFSET(offset)                                             \
  ASSERT((Page::kObjectStartOffset <= offset)                                  \
      && (offset <= Page::kPageSize))

#define ASSERT_MAP_PAGE_INDEX(index)                                           \
  ASSERT((0 <= index) && (index <= MapSpace::kMaxMapPageIndex))


class PagedSpace;
class MemoryAllocator;
class AllocationInfo;
class Space;
class FreeList;
class MemoryChunk;

class MarkBit {
 public:
  typedef uint32_t CellType;

  inline MarkBit(CellType* cell, CellType mask, bool data_only)
      : cell_(cell), mask_(mask), data_only_(data_only) { }

  inline CellType* cell() { return cell_; }
  inline CellType mask() { return mask_; }

#ifdef DEBUG
  bool operator==(const MarkBit& other) {
    return cell_ == other.cell_ && mask_ == other.mask_;
  }
#endif

  inline void Set() { *cell_ |= mask_; }
  inline bool Get() { return (*cell_ & mask_) != 0; }
  inline void Clear() { *cell_ &= ~mask_; }

  inline bool data_only() { return data_only_; }

  inline MarkBit Next() {
    CellType new_mask = mask_ << 1;
    if (new_mask == 0) {
      return MarkBit(cell_ + 1, 1, data_only_);
    } else {
      return MarkBit(cell_, new_mask, data_only_);
    }
  }

 private:
  CellType* cell_;
  CellType mask_;
  // This boolean indicates that the object is in a data-only space with no
  // pointers.  This enables some optimizations when marking.
  // It is expected that this field is inlined and turned into control flow
  // at the place where the MarkBit object is created.
  bool data_only_;
};


// Bitmap is a sequence of cells each containing fixed number of bits.
class Bitmap {
 public:
  static const uint32_t kBitsPerCell = 32;
  static const uint32_t kBitsPerCellLog2 = 5;
  static const uint32_t kBitIndexMask = kBitsPerCell - 1;
  static const uint32_t kBytesPerCell = kBitsPerCell / kBitsPerByte;
  static const uint32_t kBytesPerCellLog2 = kBitsPerCellLog2 - kBitsPerByteLog2;

  static const size_t kLength =
    (1 << kPageSizeBits) >> (kPointerSizeLog2);

  static const size_t kSize =
    (1 << kPageSizeBits) >> (kPointerSizeLog2 + kBitsPerByteLog2);


  static int CellsForLength(int length) {
    return (length + kBitsPerCell - 1) >> kBitsPerCellLog2;
  }

  int CellsCount() {
    return CellsForLength(kLength);
  }

  static int SizeFor(int cells_count) {
    return sizeof(MarkBit::CellType) * cells_count;
  }

  INLINE(static uint32_t IndexToCell(uint32_t index)) {
    return index >> kBitsPerCellLog2;
  }

  INLINE(static uint32_t CellToIndex(uint32_t index)) {
    return index << kBitsPerCellLog2;
  }

  INLINE(static uint32_t CellAlignIndex(uint32_t index)) {
    return (index + kBitIndexMask) & ~kBitIndexMask;
  }

  INLINE(MarkBit::CellType* cells()) {
    return reinterpret_cast<MarkBit::CellType*>(this);
  }

  INLINE(Address address()) {
    return reinterpret_cast<Address>(this);
  }

  INLINE(static Bitmap* FromAddress(Address addr)) {
    return reinterpret_cast<Bitmap*>(addr);
  }

  inline MarkBit MarkBitFromIndex(uint32_t index, bool data_only = false) {
    MarkBit::CellType mask = 1 << (index & kBitIndexMask);
    MarkBit::CellType* cell = this->cells() + (index >> kBitsPerCellLog2);
    return MarkBit(cell, mask, data_only);
  }

  static inline void Clear(MemoryChunk* chunk);

  static void PrintWord(uint32_t word, uint32_t himask = 0) {
    for (uint32_t mask = 1; mask != 0; mask <<= 1) {
      if ((mask & himask) != 0) PrintF("[");
      PrintF((mask & word) ? "1" : "0");
      if ((mask & himask) != 0) PrintF("]");
    }
  }

  class CellPrinter {
   public:
    CellPrinter() : seq_start(0), seq_type(0), seq_length(0) { }

    void Print(uint32_t pos, uint32_t cell) {
      if (cell == seq_type) {
        seq_length++;
        return;
      }

      Flush();

      if (IsSeq(cell)) {
        seq_start = pos;
        seq_length = 0;
        seq_type = cell;
        return;
      }

      PrintF("%d: ", pos);
      PrintWord(cell);
      PrintF("\n");
    }

    void Flush() {
      if (seq_length > 0) {
        PrintF("%d: %dx%d\n",
               seq_start,
               seq_type == 0 ? 0 : 1,
               seq_length * kBitsPerCell);
        seq_length = 0;
      }
    }

    static bool IsSeq(uint32_t cell) { return cell == 0 || cell == 0xFFFFFFFF; }

   private:
    uint32_t seq_start;
    uint32_t seq_type;
    uint32_t seq_length;
  };

  void Print() {
    CellPrinter printer;
    for (int i = 0; i < CellsCount(); i++) {
      printer.Print(i, cells()[i]);
    }
    printer.Flush();
    PrintF("\n");
  }

  bool IsClean() {
    for (int i = 0; i < CellsCount(); i++) {
      if (cells()[i] != 0) {
        return false;
      }
    }
    return true;
  }
};


class SkipList;
class SlotsBuffer;

// MemoryChunk represents a memory region owned by a specific space.
// It is divided into the header and the body. Chunk start is always
// 1MB aligned. Start of the body is aligned so it can accommodate
// any heap object.
class MemoryChunk {
 public:
  // Only works if the pointer is in the first kPageSize of the MemoryChunk.
  static MemoryChunk* FromAddress(Address a) {
    return reinterpret_cast<MemoryChunk*>(OffsetFrom(a) & ~kAlignmentMask);
  }

  // Only works for addresses in pointer spaces, not data or code spaces.
  static inline MemoryChunk* FromAnyPointerAddress(Heap* heap, Address addr);

  Address address() { return reinterpret_cast<Address>(this); }

  bool is_valid() { return address() != NULL; }

  MemoryChunk* next_chunk() const {
    return reinterpret_cast<MemoryChunk*>(Acquire_Load(&next_chunk_));
  }

  MemoryChunk* prev_chunk() const {
    return reinterpret_cast<MemoryChunk*>(Acquire_Load(&prev_chunk_));
  }

  void set_next_chunk(MemoryChunk* next) {
    Release_Store(&next_chunk_, reinterpret_cast<AtomicWord>(next));
  }

  void set_prev_chunk(MemoryChunk* prev) {
    Release_Store(&prev_chunk_, reinterpret_cast<AtomicWord>(prev));
  }

  Space* owner() const {
    if ((reinterpret_cast<intptr_t>(owner_) & kFailureTagMask) ==
        kFailureTag) {
      return reinterpret_cast<Space*>(reinterpret_cast<intptr_t>(owner_) -
                                      kFailureTag);
    } else {
      return NULL;
    }
  }

  void set_owner(Space* space) {
    ASSERT((reinterpret_cast<intptr_t>(space) & kFailureTagMask) == 0);
    owner_ = reinterpret_cast<Address>(space) + kFailureTag;
    ASSERT((reinterpret_cast<intptr_t>(owner_) & kFailureTagMask) ==
           kFailureTag);
  }

  VirtualMemory* reserved_memory() {
    return &reservation_;
  }

  void InitializeReservedMemory() {
    reservation_.Reset();
  }

  void set_reserved_memory(VirtualMemory* reservation) {
    ASSERT_NOT_NULL(reservation);
    reservation_.TakeControl(reservation);
  }

  bool scan_on_scavenge() { return IsFlagSet(SCAN_ON_SCAVENGE); }
  void initialize_scan_on_scavenge(bool scan) {
    if (scan) {
      SetFlag(SCAN_ON_SCAVENGE);
    } else {
      ClearFlag(SCAN_ON_SCAVENGE);
    }
  }
  inline void set_scan_on_scavenge(bool scan);

  int store_buffer_counter() { return store_buffer_counter_; }
  void set_store_buffer_counter(int counter) {
    store_buffer_counter_ = counter;
  }

  bool Contains(Address addr) {
    return addr >= area_start() && addr < area_end();
  }

  // Checks whether addr can be a limit of addresses in this page.
  // It's a limit if it's in the page, or if it's just after the
  // last byte of the page.
  bool ContainsLimit(Address addr) {
    return addr >= area_start() && addr <= area_end();
  }

  // Every n write barrier invocations we go to runtime even though
  // we could have handled it in generated code.  This lets us check
  // whether we have hit the limit and should do some more marking.
  static const int kWriteBarrierCounterGranularity = 500;

  enum MemoryChunkFlags {
    IS_EXECUTABLE,
    ABOUT_TO_BE_FREED,
    POINTERS_TO_HERE_ARE_INTERESTING,
    POINTERS_FROM_HERE_ARE_INTERESTING,
    SCAN_ON_SCAVENGE,
    IN_FROM_SPACE,  // Mutually exclusive with IN_TO_SPACE.
    IN_TO_SPACE,    // All pages in new space has one of these two set.
    NEW_SPACE_BELOW_AGE_MARK,
    CONTAINS_ONLY_DATA,
    EVACUATION_CANDIDATE,
    RESCAN_ON_EVACUATION,

    // Pages swept precisely can be iterated, hitting only the live objects.
    // Whereas those swept conservatively cannot be iterated over. Both flags
    // indicate that marking bits have been cleared by the sweeper, otherwise
    // marking bits are still intact.
    WAS_SWEPT_PRECISELY,
    WAS_SWEPT_CONSERVATIVELY,

    // Large objects can have a progress bar in their page header. These object
    // are scanned in increments and will be kept black while being scanned.
    // Even if the mutator writes to them they will be kept black and a white
    // to grey transition is performed in the value.
    HAS_PROGRESS_BAR,

    // Last flag, keep at bottom.
    NUM_MEMORY_CHUNK_FLAGS
  };


  static const int kPointersToHereAreInterestingMask =
      1 << POINTERS_TO_HERE_ARE_INTERESTING;

  static const int kPointersFromHereAreInterestingMask =
      1 << POINTERS_FROM_HERE_ARE_INTERESTING;

  static const int kEvacuationCandidateMask =
      1 << EVACUATION_CANDIDATE;

  static const int kSkipEvacuationSlotsRecordingMask =
      (1 << EVACUATION_CANDIDATE) |
      (1 << RESCAN_ON_EVACUATION) |
      (1 << IN_FROM_SPACE) |
      (1 << IN_TO_SPACE);


  void SetFlag(int flag) {
    flags_ |= static_cast<uintptr_t>(1) << flag;
  }

  void ClearFlag(int flag) {
    flags_ &= ~(static_cast<uintptr_t>(1) << flag);
  }

  void SetFlagTo(int flag, bool value) {
    if (value) {
      SetFlag(flag);
    } else {
      ClearFlag(flag);
    }
  }

  bool IsFlagSet(int flag) {
    return (flags_ & (static_cast<uintptr_t>(1) << flag)) != 0;
  }

