1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
|
// The following is adapted from fdlibm (http://www.netlib.org/fdlibm),
//
// ====================================================
// Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunSoft, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.
//
// The following is a straightforward translation of fdlibm routines
// by Raymond Toy (rtoy@google.com).
// Double constants that do not have empty lower 32 bits are found in fdlibm.cc
// and exposed through kMath as typed array. We assume the compiler to convert
// from decimal to binary accurately enough to produce the intended values.
// kMath is initialized to a Float64Array during genesis and not writable.
// rempio2result is used as a container for return values of %RemPiO2. It is
// initialized to a two-element Float64Array during genesis.
var kMath;
var rempio2result;
(function(global, shared, exports) {
"use strict";
%CheckIsBootstrapping();
var GlobalMath = global.Math;
//-------------------------------------------------------------------
define INVPIO2 = kMath[0];
define PIO2_1 = kMath[1];
define PIO2_1T = kMath[2];
define PIO2_2 = kMath[3];
define PIO2_2T = kMath[4];
define PIO2_3 = kMath[5];
define PIO2_3T = kMath[6];
define PIO4 = kMath[32];
define PIO4LO = kMath[33];
// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For
// precision, r is returned as two values y0 and y1 such that r = y0 + y1
// to more than double precision.
macro REMPIO2(X)
var n, y0, y1;
var hx = %_DoubleHi(X);
var ix = hx & 0x7fffffff;
if (ix < 0x4002d97c) {
// |X| ~< 3*pi/4, special case with n = +/- 1
if (hx > 0) {
var z = X - PIO2_1;
if (ix != 0x3ff921fb) {
// 33+53 bit pi is good enough
y0 = z - PIO2_1T;
y1 = (z - y0) - PIO2_1T;
} else {
// near pi/2, use 33+33+53 bit pi
z -= PIO2_2;
y0 = z - PIO2_2T;
y1 = (z - y0) - PIO2_2T;
}
n = 1;
} else {
// Negative X
var z = X + PIO2_1;
if (ix != 0x3ff921fb) {
// 33+53 bit pi is good enough
y0 = z + PIO2_1T;
y1 = (z - y0) + PIO2_1T;
} else {
// near pi/2, use 33+33+53 bit pi
z += PIO2_2;
y0 = z + PIO2_2T;
y1 = (z - y0) + PIO2_2T;
}
n = -1;
}
} else if (ix <= 0x413921fb) {
// |X| ~<= 2^19*(pi/2), medium size
var t = $abs(X);
n = (t * INVPIO2 + 0.5) | 0;
var r = t - n * PIO2_1;
var w = n * PIO2_1T;
// First round good to 85 bit
y0 = r - w;
if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) {
// 2nd iteration needed, good to 118
t = r;
w = n * PIO2_2;
r = t - w;
w = n * PIO2_2T - ((t - r) - w);
y0 = r - w;
if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) {
// 3rd iteration needed. 151 bits accuracy
t = r;
w = n * PIO2_3;
r = t - w;
w = n * PIO2_3T - ((t - r) - w);
y0 = r - w;
}
}
y1 = (r - y0) - w;
if (hx < 0) {
n = -n;
y0 = -y0;
y1 = -y1;
}
} else {
// Need to do full Payne-Hanek reduction here.
n = %RemPiO2(X, rempio2result);
y0 = rempio2result[0];
y1 = rempio2result[1];
}
endmacro
// __kernel_sin(X, Y, IY)
// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
// Input X is assumed to be bounded by ~pi/4 in magnitude.
// Input Y is the tail of X so that x = X + Y.
//
// Algorithm
// 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x.
// 2. ieee_sin(x) is approximated by a polynomial of degree 13 on
// [0,pi/4]
// 3 13
// sin(x) ~ x + S1*x + ... + S6*x
// where
//
// |ieee_sin(x) 2 4 6 8 10 12 | -58
// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
// | x |
//
// 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y
// ~ ieee_sin(X) + (1-X*X/2)*Y
// For better accuracy, let
// 3 2 2 2 2
// r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6))))
// then 3 2
// sin(x) = X + (S1*X + (X *(r-Y/2)+Y))
//
define S1 = -1.66666666666666324348e-01;
define S2 = 8.33333333332248946124e-03;
define S3 = -1.98412698298579493134e-04;
define S4 = 2.75573137070700676789e-06;
define S5 = -2.50507602534068634195e-08;
define S6 = 1.58969099521155010221e-10;
macro RETURN_KERNELSIN(X, Y, SIGN)
var z = X * X;
var v = z * X;
var r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
return (X - ((z * (0.5 * Y - v * r) - Y) - v * S1)) SIGN;
endmacro
// __kernel_cos(X, Y)
// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
// Input X is assumed to be bounded by ~pi/4 in magnitude.
