summaryrefslogtreecommitdiff
path: root/deps/v8/src/torque/declarable.cc
blob: 10b0d09daf3ae911e88988e94634e2b9d573912c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/torque/declarable.h"

#include <fstream>
#include <iostream>

#include "src/torque/ast.h"
#include "src/torque/global-context.h"
#include "src/torque/type-inference.h"
#include "src/torque/type-visitor.h"

namespace v8 {
namespace internal {
namespace torque {

DEFINE_CONTEXTUAL_VARIABLE(CurrentScope)

QualifiedName QualifiedName::Parse(std::string qualified_name) {
  std::vector<std::string> qualifications;
  while (true) {
    size_t namespace_delimiter_index = qualified_name.find("::");
    if (namespace_delimiter_index == std::string::npos) break;
    qualifications.push_back(
        qualified_name.substr(0, namespace_delimiter_index));
    qualified_name = qualified_name.substr(namespace_delimiter_index + 2);
  }
  return QualifiedName(qualifications, qualified_name);
}

std::ostream& operator<<(std::ostream& os, const QualifiedName& name) {
  for (const std::string& qualifier : name.namespace_qualification) {
    os << qualifier << "::";
  }
  return os << name.name;
}

std::ostream& operator<<(std::ostream& os, const Callable& m) {
  os << "callable " << m.ReadableName() << "(";
  if (m.signature().implicit_count != 0) {
    os << "implicit ";
    TypeVector implicit_parameter_types(
        m.signature().parameter_types.types.begin(),
        m.signature().parameter_types.types.begin() +
            m.signature().implicit_count);
    os << implicit_parameter_types << ")(";
    TypeVector explicit_parameter_types(
        m.signature().parameter_types.types.begin() +
            m.signature().implicit_count,
        m.signature().parameter_types.types.end());
    os << explicit_parameter_types;
  } else {
    os << m.signature().parameter_types;
  }
  os << "): " << *m.signature().return_type;
  return os;
}

std::ostream& operator<<(std::ostream& os, const Builtin& b) {
  os << "builtin " << *b.signature().return_type << " " << b.ReadableName()
     << b.signature().parameter_types;
  return os;
}

std::ostream& operator<<(std::ostream& os, const RuntimeFunction& b) {
  os << "runtime function " << *b.signature().return_type << " "
     << b.ReadableName() << b.signature().parameter_types;
  return os;
}

std::ostream& operator<<(std::ostream& os, const GenericCallable& g) {
  os << "generic " << g.name() << "<";
  PrintCommaSeparatedList(os, g.generic_parameters(),
                          [](const GenericParameter& identifier) {
                            return identifier.name->value;
                          });
  os << ">";

  return os;
}

SpecializationRequester::SpecializationRequester(SourcePosition position,
                                                 Scope* s, std::string name)
    : position(position), name(std::move(name)) {
  // Skip scopes that are not related to template specializations, they might be
  // stack-allocated and not live for long enough.
  while (s && s->GetSpecializationRequester().IsNone()) s = s->ParentScope();
  this->scope = s;
}

std::vector<Declarable*> Scope::Lookup(const QualifiedName& name) {
  if (name.namespace_qualification.size() >= 1 &&
      name.namespace_qualification[0] == "") {
    return GlobalContext::GetDefaultNamespace()->Lookup(
        name.DropFirstNamespaceQualification());
  }
  std::vector<Declarable*> result;
  if (ParentScope()) {
    result = ParentScope()->Lookup(name);
  }
  for (Declarable* declarable : LookupShallow(name)) {
    result.push_back(declarable);
  }
  return result;
}

base::Optional<std::string> TypeConstraint::IsViolated(const Type* type) const {
  if (upper_bound && !type->IsSubtypeOf(*upper_bound)) {
    if (type->IsTopType()) {
      return TopType::cast(type)->reason();
    } else {
      return {
          ToString("expected ", *type, " to be a subtype of ", **upper_bound)};
    }
  }
  return base::nullopt;
}

base::Optional<std::string> FindConstraintViolation(
    const std::vector<const Type*>& types,
    const std::vector<TypeConstraint>& constraints) {
  DCHECK_EQ(constraints.size(), types.size());
  for (size_t i = 0; i < types.size(); ++i) {
    if (auto violation = constraints[i].IsViolated(types[i])) {
      return {"Could not instantiate generic, " + *violation + "."};
    }
  }
  return base::nullopt;
}

std::vector<TypeConstraint> ComputeConstraints(
    Scope* scope, const GenericParameters& parameters) {
  CurrentScope::Scope scope_scope(scope);
  std::vector<TypeConstraint> result;
  for (const GenericParameter& parameter : parameters) {
    if (parameter.constraint) {
      result.push_back(TypeConstraint::SubtypeConstraint(
          TypeVisitor::ComputeType(*parameter.constraint)));
    } else {
      result.push_back(TypeConstraint::Unconstrained());
    }
  }
  return result;
}

TypeArgumentInference GenericCallable::InferSpecializationTypes(
    const TypeVector& explicit_specialization_types,
    const std::vector<base::Optional<const Type*>>& arguments) {
  const std::vector<TypeExpression*>& parameters =
      declaration()->parameters.types;
  CurrentScope::Scope generic_scope(ParentScope());
  TypeArgumentInference inference(generic_parameters(),
                                  explicit_specialization_types, parameters,
                                  arguments);
  if (!inference.HasFailed()) {
    if (auto violation =
            FindConstraintViolation(inference.GetResult(), Constraints())) {
      inference.Fail(*violation);
    }
  }
  return inference;
}

base::Optional<Statement*> GenericCallable::CallableBody() {
  if (auto* macro_decl = TorqueMacroDeclaration::DynamicCast(declaration())) {
    return macro_decl->body;
  } else if (auto* builtin_decl =
                 TorqueBuiltinDeclaration::DynamicCast(declaration())) {
    return builtin_decl->body;
  } else {
    return base::nullopt;
  }
}

bool Namespace::IsDefaultNamespace() const {
  return this == GlobalContext::GetDefaultNamespace();
}

bool Namespace::IsTestNamespace() const { return name() == kTestNamespaceName; }

const Type* TypeAlias::Resolve() const {
  if (!type_) {
    CurrentScope::Scope scope_activator(ParentScope());
    CurrentSourcePosition::Scope position_activator(Position());
    TypeDeclaration* decl = *delayed_;
    if (being_resolved_) {
      std::stringstream s;
      s << "Cannot create type " << decl->name->value
        << " due to circular dependencies.";
      ReportError(s.str());
    }
    type_ = TypeVisitor::ComputeType(decl);
  }
  return *type_;
}

}  // namespace torque
}  // namespace internal
}  // namespace v8