  // Set or clear multiple flags at a time. The flags in the mask
  // are set to the value in "flags", the rest retain the current value
  // in flags_.
  void SetFlags(intptr_t flags, intptr_t mask) {
    flags_ = (flags_ & ~mask) | (flags & mask);
  }

  // Return all current flags.
  intptr_t GetFlags() { return flags_; }


  // PARALLEL_SWEEPING_PENDING - This page is ready for parallel sweeping.
  // PARALLEL_SWEEPING_IN_PROGRESS - This page is currently swept or was
  // swept by a sweeper thread.
  // PARALLEL_SWEEPING_DONE - The page state when sweeping is complete or
  // sweeping must not be performed on that page.
  enum ParallelSweepingState {
    PARALLEL_SWEEPING_DONE,
    PARALLEL_SWEEPING_IN_PROGRESS,
    PARALLEL_SWEEPING_PENDING
  };

  ParallelSweepingState parallel_sweeping() {
    return static_cast<ParallelSweepingState>(
        NoBarrier_Load(&parallel_sweeping_));
  }

  void set_parallel_sweeping(ParallelSweepingState state) {
    NoBarrier_Store(&parallel_sweeping_, state);
  }

  bool TryParallelSweeping() {
    return NoBarrier_CompareAndSwap(&parallel_sweeping_,
                                    PARALLEL_SWEEPING_PENDING,
                                    PARALLEL_SWEEPING_IN_PROGRESS) ==
                                        PARALLEL_SWEEPING_PENDING;
  }

  // Manage live byte count (count of bytes known to be live,
  // because they are marked black).
  void ResetLiveBytes() {
    if (FLAG_gc_verbose) {
      PrintF("ResetLiveBytes:%p:%x->0\n",
             static_cast<void*>(this), live_byte_count_);
    }
    live_byte_count_ = 0;
  }
  void IncrementLiveBytes(int by) {
    if (FLAG_gc_verbose) {
      printf("UpdateLiveBytes:%p:%x%c=%x->%x\n",
             static_cast<void*>(this), live_byte_count_,
             ((by < 0) ? '-' : '+'), ((by < 0) ? -by : by),
             live_byte_count_ + by);
    }
    live_byte_count_ += by;
    ASSERT_LE(static_cast<unsigned>(live_byte_count_), size_);
  }
  int LiveBytes() {
    ASSERT(static_cast<unsigned>(live_byte_count_) <= size_);
    return live_byte_count_;
  }

  int write_barrier_counter() {
    return static_cast<int>(write_barrier_counter_);
  }

  void set_write_barrier_counter(int counter) {
    write_barrier_counter_ = counter;
  }

  int progress_bar() {
    ASSERT(IsFlagSet(HAS_PROGRESS_BAR));
    return progress_bar_;
  }

  void set_progress_bar(int progress_bar) {
    ASSERT(IsFlagSet(HAS_PROGRESS_BAR));
    progress_bar_ = progress_bar;
  }

  void ResetProgressBar() {
    if (IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) {
      set_progress_bar(0);
      ClearFlag(MemoryChunk::HAS_PROGRESS_BAR);
    }
  }

  bool IsLeftOfProgressBar(Object** slot) {
    Address slot_address = reinterpret_cast<Address>(slot);
    ASSERT(slot_address > this->address());
    return (slot_address - (this->address() + kObjectStartOffset)) <
           progress_bar();
  }

  static void IncrementLiveBytesFromGC(Address address, int by) {
    MemoryChunk::FromAddress(address)->IncrementLiveBytes(by);
  }

  static void IncrementLiveBytesFromMutator(Address address, int by);

  static const intptr_t kAlignment =
      (static_cast<uintptr_t>(1) << kPageSizeBits);

  static const intptr_t kAlignmentMask = kAlignment - 1;

  static const intptr_t kSizeOffset = 0;

  static const intptr_t kLiveBytesOffset =
     kSizeOffset + kPointerSize + kPointerSize + kPointerSize +
     kPointerSize + kPointerSize +
     kPointerSize + kPointerSize + kPointerSize + kIntSize;

  static const size_t kSlotsBufferOffset = kLiveBytesOffset + kIntSize;

  static const size_t kWriteBarrierCounterOffset =
      kSlotsBufferOffset + kPointerSize + kPointerSize;

  static const size_t kHeaderSize = kWriteBarrierCounterOffset + kPointerSize +
                                    kIntSize + kIntSize + kPointerSize +
                                    5 * kPointerSize +
                                    kPointerSize + kPointerSize;

  static const int kBodyOffset =
      CODE_POINTER_ALIGN(kHeaderSize + Bitmap::kSize);

  // The start offset of the object area in a page. Aligned to both maps and
  // code alignment to be suitable for both.  Also aligned to 32 words because
  // the marking bitmap is arranged in 32 bit chunks.
  static const int kObjectStartAlignment = 32 * kPointerSize;
  static const int kObjectStartOffset = kBodyOffset - 1 +
      (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment);

  size_t size() const { return size_; }

  void set_size(size_t size) {
    size_ = size;
  }

  void SetArea(Address area_start, Address area_end) {
    area_start_ = area_start;
    area_end_ = area_end;
  }

  Executability executable() {
    return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
  }

  bool ContainsOnlyData() {
    return IsFlagSet(CONTAINS_ONLY_DATA);
  }

  bool InNewSpace() {
    return (flags_ & ((1 << IN_FROM_SPACE) | (1 << IN_TO_SPACE))) != 0;
  }

  bool InToSpace() {
    return IsFlagSet(IN_TO_SPACE);
  }

  bool InFromSpace() {
    return IsFlagSet(IN_FROM_SPACE);
  }

  // ---------------------------------------------------------------------
  // Markbits support

  inline Bitmap* markbits() {
    return Bitmap::FromAddress(address() + kHeaderSize);
  }

  void PrintMarkbits() { markbits()->Print(); }

  inline uint32_t AddressToMarkbitIndex(Address addr) {
    return static_cast<uint32_t>(addr - this->address()) >> kPointerSizeLog2;
  }

  inline static uint32_t FastAddressToMarkbitIndex(Address addr) {
    const intptr_t offset =
        reinterpret_cast<intptr_t>(addr) & kAlignmentMask;

    return static_cast<uint32_t>(offset) >> kPointerSizeLog2;
  }

  inline Address MarkbitIndexToAddress(uint32_t index) {
    return this->address() + (index << kPointerSizeLog2);
  }

  void InsertAfter(MemoryChunk* other);
  void Unlink();

  inline Heap* heap() { return heap_; }

  static const int kFlagsOffset = kPointerSize;

  bool IsEvacuationCandidate() { return IsFlagSet(EVACUATION_CANDIDATE); }

  bool ShouldSkipEvacuationSlotRecording() {
    return (flags_ & kSkipEvacuationSlotsRecordingMask) != 0;
  }

  inline SkipList* skip_list() {
    return skip_list_;
  }

  inline void set_skip_list(SkipList* skip_list) {
    skip_list_ = skip_list;
  }

  inline SlotsBuffer* slots_buffer() {
    return slots_buffer_;
  }

  inline SlotsBuffer** slots_buffer_address() {
    return &slots_buffer_;
  }

  void MarkEvacuationCandidate() {
    ASSERT(slots_buffer_ == NULL);
    SetFlag(EVACUATION_CANDIDATE);
  }

  void ClearEvacuationCandidate() {
    ASSERT(slots_buffer_ == NULL);
    ClearFlag(EVACUATION_CANDIDATE);
  }

  Address area_start() { return area_start_; }
  Address area_end() { return area_end_; }
  int area_size() {
    return static_cast<int>(area_end() - area_start());
  }
  bool CommitArea(size_t requested);

  // Approximate amount of physical memory committed for this chunk.
  size_t CommittedPhysicalMemory() {
    return high_water_mark_;
  }

  static inline void UpdateHighWaterMark(Address mark);

 protected:
  size_t size_;
  intptr_t flags_;

  // Start and end of allocatable memory on this chunk.
  Address area_start_;
  Address area_end_;

  // If the chunk needs to remember its memory reservation, it is stored here.
  VirtualMemory reservation_;
  // The identity of the owning space.  This is tagged as a failure pointer, but
  // no failure can be in an object, so this can be distinguished from any entry
  // in a fixed array.
  Address owner_;
  Heap* heap_;
  // Used by the store buffer to keep track of which pages to mark scan-on-
  // scavenge.
  int store_buffer_counter_;
  // Count of bytes marked black on page.
  int live_byte_count_;
  SlotsBuffer* slots_buffer_;
  SkipList* skip_list_;
  intptr_t write_barrier_counter_;
  // Used by the incremental marker to keep track of the scanning progress in
  // large objects that have a progress bar and are scanned in increments.
  int progress_bar_;
  // Assuming the initial allocation on a page is sequential,
  // count highest number of bytes ever allocated on the page.
  int high_water_mark_;

  AtomicWord parallel_sweeping_;

  // PagedSpace free-list statistics.
  intptr_t available_in_small_free_list_;
  intptr_t available_in_medium_free_list_;
  intptr_t available_in_large_free_list_;
  intptr_t available_in_huge_free_list_;
  intptr_t non_available_small_blocks_;

  static MemoryChunk* Initialize(Heap* heap,
                                 Address base,
                                 size_t size,
                                 Address area_start,
                                 Address area_end,
                                 Executability executable,
                                 Space* owner);

 private:
  // next_chunk_ holds a pointer of type MemoryChunk
  AtomicWord next_chunk_;
  // prev_chunk_ holds a pointer of type MemoryChunk
  AtomicWord prev_chunk_;

  friend class MemoryAllocator;
};


STATIC_CHECK(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize);


// -----------------------------------------------------------------------------
// A page is a memory chunk of a size 1MB. Large object pages may be larger.
//
// The only way to get a page pointer is by calling factory methods:
//   Page* p = Page::FromAddress(addr); or
//   Page* p = Page::FromAllocationTop(top);
class Page : public MemoryChunk {
 public:
  // Returns the page containing a given address. The address ranges
  // from [page_addr .. page_addr + kPageSize[
  // This only works if the object is in fact in a page.  See also MemoryChunk::
  // FromAddress() and FromAnyAddress().
  INLINE(static Page* FromAddress(Address a)) {
    return reinterpret_cast<Page*>(OffsetFrom(a) & ~kPageAlignmentMask);
  }

  // Returns the page containing an allocation top. Because an allocation
  // top address can be the upper bound of the page, we need to subtract
  // it with kPointerSize first. The address ranges from
  // [page_addr + kObjectStartOffset .. page_addr + kPageSize].
  INLINE(static Page* FromAllocationTop(Address top)) {
    Page* p = FromAddress(top - kPointerSize);
    return p;
  }

  // Returns the next page in the chain of pages owned by a space.
  inline Page* next_page();
  inline Page* prev_page();
  inline void set_next_page(Page* page);
  inline void set_prev_page(Page* page);

  // Checks whether an address is page aligned.
  static bool IsAlignedToPageSize(Address a) {
    return 0 == (OffsetFrom(a) & kPageAlignmentMask);
  }

  // Returns the offset of a given address to this page.
  INLINE(int Offset(Address a)) {
    int offset = static_cast<int>(a - address());
    return offset;
  }