// Input Y is the tail of X so that x = X + Y.
//
// Algorithm
// 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
// 2. ieee_cos(x) is approximated by a polynomial of degree 14 on
// [0,pi/4]
// 4 14
// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
// where the remez error is
//
// | 2 4 6 8 10 12 14 | -58
// |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
// | |
//
// 4 6 8 10 12 14
// 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
// ieee_cos(x) = 1 - x*x/2 + r
// since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y
// ~ ieee_cos(X) - X*Y,
// a correction term is necessary in ieee_cos(x) and hence
// cos(X+Y) = 1 - (X*X/2 - (r - X*Y))
// For better accuracy when x > 0.3, let qx = |x|/4 with
// the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
// Then
// cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)).
// Note that 1-qx and (X*X/2-qx) is EXACT here, and the
// magnitude of the latter is at least a quarter of X*X/2,
// thus, reducing the rounding error in the subtraction.
//
define C1 = 4.16666666666666019037e-02;
define C2 = -1.38888888888741095749e-03;
define C3 = 2.48015872894767294178e-05;
define C4 = -2.75573143513906633035e-07;
define C5 = 2.08757232129817482790e-09;
define C6 = -1.13596475577881948265e-11;
macro RETURN_KERNELCOS(X, Y, SIGN)
var ix = %_DoubleHi(X) & 0x7fffffff;
var z = X * X;
var r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
if (ix < 0x3fd33333) { // |x| ~< 0.3
return (1 - (0.5 * z - (z * r - X * Y))) SIGN;
} else {
var qx;
if (ix > 0x3fe90000) { // |x| > 0.78125
qx = 0.28125;
} else {
qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0);
}
var hz = 0.5 * z - qx;
return (1 - qx - (hz - (z * r - X * Y))) SIGN;
}
endmacro
// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
// Input x is assumed to be bounded by ~pi/4 in magnitude.
// Input y is the tail of x.
// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1)
// is returned.
//
// Algorithm
// 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
// 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
// 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
// [0,0.67434]
// 3 27
// tan(x) ~ x + T1*x + ... + T13*x
// where
//
// |ieee_tan(x) 2 4 26 | -59.2
// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
// | x |
//
// Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
// ~ ieee_tan(x) + (1+x*x)*y
// Therefore, for better accuracy in computing ieee_tan(x+y), let
// 3 2 2 2 2
// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
// then
// 3 2
// tan(x+y) = x + (T1*x + (x *(r+y)+y))
//
// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
// tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
// = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
//
// Set returnTan to 1 for tan; -1 for cot. Anything else is illegal
// and will cause incorrect results.
//
macro KTAN(x)
kMath[19+x]
endmacro
function KernelTan(x, y, returnTan) {
var z;
var w;
var hx = %_DoubleHi(x);
var ix = hx & 0x7fffffff;
if (ix < 0x3e300000) { // |x| < 2^-28
if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) {
// x == 0 && returnTan = -1
return 1 / $abs(x);
} else {
if (returnTan == 1) {
return x;
} else {
// Compute -1/(x + y) carefully
var w = x + y;
var z = %_ConstructDouble(%_DoubleHi(w), 0);
var v = y - (z - x);
var a = -1 / w;
var t = %_ConstructDouble(%_DoubleHi(a), 0);
var s = 1 + t * z;
return t + a * (s + t * v);
}
}
}
if (ix >= 0x3fe59428) { // |x| > .6744
if (x < 0) {
x = -x;
y = -y;
}
z = PIO4 - x;
w = PIO4LO - y;
x = z + w;
y = 0;
}
z = x * x;
w = z * z;
// Break x^5 * (T1 + x^2*T2 + ...) into
// x^5 * (T1 + x^4*T3 + ... + x^20*T11) +
// x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12))
var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) +
w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11)))));
var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) +
w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12))))));
var s = z * x;
r = y + z * (s * (r + v) + y);
r = r + KTAN(0) * s;
w = x + r;
if (ix >= 0x3fe59428) {
return (1 - ((hx >> 30) & 2)) *
(returnTan - 2.0 * (x - (w * w / (w + returnTan) - r)));
}
if (returnTan == 1) {
return w;
} else {
z = %_ConstructDouble(%_DoubleHi(w), 0);
v = r - (z - x);
var a = -1 / w;
var t = %_ConstructDouble(%_DoubleHi(a), 0);
s = 1 + t * z;
return t + a * (s + t * v);
}
}
function MathSinSlow(x) {
REMPIO2(x);
var sign = 1 - (n & 2);
if (n & 1) {
RETURN_KERNELCOS(y0, y1, * sign);
} else {
RETURN_KERNELSIN(y0, y1, * sign);
}
}
function MathCosSlow(x) {
REMPIO2(x);
if (n & 1) {
var sign = (n & 2) - 1;
RETURN_KERNELSIN(y0, y1, * sign);
} else {
var sign = 1 - (n & 2);
RETURN_KERNELCOS(y0, y1, * sign);
}
}
// ECMA 262 - 15.8.2.16
function MathSin(x) {
x = +x; // Convert to number.
if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
// |x| < pi/4, approximately. No reduction needed.
RETURN_KERNELSIN(x, 0, /* empty */);
}
return +MathSinSlow(x);
}
// ECMA 262 - 15.8.2.7
function MathCos(x) {
x = +x; // Convert to number.
if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
// |x| < pi/4, approximately. No reduction needed.
RETURN_KERNELCOS(x, 0, /* empty */);
}
return +MathCosSlow(x);
}
// ECMA 262 - 15.8.2.18
function MathTan(x) {
x = x * 1; // Convert to number.
if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
// |x| < pi/4, approximately. No reduction needed.
return KernelTan(x, 0, 1);
}
REMPIO2(x);
return KernelTan(y0, y1, (n & 1) ? -1 : 1);
}
// ES6 draft 09-27-13, section 20.2.2.20.
// Math.log1p
//
// Method :
// 1. Argument Reduction: find k and f such that
// 1+x = 2^k * (1+f),
// where sqrt(2)/2 < 1+f < sqrt(2) .
//
// Note. If k=0, then f=x is exact. However, if k!=0, then f
// may not be representable exactly. In that case, a correction
// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
// and add back the correction term c/u.
// (Note: when x > 2**53, one can simply return log(x))
//
// 2. Approximation of log1p(f).
// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
// = 2s + s*R
// We use a special Reme algorithm on [0,0.1716] to generate
// a polynomial of degree 14 to approximate R The maximum error
// of this polynomial approximation is bounded by 2**-58.45. In
// other words,
// 2 4 6 8 10 12 14
// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
// (the values of Lp1 to Lp7 are listed in the program)
// and
// | 2 14 | -58.45
// | Lp1*s +...+Lp7*s - R(z) | <= 2
// | |
// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
// In order to guarantee error in log below 1ulp, we compute log
// by
// log1p(f) = f - (hfsq - s*(hfsq+R)).
//
// 3. Finally, log1p(x) = k*ln2 + log1p(f).
// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
// Here ln2 is split into two floating point number:
// ln2_hi + ln2_lo,
// where n*ln2_hi is always exact for |n| < 2000.
//
// Special cases:
// log1p(x) is NaN with signal if x < -1 (including -INF) ;
// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
// log1p(NaN) is that NaN with no signal.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Constants:
// Constants are found in fdlibm.cc. We assume the C++ compiler to convert
// from decimal to binary accurately enough to produce the intended values.
//
// Note: Assuming log() return accurate answer, the following
// algorithm can be used to compute log1p(x) to within a few ULP:
//
// u = 1+x;
// if (u==1.0) return x ; else
// return log(u)*(x/(u-1.0));
//
// See HP-15C Advanced Functions Handbook, p.193.