  // Returns the address for a given offset to the this page.
  Address OffsetToAddress(int offset) {
    ASSERT_PAGE_OFFSET(offset);
    return address() + offset;
  }

  // ---------------------------------------------------------------------

  // Page size in bytes.  This must be a multiple of the OS page size.
  static const int kPageSize = 1 << kPageSizeBits;

  // Maximum object size that fits in a page. Objects larger than that size
  // are allocated in large object space and are never moved in memory. This
  // also applies to new space allocation, since objects are never migrated
  // from new space to large object space.  Takes double alignment into account.
  static const int kMaxRegularHeapObjectSize = kPageSize - kObjectStartOffset;

  // Page size mask.
  static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1;

  inline void ClearGCFields();

  static inline Page* Initialize(Heap* heap,
                                 MemoryChunk* chunk,
                                 Executability executable,
                                 PagedSpace* owner);

  void InitializeAsAnchor(PagedSpace* owner);

  bool WasSweptPrecisely() { return IsFlagSet(WAS_SWEPT_PRECISELY); }
  bool WasSweptConservatively() { return IsFlagSet(WAS_SWEPT_CONSERVATIVELY); }
  bool WasSwept() { return WasSweptPrecisely() || WasSweptConservatively(); }

  void MarkSweptPrecisely() { SetFlag(WAS_SWEPT_PRECISELY); }
  void MarkSweptConservatively() { SetFlag(WAS_SWEPT_CONSERVATIVELY); }

  void ClearSweptPrecisely() { ClearFlag(WAS_SWEPT_PRECISELY); }
  void ClearSweptConservatively() { ClearFlag(WAS_SWEPT_CONSERVATIVELY); }

  void ResetFreeListStatistics();

#define FRAGMENTATION_STATS_ACCESSORS(type, name) \
  type name() { return name##_; }                 \
  void set_##name(type name) { name##_ = name; }  \
  void add_##name(type name) { name##_ += name; }

  FRAGMENTATION_STATS_ACCESSORS(intptr_t, non_available_small_blocks)
  FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_small_free_list)
  FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_medium_free_list)
  FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_large_free_list)
  FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_huge_free_list)

#undef FRAGMENTATION_STATS_ACCESSORS

#ifdef DEBUG
  void Print();
#endif  // DEBUG

  friend class MemoryAllocator;
};


STATIC_CHECK(sizeof(Page) <= MemoryChunk::kHeaderSize);


class LargePage : public MemoryChunk {
 public:
  HeapObject* GetObject() {
    return HeapObject::FromAddress(area_start());
  }

  inline LargePage* next_page() const {
    return static_cast<LargePage*>(next_chunk());
  }

  inline void set_next_page(LargePage* page) {
    set_next_chunk(page);
  }
 private:
  static inline LargePage* Initialize(Heap* heap, MemoryChunk* chunk);

  friend class MemoryAllocator;
};

STATIC_CHECK(sizeof(LargePage) <= MemoryChunk::kHeaderSize);

// ----------------------------------------------------------------------------
// Space is the abstract superclass for all allocation spaces.
class Space : public Malloced {
 public:
  Space(Heap* heap, AllocationSpace id, Executability executable)
      : heap_(heap), id_(id), executable_(executable) {}

  virtual ~Space() {}

  Heap* heap() const { return heap_; }

  // Does the space need executable memory?
  Executability executable() { return executable_; }

  // Identity used in error reporting.
  AllocationSpace identity() { return id_; }

  // Returns allocated size.
  virtual intptr_t Size() = 0;

  // Returns size of objects. Can differ from the allocated size
  // (e.g. see LargeObjectSpace).
  virtual intptr_t SizeOfObjects() { return Size(); }

  virtual int RoundSizeDownToObjectAlignment(int size) {
    if (id_ == CODE_SPACE) {
      return RoundDown(size, kCodeAlignment);
    } else {
      return RoundDown(size, kPointerSize);
    }
  }

#ifdef DEBUG
  virtual void Print() = 0;
#endif

 private:
  Heap* heap_;
  AllocationSpace id_;
  Executability executable_;
};


// ----------------------------------------------------------------------------
// All heap objects containing executable code (code objects) must be allocated
// from a 2 GB range of memory, so that they can call each other using 32-bit
// displacements.  This happens automatically on 32-bit platforms, where 32-bit
// displacements cover the entire 4GB virtual address space.  On 64-bit
// platforms, we support this using the CodeRange object, which reserves and
// manages a range of virtual memory.
class CodeRange {
 public:
  explicit CodeRange(Isolate* isolate);
  ~CodeRange() { TearDown(); }

  // Reserves a range of virtual memory, but does not commit any of it.
  // Can only be called once, at heap initialization time.
  // Returns false on failure.
  bool SetUp(const size_t requested_size);

  // Frees the range of virtual memory, and frees the data structures used to
  // manage it.
  void TearDown();

  bool exists() { return this != NULL && code_range_ != NULL; }
  Address start() {
    if (this == NULL || code_range_ == NULL) return NULL;
    return static_cast<Address>(code_range_->address());
  }
  bool contains(Address address) {
    if (this == NULL || code_range_ == NULL) return false;
    Address start = static_cast<Address>(code_range_->address());
    return start <= address && address < start + code_range_->size();
  }

  // Allocates a chunk of memory from the large-object portion of
  // the code range.  On platforms with no separate code range, should
  // not be called.
  MUST_USE_RESULT Address AllocateRawMemory(const size_t requested_size,
                                            const size_t commit_size,
                                            size_t* allocated);
  bool CommitRawMemory(Address start, size_t length);
  bool UncommitRawMemory(Address start, size_t length);
  void FreeRawMemory(Address buf, size_t length);

 private:
  Isolate* isolate_;

  // The reserved range of virtual memory that all code objects are put in.
  VirtualMemory* code_range_;
  // Plain old data class, just a struct plus a constructor.
  class FreeBlock {
   public:
    FreeBlock(Address start_arg, size_t size_arg)
        : start(start_arg), size(size_arg) {
      ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment));
      ASSERT(size >= static_cast<size_t>(Page::kPageSize));
    }
    FreeBlock(void* start_arg, size_t size_arg)
        : start(static_cast<Address>(start_arg)), size(size_arg) {
      ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment));
      ASSERT(size >= static_cast<size_t>(Page::kPageSize));
    }

    Address start;
    size_t size;
  };

  // Freed blocks of memory are added to the free list.  When the allocation
  // list is exhausted, the free list is sorted and merged to make the new
  // allocation list.
  List<FreeBlock> free_list_;
  // Memory is allocated from the free blocks on the allocation list.
  // The block at current_allocation_block_index_ is the current block.
  List<FreeBlock> allocation_list_;
  int current_allocation_block_index_;

  // Finds a block on the allocation list that contains at least the
  // requested amount of memory.  If none is found, sorts and merges
  // the existing free memory blocks, and searches again.
  // If none can be found, terminates V8 with FatalProcessOutOfMemory.
  void GetNextAllocationBlock(size_t requested);
  // Compares the start addresses of two free blocks.
  static int CompareFreeBlockAddress(const FreeBlock* left,
                                     const FreeBlock* right);

  DISALLOW_COPY_AND_ASSIGN(CodeRange);
};


class SkipList {
 public:
  SkipList() {
    Clear();
  }

  void Clear() {
    for (int idx = 0; idx < kSize; idx++) {
      starts_[idx] = reinterpret_cast<Address>(-1);
    }
  }

  Address StartFor(Address addr) {
    return starts_[RegionNumber(addr)];
  }

  void AddObject(Address addr, int size) {
    int start_region = RegionNumber(addr);
    int end_region = RegionNumber(addr + size - kPointerSize);
    for (int idx = start_region; idx <= end_region; idx++) {
      if (starts_[idx] > addr) starts_[idx] = addr;
    }
  }

  static inline int RegionNumber(Address addr) {
    return (OffsetFrom(addr) & Page::kPageAlignmentMask) >> kRegionSizeLog2;
  }

  static void Update(Address addr, int size) {
    Page* page = Page::FromAddress(addr);
    SkipList* list = page->skip_list();
    if (list == NULL) {
      list = new SkipList();
      page->set_skip_list(list);
    }

    list->AddObject(addr, size);
  }

 private:
  static const int kRegionSizeLog2 = 13;
  static const int kRegionSize = 1 << kRegionSizeLog2;
  static const int kSize = Page::kPageSize / kRegionSize;

  STATIC_ASSERT(Page::kPageSize % kRegionSize == 0);

  Address starts_[kSize];
};


// ----------------------------------------------------------------------------
// A space acquires chunks of memory from the operating system. The memory
// allocator allocated and deallocates pages for the paged heap spaces and large
// pages for large object space.
//
// Each space has to manage it's own pages.
//
class MemoryAllocator {
 public:
  explicit MemoryAllocator(Isolate* isolate);

  // Initializes its internal bookkeeping structures.
  // Max capacity of the total space and executable memory limit.
  bool SetUp(intptr_t max_capacity, intptr_t capacity_executable);

  void TearDown();

  Page* AllocatePage(
      intptr_t size, PagedSpace* owner, Executability executable);

  LargePage* AllocateLargePage(
      intptr_t object_size, Space* owner, Executability executable);

  void Free(MemoryChunk* chunk);

  // Returns the maximum available bytes of heaps.
  intptr_t Available() { return capacity_ < size_ ? 0 : capacity_ - size_; }

  // Returns allocated spaces in bytes.
  intptr_t Size() { return size_; }

  // Returns the maximum available executable bytes of heaps.
  intptr_t AvailableExecutable() {
    if (capacity_executable_ < size_executable_) return 0;
    return capacity_executable_ - size_executable_;
  }

  // Returns allocated executable spaces in bytes.
  intptr_t SizeExecutable() { return size_executable_; }

  // Returns maximum available bytes that the old space can have.
  intptr_t MaxAvailable() {
    return (Available() / Page::kPageSize) * Page::kMaxRegularHeapObjectSize;
  }

  // Returns an indication of whether a pointer is in a space that has
  // been allocated by this MemoryAllocator.
  V8_INLINE bool IsOutsideAllocatedSpace(const void* address) const {
    return address < lowest_ever_allocated_ ||
        address >= highest_ever_allocated_;
  }

#ifdef DEBUG
  // Reports statistic info of the space.
  void ReportStatistics();
#endif

  // Returns a MemoryChunk in which the memory region from commit_area_size to
  // reserve_area_size of the chunk area is reserved but not committed, it
  // could be committed later by calling MemoryChunk::CommitArea.
  MemoryChunk* AllocateChunk(intptr_t reserve_area_size,
                             intptr_t commit_area_size,
                             Executability executable,
                             Space* space);

  Address ReserveAlignedMemory(size_t requested,
                               size_t alignment,
                               VirtualMemory* controller);
  Address AllocateAlignedMemory(size_t reserve_size,
                                size_t commit_size,
                                size_t alignment,
                                Executability executable,
                                VirtualMemory* controller);

  bool CommitMemory(Address addr, size_t size, Executability executable);

  void FreeMemory(VirtualMemory* reservation, Executability executable);
  void FreeMemory(Address addr, size_t size, Executability executable);