//
define LN2_HI = kMath[34];
define LN2_LO = kMath[35];
define TWO_THIRD = kMath[36];
macro KLOG1P(x)
(kMath[37+x])
endmacro
// 2^54
define TWO54 = 18014398509481984;
function MathLog1p(x) {
x = x * 1; // Convert to number.
var hx = %_DoubleHi(x);
var ax = hx & 0x7fffffff;
var k = 1;
var f = x;
var hu = 1;
var c = 0;
var u = x;
if (hx < 0x3fda827a) {
// x < 0.41422
if (ax >= 0x3ff00000) { // |x| >= 1
if (x === -1) {
return -INFINITY; // log1p(-1) = -inf
} else {
return NAN; // log1p(x<-1) = NaN
}
} else if (ax < 0x3c900000) {
// For |x| < 2^-54 we can return x.
return x;
} else if (ax < 0x3e200000) {
// For |x| < 2^-29 we can use a simple two-term Taylor series.
return x - x * x * 0.5;
}
if ((hx > 0) || (hx <= -0x402D413D)) { // (int) 0xbfd2bec3 = -0x402d413d
// -.2929 < x < 0.41422
k = 0;
}
}
// Handle Infinity and NAN
if (hx >= 0x7ff00000) return x;
if (k !== 0) {
if (hx < 0x43400000) {
// x < 2^53
u = 1 + x;
hu = %_DoubleHi(u);
k = (hu >> 20) - 1023;
c = (k > 0) ? 1 - (u - x) : x - (u - 1);
c = c / u;
} else {
hu = %_DoubleHi(u);
k = (hu >> 20) - 1023;
}
hu = hu & 0xfffff;
if (hu < 0x6a09e) {
u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u)); // Normalize u.
} else {
++k;
u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u)); // Normalize u/2.
hu = (0x00100000 - hu) >> 2;
}
f = u - 1;
}
var hfsq = 0.5 * f * f;
if (hu === 0) {
// |f| < 2^-20;
if (f === 0) {
if (k === 0) {
return 0.0;
} else {
return k * LN2_HI + (c + k * LN2_LO);
}
}
var R = hfsq * (1 - TWO_THIRD * f);
if (k === 0) {
return f - R;
} else {
return k * LN2_HI - ((R - (k * LN2_LO + c)) - f);
}
}
var s = f / (2 + f);
var z = s * s;
var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z *
(KLOG1P(2) + z * (KLOG1P(3) + z *
(KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6)))))));
if (k === 0) {
return f - (hfsq - s * (hfsq + R));
} else {
return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f);
}
}
// ES6 draft 09-27-13, section 20.2.2.14.
// Math.expm1
// Returns exp(x)-1, the exponential of x minus 1.
//
// Method
// 1. Argument reduction:
// Given x, find r and integer k such that
//
// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
//
// Here a correction term c will be computed to compensate
// the error in r when rounded to a floating-point number.
//
// 2. Approximating expm1(r) by a special rational function on
// the interval [0,0.34658]:
// Since
// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
// we define R1(r*r) by
// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
// That is,
// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
// = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
// We use a special Remes algorithm on [0,0.347] to generate
// a polynomial of degree 5 in r*r to approximate R1. The
// maximum error of this polynomial approximation is bounded
// by 2**-61. In other words,
// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
// where Q1 = -1.6666666666666567384E-2,
// Q2 = 3.9682539681370365873E-4,
// Q3 = -9.9206344733435987357E-6,
// Q4 = 2.5051361420808517002E-7,
// Q5 = -6.2843505682382617102E-9;
// (where z=r*r, and the values of Q1 to Q5 are listed below)
// with error bounded by
// | 5 | -61
// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
// | |
//
// expm1(r) = exp(r)-1 is then computed by the following
// specific way which minimize the accumulation rounding error:
// 2 3
// r r [ 3 - (R1 + R1*r/2) ]
// expm1(r) = r + --- + --- * [--------------------]
// 2 2 [ 6 - r*(3 - R1*r/2) ]
//
// To compensate the error in the argument reduction, we use
// expm1(r+c) = expm1(r) + c + expm1(r)*c
// ~ expm1(r) + c + r*c
// Thus c+r*c will be added in as the correction terms for
// expm1(r+c). Now rearrange the term to avoid optimization
// screw up:
// ( 2 2 )
// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
// ( )
//
// = r - E
// 3. Scale back to obtain expm1(x):
// From step 1, we have
// expm1(x) = either 2^k*[expm1(r)+1] - 1
// = or 2^k*[expm1(r) + (1-2^-k)]
// 4. Implementation notes:
// (A). To save one multiplication, we scale the coefficient Qi
// to Qi*2^i, and replace z by (x^2)/2.
// (B). To achieve maximum accuracy, we compute expm1(x) by
// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
// (ii) if k=0, return r-E
// (iii) if k=-1, return 0.5*(r-E)-0.5
// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
// else return 1.0+2.0*(r-E);
// (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
// (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
// (vii) return 2^k(1-((E+2^-k)-r))
//
// Special cases:
// expm1(INF) is INF, expm1(NaN) is NaN;
// expm1(-INF) is -1, and
// for finite argument, only expm1(0)=0 is exact.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Misc. info.
// For IEEE double
// if x > 7.09782712893383973096e+02 then expm1(x) overflow
//
define KEXPM1_OVERFLOW = kMath[44];
define INVLN2 = kMath[45];
macro KEXPM1(x)
(kMath[46+x])
endmacro
function MathExpm1(x) {
x = x * 1; // Convert to number.
var y;
var hi;
var lo;
var k;
var t;
var c;
var hx = %_DoubleHi(x);
var xsb = hx & 0x80000000; // Sign bit of x
var y = (xsb === 0) ? x : -x; // y = |x|
hx &= 0x7fffffff; // High word of |x|
// Filter out huge and non-finite argument
if (hx >= 0x4043687a) { // if |x| ~=> 56 * ln2
if (hx >= 0x40862e42) { // if |x| >= 709.78
if (hx >= 0x7ff00000) {
// expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan;
return (x === -INFINITY) ? -1 : x;
}
if (x > KEXPM1_OVERFLOW) return INFINITY; // Overflow
}
if (xsb != 0) return -1; // x < -56 * ln2, return -1.
}
// Argument reduction
if (hx > 0x3fd62e42) { // if |x| > 0.5 * ln2
if (hx < 0x3ff0a2b2) { // and |x| < 1.5 * ln2
if (xsb === 0) {
hi = x - LN2_HI;
lo = LN2_LO;
k = 1;
} else {
hi = x + LN2_HI;
lo = -LN2_LO;
k = -1;
}
} else {
k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0;
t = k;
// t * ln2_hi is exact here.
hi = x - t * LN2_HI;
lo = t * LN2_LO;
}
x = hi - lo;
c = (hi - x) - lo;
} else if (hx < 0x3c900000) {
// When |x| < 2^-54, we can return x.
return x;
} else {
// Fall through.
k = 0;
}
// x is now in primary range
var hfx = 0.5 * x;
var hxs = x * hfx;
var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs *
(KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4)))));
t = 3 - r1 * hfx;
var e = hxs * ((r1 - t) / (6 - x * t));
if (k === 0) { // c is 0
return x - (x*e - hxs);
} else {
e = (x * (e - c) - c);
e -= hxs;
if (k === -1) return 0.5 * (x - e) - 0.5;
if (k === 1) {
if (x < -0.25) return -2 * (e - (x + 0.5));
return 1 + 2 * (x - e);
}
if (k <= -2 || k > 56) {
// suffice to return exp(x) + 1
y = 1 - (e - x);
// Add k to y's exponent
y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
return y - 1;
}
if (k < 20) {
// t = 1 - 2^k
t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0);
y = t - (e - x);
// Add k to y's exponent
y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
} else {
// t = 2^-k
t = %_ConstructDouble((0x3ff - k) << 20, 0);
y = x - (e + t);
y += 1;
// Add k to y's exponent
y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
}
}
return y;
}
// ES6 draft 09-27-13, section 20.2.2.30.
// Math.sinh
// Method :
// mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
// 1. Replace x by |x| (sinh(-x) = -sinh(x)).
// 2.
// E + E/(E+1)
// 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
// 2
//
// 22 <= x <= lnovft : sinh(x) := exp(x)/2
// lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
// ln2ovft < x : sinh(x) := x*shuge (overflow)
//
// Special cases:
// sinh(x) is |x| if x is +Infinity, -Infinity, or NaN.
// only sinh(0)=0 is exact for finite x.
//
define KSINH_OVERFLOW = kMath[51];
define TWO_M28 = 3.725290298461914e-9; // 2^-28, empty lower half
define LOG_MAXD = 709.7822265625; // 0x40862e42 00000000, empty lower half
function MathSinh(x) {
x = x * 1; // Convert to number.
var h = (x < 0) ? -0.5 : 0.5;
// |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1))
var ax = $abs(x);
if (ax < 22) {
// For |x| < 2^-28, sinh(x) = x
if (ax < TWO_M28) return x;
var t = MathExpm1(ax);
if (ax < 1) return h * (2 * t - t * t / (t + 1));
return h * (t + t / (t + 1));
}
// |x| in [22, log(maxdouble)], return 0.5 * exp(|x|)
if (ax < LOG_MAXD) return h * $exp(ax);
// |x| in [log(maxdouble), overflowthreshold]
// overflowthreshold = 710.4758600739426
if (ax <= KSINH_OVERFLOW) {
var w = $exp(0.5 * ax);
var t = h * w;
return t * w;
}
// |x| > overflowthreshold or is NaN.