  // Commit a contiguous block of memory from the initial chunk.  Assumes that
  // the address is not NULL, the size is greater than zero, and that the
  // block is contained in the initial chunk.  Returns true if it succeeded
  // and false otherwise.
  bool CommitBlock(Address start, size_t size, Executability executable);

  // Uncommit a contiguous block of memory [start..(start+size)[.
  // start is not NULL, the size is greater than zero, and the
  // block is contained in the initial chunk.  Returns true if it succeeded
  // and false otherwise.
  bool UncommitBlock(Address start, size_t size);

  // Zaps a contiguous block of memory [start..(start+size)[ thus
  // filling it up with a recognizable non-NULL bit pattern.
  void ZapBlock(Address start, size_t size);

  void PerformAllocationCallback(ObjectSpace space,
                                 AllocationAction action,
                                 size_t size);

  void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
                                          ObjectSpace space,
                                          AllocationAction action);

  void RemoveMemoryAllocationCallback(
      MemoryAllocationCallback callback);

  bool MemoryAllocationCallbackRegistered(
      MemoryAllocationCallback callback);

  static int CodePageGuardStartOffset();

  static int CodePageGuardSize();

  static int CodePageAreaStartOffset();

  static int CodePageAreaEndOffset();

  static int CodePageAreaSize() {
    return CodePageAreaEndOffset() - CodePageAreaStartOffset();
  }

  MUST_USE_RESULT bool CommitExecutableMemory(VirtualMemory* vm,
                                              Address start,
                                              size_t commit_size,
                                              size_t reserved_size);

 private:
  Isolate* isolate_;

  // Maximum space size in bytes.
  size_t capacity_;
  // Maximum subset of capacity_ that can be executable
  size_t capacity_executable_;

  // Allocated space size in bytes.
  size_t size_;
  // Allocated executable space size in bytes.
  size_t size_executable_;

  // We keep the lowest and highest addresses allocated as a quick way
  // of determining that pointers are outside the heap. The estimate is
  // conservative, i.e. not all addrsses in 'allocated' space are allocated
  // to our heap. The range is [lowest, highest[, inclusive on the low end
  // and exclusive on the high end.
  void* lowest_ever_allocated_;
  void* highest_ever_allocated_;

  struct MemoryAllocationCallbackRegistration {
    MemoryAllocationCallbackRegistration(MemoryAllocationCallback callback,
                                         ObjectSpace space,
                                         AllocationAction action)
        : callback(callback), space(space), action(action) {
    }
    MemoryAllocationCallback callback;
    ObjectSpace space;
    AllocationAction action;
  };

  // A List of callback that are triggered when memory is allocated or free'd
  List<MemoryAllocationCallbackRegistration>
      memory_allocation_callbacks_;

  // Initializes pages in a chunk. Returns the first page address.
  // This function and GetChunkId() are provided for the mark-compact
  // collector to rebuild page headers in the from space, which is
  // used as a marking stack and its page headers are destroyed.
  Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk,
                               PagedSpace* owner);

  void UpdateAllocatedSpaceLimits(void* low, void* high) {
    lowest_ever_allocated_ = Min(lowest_ever_allocated_, low);
    highest_ever_allocated_ = Max(highest_ever_allocated_, high);
  }

  DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator);
};


// -----------------------------------------------------------------------------
// Interface for heap object iterator to be implemented by all object space
// object iterators.
//
// NOTE: The space specific object iterators also implements the own next()
//       method which is used to avoid using virtual functions
//       iterating a specific space.

class ObjectIterator : public Malloced {
 public:
  virtual ~ObjectIterator() { }

  virtual HeapObject* next_object() = 0;
};


// -----------------------------------------------------------------------------
// Heap object iterator in new/old/map spaces.
//
// A HeapObjectIterator iterates objects from the bottom of the given space
// to its top or from the bottom of the given page to its top.
//
// If objects are allocated in the page during iteration the iterator may
// or may not iterate over those objects.  The caller must create a new
// iterator in order to be sure to visit these new objects.
class HeapObjectIterator: public ObjectIterator {
 public:
  // Creates a new object iterator in a given space.
  // If the size function is not given, the iterator calls the default
  // Object::Size().
  explicit HeapObjectIterator(PagedSpace* space);
  HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func);
  HeapObjectIterator(Page* page, HeapObjectCallback size_func);

  // Advance to the next object, skipping free spaces and other fillers and
  // skipping the special garbage section of which there is one per space.
  // Returns NULL when the iteration has ended.
  inline HeapObject* Next() {
    do {
      HeapObject* next_obj = FromCurrentPage();
      if (next_obj != NULL) return next_obj;
    } while (AdvanceToNextPage());
    return NULL;
  }

  virtual HeapObject* next_object() {
    return Next();
  }

 private:
  enum PageMode { kOnePageOnly, kAllPagesInSpace };

  Address cur_addr_;  // Current iteration point.
  Address cur_end_;   // End iteration point.
  HeapObjectCallback size_func_;  // Size function or NULL.
  PagedSpace* space_;
  PageMode page_mode_;

  // Fast (inlined) path of next().
  inline HeapObject* FromCurrentPage();

  // Slow path of next(), goes into the next page.  Returns false if the
  // iteration has ended.
  bool AdvanceToNextPage();

  // Initializes fields.
  inline void Initialize(PagedSpace* owner,
                         Address start,
                         Address end,
                         PageMode mode,
                         HeapObjectCallback size_func);
};


// -----------------------------------------------------------------------------
// A PageIterator iterates the pages in a paged space.

class PageIterator BASE_EMBEDDED {
 public:
  explicit inline PageIterator(PagedSpace* space);

  inline bool has_next();
  inline Page* next();

 private:
  PagedSpace* space_;
  Page* prev_page_;  // Previous page returned.
  // Next page that will be returned.  Cached here so that we can use this
  // iterator for operations that deallocate pages.
  Page* next_page_;
};


// -----------------------------------------------------------------------------
// A space has a circular list of pages. The next page can be accessed via
// Page::next_page() call.

// An abstraction of allocation and relocation pointers in a page-structured
// space.
class AllocationInfo {
 public:
  AllocationInfo() : top_(NULL), limit_(NULL) {
  }

  INLINE(void set_top(Address top)) {
    SLOW_ASSERT(top == NULL ||
        (reinterpret_cast<intptr_t>(top) & HeapObjectTagMask()) == 0);
    top_ = top;
  }

  INLINE(Address top()) const {
    SLOW_ASSERT(top_ == NULL ||
        (reinterpret_cast<intptr_t>(top_) & HeapObjectTagMask()) == 0);
    return top_;
  }

  Address* top_address() {
    return &top_;
  }

  INLINE(void set_limit(Address limit)) {
    SLOW_ASSERT(limit == NULL ||
        (reinterpret_cast<intptr_t>(limit) & HeapObjectTagMask()) == 0);
    limit_ = limit;
  }

  INLINE(Address limit()) const {
    SLOW_ASSERT(limit_ == NULL ||
        (reinterpret_cast<intptr_t>(limit_) & HeapObjectTagMask()) == 0);
    return limit_;
  }

  Address* limit_address() {
    return &limit_;
  }

#ifdef DEBUG
  bool VerifyPagedAllocation() {
    return (Page::FromAllocationTop(top_) == Page::FromAllocationTop(limit_))
        && (top_ <= limit_);
  }
#endif

 private:
  // Current allocation top.
  Address top_;
  // Current allocation limit.
  Address limit_;
};


// An abstraction of the accounting statistics of a page-structured space.
// The 'capacity' of a space is the number of object-area bytes (i.e., not
// including page bookkeeping structures) currently in the space. The 'size'
// of a space is the number of allocated bytes, the 'waste' in the space is
// the number of bytes that are not allocated and not available to
// allocation without reorganizing the space via a GC (e.g. small blocks due
// to internal fragmentation, top of page areas in map space), and the bytes
// 'available' is the number of unallocated bytes that are not waste.  The
// capacity is the sum of size, waste, and available.
//
// The stats are only set by functions that ensure they stay balanced. These
// functions increase or decrease one of the non-capacity stats in
// conjunction with capacity, or else they always balance increases and
// decreases to the non-capacity stats.
class AllocationStats BASE_EMBEDDED {
 public:
  AllocationStats() { Clear(); }

  // Zero out all the allocation statistics (i.e., no capacity).
  void Clear() {
    capacity_ = 0;
    max_capacity_ = 0;
    size_ = 0;
    waste_ = 0;
  }

  void ClearSizeWaste() {
    size_ = capacity_;
    waste_ = 0;
  }

  // Reset the allocation statistics (i.e., available = capacity with no
  // wasted or allocated bytes).
  void Reset() {
    size_ = 0;
    waste_ = 0;
  }

  // Accessors for the allocation statistics.
  intptr_t Capacity() { return capacity_; }
  intptr_t MaxCapacity() { return max_capacity_; }
  intptr_t Size() { return size_; }
  intptr_t Waste() { return waste_; }

  // Grow the space by adding available bytes.  They are initially marked as
  // being in use (part of the size), but will normally be immediately freed,
  // putting them on the free list and removing them from size_.
  void ExpandSpace(int size_in_bytes) {
    capacity_ += size_in_bytes;
    size_ += size_in_bytes;
    if (capacity_ > max_capacity_) {
      max_capacity_ = capacity_;
    }
    ASSERT(size_ >= 0);
  }

  // Shrink the space by removing available bytes.  Since shrinking is done
  // during sweeping, bytes have been marked as being in use (part of the size)
  // and are hereby freed.
  void ShrinkSpace(int size_in_bytes) {
    capacity_ -= size_in_bytes;
    size_ -= size_in_bytes;
    ASSERT(size_ >= 0);
  }

  // Allocate from available bytes (available -> size).
  void AllocateBytes(intptr_t size_in_bytes) {
    size_ += size_in_bytes;
    ASSERT(size_ >= 0);
  }

  // Free allocated bytes, making them available (size -> available).
  void DeallocateBytes(intptr_t size_in_bytes) {
    size_ -= size_in_bytes;
    ASSERT(size_ >= 0);
  }

  // Waste free bytes (available -> waste).
  void WasteBytes(int size_in_bytes) {
    size_ -= size_in_bytes;
    waste_ += size_in_bytes;
    ASSERT(size_ >= 0);
  }

 private:
  intptr_t capacity_;
  intptr_t max_capacity_;
  intptr_t size_;
  intptr_t waste_;
};


// -----------------------------------------------------------------------------
// Free lists for old object spaces
//
// Free-list nodes are free blocks in the heap.  They look like heap objects
// (free-list node pointers have the heap object tag, and they have a map like
// a heap object).  They have a size and a next pointer.  The next pointer is
// the raw address of the next free list node (or NULL).
class FreeListNode: public HeapObject {
 public:
  // Obtain a free-list node from a raw address.  This is not a cast because
  // it does not check nor require that the first word at the address is a map
  // pointer.
  static FreeListNode* FromAddress(Address address) {
    return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address));
  }

  static inline bool IsFreeListNode(HeapObject* object);

  // Set the size in bytes, which can be read with HeapObject::Size().  This
  // function also writes a map to the first word of the block so that it
  // looks like a heap object to the garbage collector and heap iteration
  // functions.
  void set_size(Heap* heap, int size_in_bytes);