// Return Infinity of the appropriate sign or NaN.
return x * INFINITY;
}
// ES6 draft 09-27-13, section 20.2.2.12.
// Math.cosh
// Method :
// mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
// 1. Replace x by |x| (cosh(x) = cosh(-x)).
// 2.
// [ exp(x) - 1 ]^2
// 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
// 2*exp(x)
//
// exp(x) + 1/exp(x)
// ln2/2 <= x <= 22 : cosh(x) := -------------------
// 2
// 22 <= x <= lnovft : cosh(x) := exp(x)/2
// lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
// ln2ovft < x : cosh(x) := huge*huge (overflow)
//
// Special cases:
// cosh(x) is |x| if x is +INF, -INF, or NaN.
// only cosh(0)=1 is exact for finite x.
//
define KCOSH_OVERFLOW = kMath[51];
function MathCosh(x) {
x = x * 1; // Convert to number.
var ix = %_DoubleHi(x) & 0x7fffffff;
// |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|))
if (ix < 0x3fd62e43) {
var t = MathExpm1($abs(x));
var w = 1 + t;
// For |x| < 2^-55, cosh(x) = 1
if (ix < 0x3c800000) return w;
return 1 + (t * t) / (w + w);
}
// |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2
if (ix < 0x40360000) {
var t = $exp($abs(x));
return 0.5 * t + 0.5 / t;
}
// |x| in [22, log(maxdouble)], return half*exp(|x|)
if (ix < 0x40862e42) return 0.5 * $exp($abs(x));
// |x| in [log(maxdouble), overflowthreshold]
if ($abs(x) <= KCOSH_OVERFLOW) {
var w = $exp(0.5 * $abs(x));
var t = 0.5 * w;
return t * w;
}
if (NUMBER_IS_NAN(x)) return x;
// |x| > overflowthreshold.
return INFINITY;
}
// ES6 draft 09-27-13, section 20.2.2.21.
// Return the base 10 logarithm of x
//
// Method :
// Let log10_2hi = leading 40 bits of log10(2) and
// log10_2lo = log10(2) - log10_2hi,
// ivln10 = 1/log(10) rounded.
// Then
// n = ilogb(x),
// if(n<0) n = n+1;
// x = scalbn(x,-n);
// log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
//
// Note 1:
// To guarantee log10(10**n)=n, where 10**n is normal, the rounding
// mode must set to Round-to-Nearest.
// Note 2:
// [1/log(10)] rounded to 53 bits has error .198 ulps;
// log10 is monotonic at all binary break points.
//
// Special cases:
// log10(x) is NaN if x < 0;
// log10(+INF) is +INF; log10(0) is -INF;
// log10(NaN) is that NaN;
// log10(10**N) = N for N=0,1,...,22.
//
define IVLN10 = kMath[52];
define LOG10_2HI = kMath[53];
define LOG10_2LO = kMath[54];
function MathLog10(x) {
x = x * 1; // Convert to number.
var hx = %_DoubleHi(x);
var lx = %_DoubleLo(x);
var k = 0;
if (hx < 0x00100000) {
// x < 2^-1022
// log10(+/- 0) = -Infinity.
if (((hx & 0x7fffffff) | lx) === 0) return -INFINITY;
// log10 of negative number is NaN.
if (hx < 0) return NAN;
// Subnormal number. Scale up x.
k -= 54;
x *= TWO54;
hx = %_DoubleHi(x);
lx = %_DoubleLo(x);
}
// Infinity or NaN.
if (hx >= 0x7ff00000) return x;
k += (hx >> 20) - 1023;
var i = (k & 0x80000000) >>> 31;
hx = (hx & 0x000fffff) | ((0x3ff - i) << 20);
var y = k + i;
x = %_ConstructDouble(hx, lx);
var z = y * LOG10_2LO + IVLN10 * %_MathLogRT(x);
return z + y * LOG10_2HI;
}
// ES6 draft 09-27-13, section 20.2.2.22.