  // Accessors for the next field.
  inline FreeListNode* next();
  inline FreeListNode** next_address();
  inline void set_next(FreeListNode* next);

  inline void Zap();

  static inline FreeListNode* cast(MaybeObject* maybe) {
    ASSERT(!maybe->IsFailure());
    return reinterpret_cast<FreeListNode*>(maybe);
  }

 private:
  static const int kNextOffset = POINTER_SIZE_ALIGN(FreeSpace::kHeaderSize);

  DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode);
};


// The free list category holds a pointer to the top element and a pointer to
// the end element of the linked list of free memory blocks.
class FreeListCategory {
 public:
  FreeListCategory() :
      top_(0),
      end_(NULL),
      available_(0) {}

  intptr_t Concatenate(FreeListCategory* category);

  void Reset();

  void Free(FreeListNode* node, int size_in_bytes);

  FreeListNode* PickNodeFromList(int *node_size);
  FreeListNode* PickNodeFromList(int size_in_bytes, int *node_size);

  intptr_t EvictFreeListItemsInList(Page* p);
  bool ContainsPageFreeListItemsInList(Page* p);

  void RepairFreeList(Heap* heap);

  FreeListNode* top() const {
    return reinterpret_cast<FreeListNode*>(NoBarrier_Load(&top_));
  }

  void set_top(FreeListNode* top) {
    NoBarrier_Store(&top_, reinterpret_cast<AtomicWord>(top));
  }

  FreeListNode** GetEndAddress() { return &end_; }
  FreeListNode* end() const { return end_; }
  void set_end(FreeListNode* end) { end_ = end; }

  int* GetAvailableAddress() { return &available_; }
  int available() const { return available_; }
  void set_available(int available) { available_ = available; }

  Mutex* mutex() { return &mutex_; }

  bool IsEmpty() {
    return top() == 0;
  }

#ifdef DEBUG
  intptr_t SumFreeList();
  int FreeListLength();
#endif

 private:
  // top_ points to the top FreeListNode* in the free list category.
  AtomicWord top_;
  FreeListNode* end_;
  Mutex mutex_;

  // Total available bytes in all blocks of this free list category.
  int available_;
};


// The free list for the old space.  The free list is organized in such a way
// as to encourage objects allocated around the same time to be near each
// other.  The normal way to allocate is intended to be by bumping a 'top'
// pointer until it hits a 'limit' pointer.  When the limit is hit we need to
// find a new space to allocate from.  This is done with the free list, which
// is divided up into rough categories to cut down on waste.  Having finer
// categories would scatter allocation more.

// The old space free list is organized in categories.
// 1-31 words:  Such small free areas are discarded for efficiency reasons.
//     They can be reclaimed by the compactor.  However the distance between top
//     and limit may be this small.
// 32-255 words: There is a list of spaces this large.  It is used for top and
//     limit when the object we need to allocate is 1-31 words in size.  These
//     spaces are called small.
// 256-2047 words: There is a list of spaces this large.  It is used for top and
//     limit when the object we need to allocate is 32-255 words in size.  These
//     spaces are called medium.
// 1048-16383 words: There is a list of spaces this large.  It is used for top
//     and limit when the object we need to allocate is 256-2047 words in size.
//     These spaces are call large.
// At least 16384 words.  This list is for objects of 2048 words or larger.
//     Empty pages are added to this list.  These spaces are called huge.
class FreeList {
 public:
  explicit FreeList(PagedSpace* owner);

  intptr_t Concatenate(FreeList* free_list);

  // Clear the free list.
  void Reset();

  // Return the number of bytes available on the free list.
  intptr_t available() {
    return small_list_.available() + medium_list_.available() +
           large_list_.available() + huge_list_.available();
  }

  // Place a node on the free list.  The block of size 'size_in_bytes'
  // starting at 'start' is placed on the free list.  The return value is the
  // number of bytes that have been lost due to internal fragmentation by
  // freeing the block.  Bookkeeping information will be written to the block,
  // i.e., its contents will be destroyed.  The start address should be word
  // aligned, and the size should be a non-zero multiple of the word size.
  int Free(Address start, int size_in_bytes);

  // Allocate a block of size 'size_in_bytes' from the free list.  The block
  // is unitialized.  A failure is returned if no block is available.  The
  // number of bytes lost to fragmentation is returned in the output parameter
  // 'wasted_bytes'.  The size should be a non-zero multiple of the word size.
  MUST_USE_RESULT HeapObject* Allocate(int size_in_bytes);

  bool IsEmpty() {
    return small_list_.IsEmpty() && medium_list_.IsEmpty() &&
           large_list_.IsEmpty() && huge_list_.IsEmpty();
  }

#ifdef DEBUG
  void Zap();
  intptr_t SumFreeLists();
  bool IsVeryLong();
#endif

  // Used after booting the VM.
  void RepairLists(Heap* heap);

  intptr_t EvictFreeListItems(Page* p);
  bool ContainsPageFreeListItems(Page* p);

  FreeListCategory* small_list() { return &small_list_; }
  FreeListCategory* medium_list() { return &medium_list_; }
  FreeListCategory* large_list() { return &large_list_; }
  FreeListCategory* huge_list() { return &huge_list_; }

 private:
  // The size range of blocks, in bytes.
  static const int kMinBlockSize = 3 * kPointerSize;
  static const int kMaxBlockSize = Page::kMaxRegularHeapObjectSize;

  FreeListNode* FindNodeFor(int size_in_bytes, int* node_size);

  PagedSpace* owner_;
  Heap* heap_;

  static const int kSmallListMin = 0x20 * kPointerSize;
  static const int kSmallListMax = 0xff * kPointerSize;
  static const int kMediumListMax = 0x7ff * kPointerSize;
  static const int kLargeListMax = 0x3fff * kPointerSize;
  static const int kSmallAllocationMax = kSmallListMin - kPointerSize;
  static const int kMediumAllocationMax = kSmallListMax;
  static const int kLargeAllocationMax = kMediumListMax;
  FreeListCategory small_list_;
  FreeListCategory medium_list_;
  FreeListCategory large_list_;
  FreeListCategory huge_list_;

  DISALLOW_IMPLICIT_CONSTRUCTORS(FreeList);
};


class PagedSpace : public Space {
 public:
  // Creates a space with a maximum capacity, and an id.
  PagedSpace(Heap* heap,
             intptr_t max_capacity,
             AllocationSpace id,
             Executability executable);

  virtual ~PagedSpace() {}

  // Set up the space using the given address range of virtual memory (from
  // the memory allocator's initial chunk) if possible.  If the block of
  // addresses is not big enough to contain a single page-aligned page, a
  // fresh chunk will be allocated.
  bool SetUp();

  // Returns true if the space has been successfully set up and not
  // subsequently torn down.
  bool HasBeenSetUp();

  // Cleans up the space, frees all pages in this space except those belonging
  // to the initial chunk, uncommits addresses in the initial chunk.
  void TearDown();

  // Checks whether an object/address is in this space.
  inline bool Contains(Address a);
  bool Contains(HeapObject* o) { return Contains(o->address()); }

  // Given an address occupied by a live object, return that object if it is
  // in this space, or Failure::Exception() if it is not. The implementation
  // iterates over objects in the page containing the address, the cost is
  // linear in the number of objects in the page. It may be slow.
  MUST_USE_RESULT MaybeObject* FindObject(Address addr);

  // During boot the free_space_map is created, and afterwards we may need
  // to write it into the free list nodes that were already created.
  void RepairFreeListsAfterBoot();

  // Prepares for a mark-compact GC.
  void PrepareForMarkCompact();

  // Current capacity without growing (Size() + Available()).
  intptr_t Capacity() { return accounting_stats_.Capacity(); }

  // Total amount of memory committed for this space.  For paged
  // spaces this equals the capacity.
  intptr_t CommittedMemory() { return Capacity(); }

  // The maximum amount of memory ever committed for this space.
  intptr_t MaximumCommittedMemory() { return accounting_stats_.MaxCapacity(); }

  // Approximate amount of physical memory committed for this space.
  size_t CommittedPhysicalMemory();

  struct SizeStats {
    intptr_t Total() {
      return small_size_ + medium_size_ + large_size_ + huge_size_;
    }

    intptr_t small_size_;
    intptr_t medium_size_;
    intptr_t large_size_;
    intptr_t huge_size_;
  };

  void ObtainFreeListStatistics(Page* p, SizeStats* sizes);
  void ResetFreeListStatistics();

  // Sets the capacity, the available space and the wasted space to zero.
  // The stats are rebuilt during sweeping by adding each page to the
  // capacity and the size when it is encountered.  As free spaces are
  // discovered during the sweeping they are subtracted from the size and added
  // to the available and wasted totals.
  void ClearStats() {
    accounting_stats_.ClearSizeWaste();
    ResetFreeListStatistics();
  }

  // Increases the number of available bytes of that space.
  void AddToAccountingStats(intptr_t bytes) {
    accounting_stats_.DeallocateBytes(bytes);
  }

  // Available bytes without growing.  These are the bytes on the free list.
  // The bytes in the linear allocation area are not included in this total
  // because updating the stats would slow down allocation.  New pages are
  // immediately added to the free list so they show up here.
  intptr_t Available() { return free_list_.available(); }

  // Allocated bytes in this space.  Garbage bytes that were not found due to
  // lazy sweeping are counted as being allocated!  The bytes in the current
  // linear allocation area (between top and limit) are also counted here.
  virtual intptr_t Size() { return accounting_stats_.Size(); }

  // As size, but the bytes in lazily swept pages are estimated and the bytes
  // in the current linear allocation area are not included.
  virtual intptr_t SizeOfObjects();

  // Wasted bytes in this space.  These are just the bytes that were thrown away
  // due to being too small to use for allocation.  They do not include the
  // free bytes that were not found at all due to lazy sweeping.
  virtual intptr_t Waste() { return accounting_stats_.Waste(); }

  // Returns the allocation pointer in this space.
  Address top() { return allocation_info_.top(); }
  Address limit() { return allocation_info_.limit(); }

  // The allocation top address.
  Address* allocation_top_address() {
    return allocation_info_.top_address();
  }

  // The allocation limit address.
  Address* allocation_limit_address() {
    return allocation_info_.limit_address();
  }

  // Allocate the requested number of bytes in the space if possible, return a
  // failure object if not.
  MUST_USE_RESULT inline MaybeObject* AllocateRaw(int size_in_bytes);

  // Give a block of memory to the space's free list.  It might be added to
  // the free list or accounted as waste.
  // If add_to_freelist is false then just accounting stats are updated and
  // no attempt to add area to free list is made.
  int Free(Address start, int size_in_bytes) {
    int wasted = free_list_.Free(start, size_in_bytes);
    accounting_stats_.DeallocateBytes(size_in_bytes - wasted);
    return size_in_bytes - wasted;
  }

  void ResetFreeList() {
    free_list_.Reset();
  }

  // Set space allocation info.
  void SetTopAndLimit(Address top, Address limit) {
    ASSERT(top == limit ||
           Page::FromAddress(top) == Page::FromAddress(limit - 1));
    MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
    allocation_info_.set_top(top);
    allocation_info_.set_limit(limit);
  }

  // Empty space allocation info, returning unused area to free list.
  void EmptyAllocationInfo() {
    // Mark the old linear allocation area with a free space map so it can be
    // skipped when scanning the heap.
    int old_linear_size = static_cast<int>(limit() - top());
    Free(top(), old_linear_size);
    SetTopAndLimit(NULL, NULL);
  }

  void Allocate(int bytes) {
    accounting_stats_.AllocateBytes(bytes);
  }

  void IncreaseCapacity(int size);

  // Releases an unused page and shrinks the space.
  void ReleasePage(Page* page, bool unlink);

  // The dummy page that anchors the linked list of pages.
  Page* anchor() { return &anchor_; }

#ifdef VERIFY_HEAP
  // Verify integrity of this space.
  virtual void Verify(ObjectVisitor* visitor);

  // Overridden by subclasses to verify space-specific object
  // properties (e.g., only maps or free-list nodes are in map space).
  virtual void VerifyObject(HeapObject* obj) {}
#endif

#ifdef DEBUG
  // Print meta info and objects in this space.
  virtual void Print();

  // Reports statistics for the space
  void ReportStatistics();

  // Report code object related statistics
  void CollectCodeStatistics();
  static void ReportCodeStatistics(Isolate* isolate);
  static void ResetCodeStatistics(Isolate* isolate);
#endif

  bool was_swept_conservatively() { return was_swept_conservatively_; }
  void set_was_swept_conservatively(bool b) { was_swept_conservatively_ = b; }

  // Evacuation candidates are swept by evacuator.  Needs to return a valid
  // result before _and_ after evacuation has finished.
  static bool ShouldBeSweptLazily(Page* p) {
    return !p->IsEvacuationCandidate() &&
           !p->IsFlagSet(Page::RESCAN_ON_EVACUATION) &&
           !p->WasSweptPrecisely();
  }

  void SetPagesToSweep(Page* first) {
    ASSERT(unswept_free_bytes_ == 0);
    if (first == &anchor_) first = NULL;
    first_unswept_page_ = first;
  }

  void IncrementUnsweptFreeBytes(intptr_t by) {
    unswept_free_bytes_ += by;
  }

  void IncreaseUnsweptFreeBytes(Page* p) {
    ASSERT(ShouldBeSweptLazily(p));
    unswept_free_bytes_ += (p->area_size() - p->LiveBytes());
  }

  void DecrementUnsweptFreeBytes(intptr_t by) {
    unswept_free_bytes_ -= by;
  }

  void DecreaseUnsweptFreeBytes(Page* p) {
    ASSERT(ShouldBeSweptLazily(p));
    unswept_free_bytes_ -= (p->area_size() - p->LiveBytes());
  }

  void ResetUnsweptFreeBytes() {
    unswept_free_bytes_ = 0;
  }

  bool AdvanceSweeper(intptr_t bytes_to_sweep);

  // When parallel sweeper threads are active and the main thread finished
  // its sweeping phase, this function waits for them to complete, otherwise
  // AdvanceSweeper with size_in_bytes is called.
  bool EnsureSweeperProgress(intptr_t size_in_bytes);

  bool IsLazySweepingComplete() {
    return !first_unswept_page_->is_valid();
  }

  Page* FirstPage() { return anchor_.next_page(); }
  Page* LastPage() { return anchor_.prev_page(); }

  void EvictEvacuationCandidatesFromFreeLists();

  bool CanExpand();

  // Returns the number of total pages in this space.
  int CountTotalPages();

  // Return size of allocatable area on a page in this space.
  inline int AreaSize() {
    return area_size_;
  }

 protected:
  FreeList* free_list() { return &free_list_; }

  int area_size_;

  // Maximum capacity of this space.
  intptr_t max_capacity_;

  intptr_t SizeOfFirstPage();

  // Accounting information for this space.
  AllocationStats accounting_stats_;

  // The dummy page that anchors the double linked list of pages.
  Page anchor_;

  // The space's free list.
  FreeList free_list_;

  // Normal allocation information.
  AllocationInfo allocation_info_;

  bool was_swept_conservatively_;

  // The first page to be swept when the lazy sweeper advances. Is set
  // to NULL when all pages have been swept.
  Page* first_unswept_page_;

  // The number of free bytes which could be reclaimed by advancing the
  // lazy sweeper.  This is only an estimation because lazy sweeping is
  // done conservatively.
  intptr_t unswept_free_bytes_;

  // Expands the space by allocating a fixed number of pages. Returns false if
  // it cannot allocate requested number of pages from OS, or if the hard heap
  // size limit has been hit.
  bool Expand();

  // Generic fast case allocation function that tries linear allocation at the
  // address denoted by top in allocation_info_.
  inline HeapObject* AllocateLinearly(int size_in_bytes);

  // Slow path of AllocateRaw.  This function is space-dependent.
  MUST_USE_RESULT virtual HeapObject* SlowAllocateRaw(int size_in_bytes);

  friend class PageIterator;
  friend class MarkCompactCollector;
};


class NumberAndSizeInfo BASE_EMBEDDED {
 public:
  NumberAndSizeInfo() : number_(0), bytes_(0) {}

  int number() const { return number_; }
  void increment_number(int num) { number_ += num; }

  int bytes() const { return bytes_; }
  void increment_bytes(int size) { bytes_ += size; }

  void clear() {
    number_ = 0;
    bytes_ = 0;
  }

 private:
  int number_;
  int bytes_;
};


// HistogramInfo class for recording a single "bar" of a histogram.  This
// class is used for collecting statistics to print to the log file.
class HistogramInfo: public NumberAndSizeInfo {
 public:
  HistogramInfo() : NumberAndSizeInfo() {}

  const char* name() { return name_; }
  void set_name(const char* name) { name_ = name; }

 private:
  const char* name_;
};


enum SemiSpaceId {
  kFromSpace = 0,
  kToSpace = 1
};


class SemiSpace;


class NewSpacePage : public MemoryChunk {
 public:
  // GC related flags copied from from-space to to-space when
  // flipping semispaces.
  static const intptr_t kCopyOnFlipFlagsMask =
    (1 << MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) |
    (1 << MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING) |
    (1 << MemoryChunk::SCAN_ON_SCAVENGE);

  static const int kAreaSize = Page::kMaxRegularHeapObjectSize;

  inline NewSpacePage* next_page() const {
    return static_cast<NewSpacePage*>(next_chunk());
  }

  inline void set_next_page(NewSpacePage* page) {
    set_next_chunk(page);
  }

  inline NewSpacePage* prev_page() const {
    return static_cast<NewSpacePage*>(prev_chunk());
  }

  inline void set_prev_page(NewSpacePage* page) {
    set_prev_chunk(page);
  }

  SemiSpace* semi_space() {
    return reinterpret_cast<SemiSpace*>(owner());
  }

  bool is_anchor() { return !this->InNewSpace(); }

  static bool IsAtStart(Address addr) {
    return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask)
        == kObjectStartOffset;
  }

  static bool IsAtEnd(Address addr) {
    return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask) == 0;
  }

  Address address() {
    return reinterpret_cast<Address>(this);
  }

  // Finds the NewSpacePage containg the given address.
  static inline NewSpacePage* FromAddress(Address address_in_page) {
    Address page_start =
        reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address_in_page) &
                                  ~Page::kPageAlignmentMask);
    NewSpacePage* page = reinterpret_cast<NewSpacePage*>(page_start);
    return page;
  }

  // Find the page for a limit address. A limit address is either an address
  // inside a page, or the address right after the last byte of a page.
  static inline NewSpacePage* FromLimit(Address address_limit) {
    return NewSpacePage::FromAddress(address_limit - 1);
  }

  // Checks if address1 and address2 are on the same new space page.
  static inline bool OnSamePage(Address address1, Address address2) {
    return NewSpacePage::FromAddress(address1) ==
           NewSpacePage::FromAddress(address2);
  }

 private:
  // Create a NewSpacePage object that is only used as anchor
  // for the doubly-linked list of real pages.
  explicit NewSpacePage(SemiSpace* owner) {
    InitializeAsAnchor(owner);
  }

  static NewSpacePage* Initialize(Heap* heap,
                                  Address start,
                                  SemiSpace* semi_space);

  // Intialize a fake NewSpacePage used as sentinel at the ends
  // of a doubly-linked list of real NewSpacePages.
  // Only uses the prev/next links, and sets flags to not be in new-space.
  void InitializeAsAnchor(SemiSpace* owner);

  friend class SemiSpace;
  friend class SemiSpaceIterator;
};


// -----------------------------------------------------------------------------
// SemiSpace in young generation
//
// A semispace is a contiguous chunk of memory holding page-like memory
// chunks. The mark-compact collector  uses the memory of the first page in
// the from space as a marking stack when tracing live objects.

class SemiSpace : public Space {
 public:
  // Constructor.
  SemiSpace(Heap* heap, SemiSpaceId semispace)
    : Space(heap, NEW_SPACE, NOT_EXECUTABLE),
      start_(NULL),
      age_mark_(NULL),
      id_(semispace),
      anchor_(this),
      current_page_(NULL) { }

  // Sets up the semispace using the given chunk.
  void SetUp(Address start, int initial_capacity, int maximum_capacity);

  // Tear down the space.  Heap memory was not allocated by the space, so it
  // is not deallocated here.
  void TearDown();

  // True if the space has been set up but not torn down.
  bool HasBeenSetUp() { return start_ != NULL; }

  // Grow the semispace to the new capacity.  The new capacity
  // requested must be larger than the current capacity and less than
  // the maximum capacity.
  bool GrowTo(int new_capacity);

  // Shrinks the semispace to the new capacity.  The new capacity
  // requested must be more than the amount of used memory in the
  // semispace and less than the current capacity.
  bool ShrinkTo(int new_capacity);

  // Returns the start address of the first page of the space.
  Address space_start() {
    ASSERT(anchor_.next_page() != &anchor_);
    return anchor_.next_page()->area_start();
  }

  // Returns the start address of the current page of the space.
  Address page_low() {
    return current_page_->area_start();
  }

  // Returns one past the end address of the space.
  Address space_end() {
    return anchor_.prev_page()->area_end();
  }

  // Returns one past the end address of the current page of the space.
  Address page_high() {
    return current_page_->area_end();
  }

  bool AdvancePage() {
    NewSpacePage* next_page = current_page_->next_page();
    if (next_page == anchor()) return false;
    current_page_ = next_page;
    return true;
  }

  // Resets the space to using the first page.
  void Reset();

  // Age mark accessors.
  Address age_mark() { return age_mark_; }
  void set_age_mark(Address mark);

  // True if the address is in the address range of this semispace (not
  // necessarily below the allocation pointer).
  bool Contains(Address a) {
    return (reinterpret_cast<uintptr_t>(a) & address_mask_)
           == reinterpret_cast<uintptr_t>(start_);
  }

  // True if the object is a heap object in the address range of this
  // semispace (not necessarily below the allocation pointer).
  bool Contains(Object* o) {
    return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_;
  }

  // If we don't have these here then SemiSpace will be abstract.  However
  // they should never be called.
  virtual intptr_t Size() {
    UNREACHABLE();
    return 0;
  }

  bool is_committed() { return committed_; }
  bool Commit();
  bool Uncommit();

  NewSpacePage* first_page() { return anchor_.next_page(); }
  NewSpacePage* current_page() { return current_page_; }