// Return the base 2 logarithm of x
//
// fdlibm does not have an explicit log2 function, but fdlibm's pow
// function does implement an accurate log2 function as part of the
// pow implementation. This extracts the core parts of that as a
// separate log2 function.
// Method:
// Compute log2(x) in two pieces:
// log2(x) = w1 + w2
// where w1 has 53-24 = 29 bits of trailing zeroes.
define DP_H = kMath[64];
define DP_L = kMath[65];
// Polynomial coefficients for (3/2)*(log2(x) - 2*s - 2/3*s^3)
macro KLOG2(x)
(kMath[55+x])
endmacro
// cp = 2/(3*ln(2)). Note that cp_h + cp_l is cp, but with more accuracy.
define CP = kMath[61];
define CP_H = kMath[62];
define CP_L = kMath[63];
// 2^53
define TWO53 = 9007199254740992;
function MathLog2(x) {
x = x * 1; // Convert to number.
var ax = $abs(x);
var hx = %_DoubleHi(x);
var lx = %_DoubleLo(x);
var ix = hx & 0x7fffffff;
// Handle special cases.
// log2(+/- 0) = -Infinity
if ((ix | lx) == 0) return -INFINITY;
// log(x) = NaN, if x < 0
if (hx < 0) return NAN;
// log2(Infinity) = Infinity, log2(NaN) = NaN
if (ix >= 0x7ff00000) return x;
var n = 0;
// Take care of subnormal number.
if (ix < 0x00100000) {
ax *= TWO53;
n -= 53;
ix = %_DoubleHi(ax);
}
n += (ix >> 20) - 0x3ff;
var j = ix & 0x000fffff;
// Determine interval.
ix = j | 0x3ff00000; // normalize ix.
var bp = 1;
var dp_h = 0;
var dp_l = 0;
if (j > 0x3988e) { // |x| > sqrt(3/2)
if (j < 0xbb67a) { // |x| < sqrt(3)
bp = 1.5;
dp_h = DP_H;
dp_l = DP_L;
} else {
n += 1;
ix -= 0x00100000;
}
}
ax = %_ConstructDouble(ix, %_DoubleLo(ax));
// Compute ss = s_h + s_l = (x - 1)/(x+1) or (x - 1.5)/(x + 1.5)
var u = ax - bp;
var v = 1 / (ax + bp);
var ss = u * v;
var s_h = %_ConstructDouble(%_DoubleHi(ss), 0);
// t_h = ax + bp[k] High
var t_h = %_ConstructDouble(%_DoubleHi(ax + bp), 0)
var t_l = ax - (t_h - bp);
var s_l = v * ((u - s_h * t_h) - s_h * t_l);
// Compute log2(ax)
var s2 = ss * ss;
var r = s2 * s2 * (KLOG2(0) + s2 * (KLOG2(1) + s2 * (KLOG2(2) + s2 * (
KLOG2(3) + s2 * (KLOG2(4) + s2 * KLOG2(5))))));
r += s_l * (s_h + ss);
s2 = s_h * s_h;
t_h = %_ConstructDouble(%_DoubleHi(3.0 + s2 + r), 0);
t_l = r - ((t_h - 3.0) - s2);
// u + v = ss * (1 + ...)
u = s_h * t_h;
v = s_l * t_h + t_l * ss;
// 2 / (3 * log(2)) * (ss + ...)
p_h = %_ConstructDouble(%_DoubleHi(u + v), 0);
p_l = v - (p_h - u);
z_h = CP_H * p_h;
z_l = CP_L * p_h + p_l * CP + dp_l;
// log2(ax) = (ss + ...) * 2 / (3 * log(2)) = n + dp_h + z_h + z_l
var t = n;
var t1 = %_ConstructDouble(%_DoubleHi(((z_h + z_l) + dp_h) + t), 0);
var t2 = z_l - (((t1 - t) - dp_h) - z_h);
// t1 + t2 = log2(ax), sum up because we do not care about extra precision.
return t1 + t2;
}
//-------------------------------------------------------------------
$installFunctions(GlobalMath, DONT_ENUM, [
"cos", MathCos,
"sin", MathSin,
"tan", MathTan,
"sinh", MathSinh,
"cosh", MathCosh,
"log10", MathLog10,
"log2", MathLog2,
"log1p", MathLog1p,
"expm1", MathExpm1
]);
%SetInlineBuiltinFlag(MathSin);
%SetInlineBuiltinFlag(MathCos);
})
|