#ifdef VERIFY_HEAP
  virtual void Verify();
#endif

#ifdef DEBUG
  virtual void Print();
  // Validate a range of of addresses in a SemiSpace.
  // The "from" address must be on a page prior to the "to" address,
  // in the linked page order, or it must be earlier on the same page.
  static void AssertValidRange(Address from, Address to);
#else
  // Do nothing.
  inline static void AssertValidRange(Address from, Address to) {}
#endif

  // Returns the current capacity of the semi space.
  int Capacity() { return capacity_; }

  // Returns the maximum capacity of the semi space.
  int MaximumCapacity() { return maximum_capacity_; }

  // Returns the initial capacity of the semi space.
  int InitialCapacity() { return initial_capacity_; }

  SemiSpaceId id() { return id_; }

  static void Swap(SemiSpace* from, SemiSpace* to);

  // Returns the maximum amount of memory ever committed by the semi space.
  size_t MaximumCommittedMemory() { return maximum_committed_; }

  // Approximate amount of physical memory committed for this space.
  size_t CommittedPhysicalMemory();

 private:
  // Flips the semispace between being from-space and to-space.
  // Copies the flags into the masked positions on all pages in the space.
  void FlipPages(intptr_t flags, intptr_t flag_mask);

  // Updates Capacity and MaximumCommitted based on new capacity.
  void SetCapacity(int new_capacity);

  NewSpacePage* anchor() { return &anchor_; }

  // The current and maximum capacity of the space.
  int capacity_;
  int maximum_capacity_;
  int initial_capacity_;

  intptr_t maximum_committed_;

  // The start address of the space.
  Address start_;
  // Used to govern object promotion during mark-compact collection.
  Address age_mark_;

  // Masks and comparison values to test for containment in this semispace.
  uintptr_t address_mask_;
  uintptr_t object_mask_;
  uintptr_t object_expected_;

  bool committed_;
  SemiSpaceId id_;

  NewSpacePage anchor_;
  NewSpacePage* current_page_;

  friend class SemiSpaceIterator;
  friend class NewSpacePageIterator;
 public:
  TRACK_MEMORY("SemiSpace")
};


// A SemiSpaceIterator is an ObjectIterator that iterates over the active
// semispace of the heap's new space.  It iterates over the objects in the
// semispace from a given start address (defaulting to the bottom of the
// semispace) to the top of the semispace.  New objects allocated after the
// iterator is created are not iterated.
class SemiSpaceIterator : public ObjectIterator {
 public:
  // Create an iterator over the objects in the given space.  If no start
  // address is given, the iterator starts from the bottom of the space.  If
  // no size function is given, the iterator calls Object::Size().

  // Iterate over all of allocated to-space.
  explicit SemiSpaceIterator(NewSpace* space);
  // Iterate over all of allocated to-space, with a custome size function.
  SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func);
  // Iterate over part of allocated to-space, from start to the end
  // of allocation.
  SemiSpaceIterator(NewSpace* space, Address start);
  // Iterate from one address to another in the same semi-space.
  SemiSpaceIterator(Address from, Address to);

  HeapObject* Next() {
    if (current_ == limit_) return NULL;
    if (NewSpacePage::IsAtEnd(current_)) {
      NewSpacePage* page = NewSpacePage::FromLimit(current_);
      page = page->next_page();
      ASSERT(!page->is_anchor());
      current_ = page->area_start();
      if (current_ == limit_) return NULL;
    }

    HeapObject* object = HeapObject::FromAddress(current_);
    int size = (size_func_ == NULL) ? object->Size() : size_func_(object);

    current_ += size;
    return object;
  }

  // Implementation of the ObjectIterator functions.
  virtual HeapObject* next_object() { return Next(); }

 private:
  void Initialize(Address start,
                  Address end,
                  HeapObjectCallback size_func);

  // The current iteration point.
  Address current_;
  // The end of iteration.
  Address limit_;
  // The callback function.
  HeapObjectCallback size_func_;
};


// -----------------------------------------------------------------------------
// A PageIterator iterates the pages in a semi-space.
class NewSpacePageIterator BASE_EMBEDDED {
 public:
  // Make an iterator that runs over all pages in to-space.
  explicit inline NewSpacePageIterator(NewSpace* space);

  // Make an iterator that runs over all pages in the given semispace,
  // even those not used in allocation.
  explicit inline NewSpacePageIterator(SemiSpace* space);

  // Make iterator that iterates from the page containing start
  // to the page that contains limit in the same semispace.
  inline NewSpacePageIterator(Address start, Address limit);

  inline bool has_next();
  inline NewSpacePage* next();

 private:
  NewSpacePage* prev_page_;  // Previous page returned.
  // Next page that will be returned.  Cached here so that we can use this
  // iterator for operations that deallocate pages.
  NewSpacePage* next_page_;
  // Last page returned.
  NewSpacePage* last_page_;
};


// -----------------------------------------------------------------------------
// The young generation space.
//
// The new space consists of a contiguous pair of semispaces.  It simply
// forwards most functions to the appropriate semispace.

class NewSpace : public Space {
 public:
  // Constructor.
  explicit NewSpace(Heap* heap)
    : Space(heap, NEW_SPACE, NOT_EXECUTABLE),
      to_space_(heap, kToSpace),
      from_space_(heap, kFromSpace),
      reservation_(),
      inline_allocation_limit_step_(0) {}

  // Sets up the new space using the given chunk.
  bool SetUp(int reserved_semispace_size_, int max_semispace_size);

  // Tears down the space.  Heap memory was not allocated by the space, so it
  // is not deallocated here.
  void TearDown();

  // True if the space has been set up but not torn down.
  bool HasBeenSetUp() {
    return to_space_.HasBeenSetUp() && from_space_.HasBeenSetUp();
  }

  // Flip the pair of spaces.
  void Flip();

  // Grow the capacity of the semispaces.  Assumes that they are not at
  // their maximum capacity.
  void Grow();

  // Shrink the capacity of the semispaces.
  void Shrink();

  // True if the address or object lies in the address range of either
  // semispace (not necessarily below the allocation pointer).
  bool Contains(Address a) {
    return (reinterpret_cast<uintptr_t>(a) & address_mask_)
        == reinterpret_cast<uintptr_t>(start_);
  }

  bool Contains(Object* o) {
    Address a = reinterpret_cast<Address>(o);
    return (reinterpret_cast<uintptr_t>(a) & object_mask_) == object_expected_;
  }

  // Return the allocated bytes in the active semispace.
  virtual intptr_t Size() {
    return pages_used_ * NewSpacePage::kAreaSize +
        static_cast<int>(top() - to_space_.page_low());
  }

  // The same, but returning an int.  We have to have the one that returns
  // intptr_t because it is inherited, but if we know we are dealing with the
  // new space, which can't get as big as the other spaces then this is useful:
  int SizeAsInt() { return static_cast<int>(Size()); }

  // Return the current capacity of a semispace.
  intptr_t EffectiveCapacity() {
    SLOW_ASSERT(to_space_.Capacity() == from_space_.Capacity());
    return (to_space_.Capacity() / Page::kPageSize) * NewSpacePage::kAreaSize;
  }

  // Return the current capacity of a semispace.
  intptr_t Capacity() {
    ASSERT(to_space_.Capacity() == from_space_.Capacity());
    return to_space_.Capacity();
  }

  // Return the total amount of memory committed for new space.
  intptr_t CommittedMemory() {
    if (from_space_.is_committed()) return 2 * Capacity();
    return Capacity();
  }

  // Return the total amount of memory committed for new space.
  intptr_t MaximumCommittedMemory() {
    return to_space_.MaximumCommittedMemory() +
        from_space_.MaximumCommittedMemory();
  }

  // Approximate amount of physical memory committed for this space.
  size_t CommittedPhysicalMemory();

  // Return the available bytes without growing.
  intptr_t Available() {
    return Capacity() - Size();
  }

  // Return the maximum capacity of a semispace.
  int MaximumCapacity() {
    ASSERT(to_space_.MaximumCapacity() == from_space_.MaximumCapacity());
    return to_space_.MaximumCapacity();
  }

  // Returns the initial capacity of a semispace.
  int InitialCapacity() {
    ASSERT(to_space_.InitialCapacity() == from_space_.InitialCapacity());
    return to_space_.InitialCapacity();
  }

  // Return the address of the allocation pointer in the active semispace.
  Address top() {
    ASSERT(to_space_.current_page()->ContainsLimit(allocation_info_.top()));
    return allocation_info_.top();
  }

  void set_top(Address top) {
    ASSERT(to_space_.current_page()->ContainsLimit(top));
    allocation_info_.set_top(top);
  }

  // Return the address of the allocation pointer limit in the active semispace.
  Address limit() {
    ASSERT(to_space_.current_page()->ContainsLimit(allocation_info_.limit()));
    return allocation_info_.limit();
  }

  // Return the address of the first object in the active semispace.
  Address bottom() { return to_space_.space_start(); }

  // Get the age mark of the inactive semispace.
  Address age_mark() { return from_space_.age_mark(); }
  // Set the age mark in the active semispace.
  void set_age_mark(Address mark) { to_space_.set_age_mark(mark); }

  // The start address of the space and a bit mask. Anding an address in the
  // new space with the mask will result in the start address.
  Address start() { return start_; }
  uintptr_t mask() { return address_mask_; }

  INLINE(uint32_t AddressToMarkbitIndex(Address addr)) {
    ASSERT(Contains(addr));
    ASSERT(IsAligned(OffsetFrom(addr), kPointerSize) ||
           IsAligned(OffsetFrom(addr) - 1, kPointerSize));
    return static_cast<uint32_t>(addr - start_) >> kPointerSizeLog2;
  }

  INLINE(Address MarkbitIndexToAddress(uint32_t index)) {
    return reinterpret_cast<Address>(index << kPointerSizeLog2);
  }

  // The allocation top and limit address.
  Address* allocation_top_address() {
    return allocation_info_.top_address();
  }

  // The allocation limit address.
  Address* allocation_limit_address() {
    return allocation_info_.limit_address();
  }

  MUST_USE_RESULT INLINE(MaybeObject* AllocateRaw(int size_in_bytes));

  // Reset the allocation pointer to the beginning of the active semispace.
  void ResetAllocationInfo();

  void UpdateInlineAllocationLimit(int size_in_bytes);
  void LowerInlineAllocationLimit(intptr_t step) {
    inline_allocation_limit_step_ = step;
    UpdateInlineAllocationLimit(0);
    top_on_previous_step_ = allocation_info_.top();
  }

  // Get the extent of the inactive semispace (for use as a marking stack,
  // or to zap it). Notice: space-addresses are not necessarily on the
  // same page, so FromSpaceStart() might be above FromSpaceEnd().
  Address FromSpacePageLow() { return from_space_.page_low(); }
  Address FromSpacePageHigh() { return from_space_.page_high(); }
  Address FromSpaceStart() { return from_space_.space_start(); }
  Address FromSpaceEnd() { return from_space_.space_end(); }

  // Get the extent of the active semispace's pages' memory.
  Address ToSpaceStart() { return to_space_.space_start(); }
  Address ToSpaceEnd() { return to_space_.space_end(); }

  inline bool ToSpaceContains(Address address) {
    return to_space_.Contains(address);
  }
  inline bool FromSpaceContains(Address address) {
    return from_space_.Contains(address);
  }

  // True if the object is a heap object in the address range of the
  // respective semispace (not necessarily below the allocation pointer of the
  // semispace).
  inline bool ToSpaceContains(Object* o) { return to_space_.Contains(o); }
  inline bool FromSpaceContains(Object* o) { return from_space_.Contains(o); }

  // Try to switch the active semispace to a new, empty, page.
  // Returns false if this isn't possible or reasonable (i.e., there
  // are no pages, or the current page is already empty), or true
  // if successful.
  bool AddFreshPage();

#ifdef VERIFY_HEAP
  // Verify the active semispace.
  virtual void Verify();
#endif

#ifdef DEBUG
  // Print the active semispace.
  virtual void Print() { to_space_.Print(); }
#endif

  // Iterates the active semispace to collect statistics.
  void CollectStatistics();
  // Reports previously collected statistics of the active semispace.
  void ReportStatistics();
  // Clears previously collected statistics.
  void ClearHistograms();

  // Record the allocation or promotion of a heap object.  Note that we don't
  // record every single allocation, but only those that happen in the
  // to space during a scavenge GC.
  void RecordAllocation(HeapObject* obj);
  void RecordPromotion(HeapObject* obj);

  // Return whether the operation succeded.
  bool CommitFromSpaceIfNeeded() {
    if (from_space_.is_committed()) return true;
    return from_space_.Commit();
  }

  bool UncommitFromSpace() {
    if (!from_space_.is_committed()) return true;
    return from_space_.Uncommit();
  }

  inline intptr_t inline_allocation_limit_step() {
    return inline_allocation_limit_step_;
  }

  SemiSpace* active_space() { return &to_space_; }

 private:
  // Update allocation info to match the current to-space page.
  void UpdateAllocationInfo();

  Address chunk_base_;
  uintptr_t chunk_size_;

  // The semispaces.
  SemiSpace to_space_;
  SemiSpace from_space_;
  VirtualMemory reservation_;
  int pages_used_;

  // Start address and bit mask for containment testing.
  Address start_;
  uintptr_t address_mask_;
  uintptr_t object_mask_;
  uintptr_t object_expected_;

  // Allocation pointer and limit for normal allocation and allocation during
  // mark-compact collection.
  AllocationInfo allocation_info_;

  // When incremental marking is active we will set allocation_info_.limit
  // to be lower than actual limit and then will gradually increase it
  // in steps to guarantee that we do incremental marking steps even
  // when all allocation is performed from inlined generated code.
  intptr_t inline_allocation_limit_step_;

  Address top_on_previous_step_;

  HistogramInfo* allocated_histogram_;
  HistogramInfo* promoted_histogram_;

  MUST_USE_RESULT MaybeObject* SlowAllocateRaw(int size_in_bytes);

  friend class SemiSpaceIterator;

 public:
  TRACK_MEMORY("NewSpace")
};


// -----------------------------------------------------------------------------
// Old object space (excluding map objects)

class OldSpace : public PagedSpace {
 public:
  // Creates an old space object with a given maximum capacity.
  // The constructor does not allocate pages from OS.
  OldSpace(Heap* heap,
           intptr_t max_capacity,
           AllocationSpace id,
           Executability executable)
      : PagedSpace(heap, max_capacity, id, executable) {
  }

 public:
  TRACK_MEMORY("OldSpace")
};


// For contiguous spaces, top should be in the space (or at the end) and limit
// should be the end of the space.
#define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \
  SLOW_ASSERT((space).page_low() <= (info).top() \
              && (info).top() <= (space).page_high() \
              && (info).limit() <= (space).page_high())


// -----------------------------------------------------------------------------
// Old space for all map objects

class MapSpace : public PagedSpace {
 public:
  // Creates a map space object with a maximum capacity.
  MapSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id)
      : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE),
        max_map_space_pages_(kMaxMapPageIndex - 1) {
  }

  // Given an index, returns the page address.
  // TODO(1600): this limit is artifical just to keep code compilable
  static const int kMaxMapPageIndex = 1 << 16;

  virtual int RoundSizeDownToObjectAlignment(int size) {
    if (IsPowerOf2(Map::kSize)) {
      return RoundDown(size, Map::kSize);
    } else {
      return (size / Map::kSize) * Map::kSize;
    }
  }

 protected:
  virtual void VerifyObject(HeapObject* obj);

 private:
  static const int kMapsPerPage = Page::kMaxRegularHeapObjectSize / Map::kSize;

  // Do map space compaction if there is a page gap.
  int CompactionThreshold() {
    return kMapsPerPage * (max_map_space_pages_ - 1);
  }

  const int max_map_space_pages_;

 public:
  TRACK_MEMORY("MapSpace")
};


// -----------------------------------------------------------------------------
// Old space for simple property cell objects

class CellSpace : public PagedSpace {
 public:
  // Creates a property cell space object with a maximum capacity.
  CellSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id)
      : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE) {
  }

  virtual int RoundSizeDownToObjectAlignment(int size) {
    if (IsPowerOf2(Cell::kSize)) {
      return RoundDown(size, Cell::kSize);
    } else {
      return (size / Cell::kSize) * Cell::kSize;
    }
  }

 protected:
  virtual void VerifyObject(HeapObject* obj);

 public:
  TRACK_MEMORY("CellSpace")
};


// -----------------------------------------------------------------------------
// Old space for all global object property cell objects

class PropertyCellSpace : public PagedSpace {
 public:
  // Creates a property cell space object with a maximum capacity.
  PropertyCellSpace(Heap* heap, intptr_t max_capacity,
                    AllocationSpace id)
      : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE) {
  }

  virtual int RoundSizeDownToObjectAlignment(int size) {
    if (IsPowerOf2(PropertyCell::kSize)) {
      return RoundDown(size, PropertyCell::kSize);
    } else {
      return (size / PropertyCell::kSize) * PropertyCell::kSize;
    }
  }

 protected:
  virtual void VerifyObject(HeapObject* obj);

 public:
  TRACK_MEMORY("PropertyCellSpace")
};


// -----------------------------------------------------------------------------
// Large objects ( > Page::kMaxHeapObjectSize ) are allocated and managed by
// the large object space. A large object is allocated from OS heap with
// extra padding bytes (Page::kPageSize + Page::kObjectStartOffset).
// A large object always starts at Page::kObjectStartOffset to a page.
// Large objects do not move during garbage collections.

class LargeObjectSpace : public Space {
 public:
  LargeObjectSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id);
  virtual ~LargeObjectSpace() {}

  // Initializes internal data structures.
  bool SetUp();

  // Releases internal resources, frees objects in this space.
  void TearDown();

  static intptr_t ObjectSizeFor(intptr_t chunk_size) {
    if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0;
    return chunk_size - Page::kPageSize - Page::kObjectStartOffset;
  }

  // Shared implementation of AllocateRaw, AllocateRawCode and
  // AllocateRawFixedArray.
  MUST_USE_RESULT MaybeObject* AllocateRaw(int object_size,
                                           Executability executable);

  // Available bytes for objects in this space.
  inline intptr_t Available();

  virtual intptr_t Size() {
    return size_;
  }

  virtual intptr_t SizeOfObjects() {
    return objects_size_;
  }

  intptr_t MaximumCommittedMemory() {
    return maximum_committed_;
  }

  intptr_t CommittedMemory() {
    return Size();
  }

  // Approximate amount of physical memory committed for this space.
  size_t CommittedPhysicalMemory();

  int PageCount() {
    return page_count_;
  }

  // Finds an object for a given address, returns Failure::Exception()
  // if it is not found. The function iterates through all objects in this
  // space, may be slow.
  MaybeObject* FindObject(Address a);

  // Finds a large object page containing the given address, returns NULL
  // if such a page doesn't exist.
  LargePage* FindPage(Address a);

  // Frees unmarked objects.
  void FreeUnmarkedObjects();

  // Checks whether a heap object is in this space; O(1).
  bool Contains(HeapObject* obj);

  // Checks whether the space is empty.
  bool IsEmpty() { return first_page_ == NULL; }

  LargePage* first_page() { return first_page_; }

#ifdef VERIFY_HEAP
  virtual void Verify();
#endif

#ifdef DEBUG
  virtual void Print();
  void ReportStatistics();
  void CollectCodeStatistics();
#endif
  // Checks whether an address is in the object area in this space.  It
  // iterates all objects in the space. May be slow.
  bool SlowContains(Address addr) { return !FindObject(addr)->IsFailure(); }

 private:
  intptr_t max_capacity_;
  intptr_t maximum_committed_;
  // The head of the linked list of large object chunks.
  LargePage* first_page_;
  intptr_t size_;  // allocated bytes
  int page_count_;  // number of chunks
  intptr_t objects_size_;  // size of objects
  // Map MemoryChunk::kAlignment-aligned chunks to large pages covering them
  HashMap chunk_map_;

  friend class LargeObjectIterator;

 public:
  TRACK_MEMORY("LargeObjectSpace")
};


class LargeObjectIterator: public ObjectIterator {
 public:
  explicit LargeObjectIterator(LargeObjectSpace* space);
  LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func);

  HeapObject* Next();

  // implementation of ObjectIterator.
  virtual HeapObject* next_object() { return Next(); }

 private:
  LargePage* current_;
  HeapObjectCallback size_func_;
};


// Iterates over the chunks (pages and large object pages) that can contain
// pointers to new space.
class PointerChunkIterator BASE_EMBEDDED {
 public:
  inline explicit PointerChunkIterator(Heap* heap);

  // Return NULL when the iterator is done.
  MemoryChunk* next() {
    switch (state_) {
      case kOldPointerState: {
        if (old_pointer_iterator_.has_next()) {
          return old_pointer_iterator_.next();
        }
        state_ = kMapState;
        // Fall through.
      }
      case kMapState: {
        if (map_iterator_.has_next()) {
          return map_iterator_.next();
        }
        state_ = kLargeObjectState;
        // Fall through.
      }
      case kLargeObjectState: {
        HeapObject* heap_object;
        do {
          heap_object = lo_iterator_.Next();
          if (heap_object == NULL) {
            state_ = kFinishedState;
            return NULL;
          }
          // Fixed arrays are the only pointer-containing objects in large
          // object space.
        } while (!heap_object->IsFixedArray());
        MemoryChunk* answer = MemoryChunk::FromAddress(heap_object->address());
        return answer;
      }
      case kFinishedState:
        return NULL;
      default:
        break;
    }
    UNREACHABLE();
    return NULL;
  }


 private:
  enum State {
    kOldPointerState,
    kMapState,
    kLargeObjectState,
    kFinishedState
  };
  State state_;
  PageIterator old_pointer_iterator_;
  PageIterator map_iterator_;
  LargeObjectIterator lo_iterator_;
};


#ifdef DEBUG
struct CommentStatistic {
  const char* comment;
  int size;
  int count;
  void Clear() {
    comment = NULL;
    size = 0;
    count = 0;
  }
  // Must be small, since an iteration is used for lookup.
  static const int kMaxComments = 64;
};
#endif


} }  // namespace v8::internal

#endif  // V8_SPACES_H_