1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
|
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_TORQUE_IMPLEMENTATION_VISITOR_H_
#define V8_TORQUE_IMPLEMENTATION_VISITOR_H_
#include <memory>
#include <string>
#include "src/base/macros.h"
#include "src/torque/ast.h"
#include "src/torque/cfg.h"
#include "src/torque/cpp-builder.h"
#include "src/torque/declarations.h"
#include "src/torque/global-context.h"
#include "src/torque/type-oracle.h"
#include "src/torque/types.h"
#include "src/torque/utils.h"
namespace v8 {
namespace internal {
namespace torque {
template <typename T>
class Binding;
class LocalValue;
class ImplementationVisitor;
// LocationReference is the representation of an l-value, so a value that might
// allow for assignment. For uniformity, this class can also represent
// unassignable temporaries. Assignable values fall in two categories:
// - stack ranges that represent mutable variables, including structs.
// - field or element access expressions that generate operator calls.
class LocationReference {
public:
// An assignable stack range.
static LocationReference VariableAccess(
VisitResult variable,
base::Optional<Binding<LocalValue>*> binding = base::nullopt) {
DCHECK(variable.IsOnStack());
LocationReference result;
result.variable_ = std::move(variable);
result.binding_ = binding;
return result;
}
// An unassignable value. {description} is only used for error messages.
static LocationReference Temporary(VisitResult temporary,
std::string description) {
LocationReference result;
result.temporary_ = std::move(temporary);
result.temporary_description_ = std::move(description);
return result;
}
// A heap reference, that is, a tagged value and an offset to encode an inner
// pointer.
static LocationReference HeapReference(VisitResult heap_reference) {
LocationReference result;
DCHECK(TypeOracle::MatchReferenceGeneric(heap_reference.type()));
result.heap_reference_ = std::move(heap_reference);
return result;
}
// A reference to an array on the heap. That is, a tagged value, an offset to
// encode an inner pointer, and the number of elements.
static LocationReference HeapSlice(VisitResult heap_slice) {
LocationReference result;
DCHECK(Type::MatchUnaryGeneric(heap_slice.type(),
TypeOracle::GetConstSliceGeneric()) ||
Type::MatchUnaryGeneric(heap_slice.type(),
TypeOracle::GetMutableSliceGeneric()));
result.heap_slice_ = std::move(heap_slice);
return result;
}
static LocationReference ArrayAccess(VisitResult base, VisitResult offset) {
LocationReference result;
result.eval_function_ = std::string{"[]"};
result.assign_function_ = std::string{"[]="};
result.call_arguments_ = {base, offset};
return result;
}
static LocationReference FieldAccess(VisitResult object,
std::string fieldname) {
LocationReference result;
result.eval_function_ = "." + fieldname;
result.assign_function_ = "." + fieldname + "=";
result.call_arguments_ = {object};
return result;
}
static LocationReference BitFieldAccess(const LocationReference& object,
BitField field) {
LocationReference result;
result.bit_field_struct_ = std::make_shared<LocationReference>(object);
result.bit_field_ = std::move(field);
return result;
}
bool IsConst() const {
if (IsHeapReference()) {
bool is_const;
bool success =
TypeOracle::MatchReferenceGeneric(heap_reference().type(), &is_const)
.has_value();
CHECK(success);
return is_const;
}
return IsTemporary();
}
bool IsVariableAccess() const { return variable_.has_value(); }
const VisitResult& variable() const {
DCHECK(IsVariableAccess());
return *variable_;
}
bool IsTemporary() const { return temporary_.has_value(); }
const VisitResult& temporary() const {
DCHECK(IsTemporary());
return *temporary_;
}
bool IsHeapReference() const { return heap_reference_.has_value(); }
const VisitResult& heap_reference() const {
DCHECK(IsHeapReference());
return *heap_reference_;
}
bool IsHeapSlice() const { return heap_slice_.has_value(); }
const VisitResult& heap_slice() const {
DCHECK(IsHeapSlice());
return *heap_slice_;
}
bool IsBitFieldAccess() const {
bool is_bitfield_access = bit_field_struct_ != nullptr;
DCHECK_EQ(is_bitfield_access, bit_field_.has_value());
return is_bitfield_access;
}
const LocationReference& bit_field_struct_location() const {
DCHECK(IsBitFieldAccess());
return *bit_field_struct_;
}
const BitField& bit_field() const {
DCHECK(IsBitFieldAccess());
return *bit_field_;
}
base::Optional<const Type*> ReferencedType() const {
if (IsHeapReference()) {
return *TypeOracle::MatchReferenceGeneric(heap_reference().type());
}
if (IsHeapSlice()) {
if (auto type = Type::MatchUnaryGeneric(
heap_slice().type(), TypeOracle::GetMutableSliceGeneric())) {
return *type;
}
return Type::MatchUnaryGeneric(heap_slice().type(),
TypeOracle::GetConstSliceGeneric());
}
if (IsBitFieldAccess()) {
return bit_field_->name_and_type.type;
}
if (IsVariableAccess() || IsHeapSlice() || IsTemporary()) {
return GetVisitResult().type();
}
return base::nullopt;
}
const VisitResult& GetVisitResult() const {
if (IsVariableAccess()) return variable();
if (IsHeapSlice()) return heap_slice();
DCHECK(IsTemporary());
return temporary();
}
// For error reporting.
const std::string& temporary_description() const {
DCHECK(IsTemporary());
return *temporary_description_;
}
bool IsCallAccess() const {
bool is_call_access = eval_function_.has_value();
DCHECK_EQ(is_call_access, assign_function_.has_value());
return is_call_access;
}
const VisitResultVector& call_arguments() const {
DCHECK(IsCallAccess());
return call_arguments_;
}
const std::string& eval_function() const {
DCHECK(IsCallAccess());
return *eval_function_;
}
const std::string& assign_function() const {
DCHECK(IsCallAccess());
return *assign_function_;
}
base::Optional<Binding<LocalValue>*> binding() const {
DCHECK(IsVariableAccess());
return binding_;
}
private:
base::Optional<VisitResult> variable_;
base::Optional<VisitResult> temporary_;
base::Optional<std::string> temporary_description_;
base::Optional<VisitResult> heap_reference_;
base::Optional<VisitResult> heap_slice_;
base::Optional<std::string> eval_function_;
base::Optional<std::string> assign_function_;
VisitResultVector call_arguments_;
base::Optional<Binding<LocalValue>*> binding_;
// The location of the bitfield struct that contains this bitfield, if this
// reference is a bitfield access. Uses a shared_ptr so that LocationReference
// is copyable, allowing us to set this field equal to a copy of a
// stack-allocated LocationReference.
std::shared_ptr<const LocationReference> bit_field_struct_;
base::Optional<BitField> bit_field_;
LocationReference() = default;
};
struct InitializerResults {
std::vector<Identifier*> names;
std::map<std::string, VisitResult> field_value_map;
};
struct LayoutForInitialization {
std::map<std::string, VisitResult> array_lengths;
std::map<std::string, VisitResult> offsets;
VisitResult size;
};
extern uint64_t next_unique_binding_index;
template <class T>
class Binding;
template <class T>
class BindingsManager {
public:
base::Optional<Binding<T>*> TryLookup(const std::string& name) {
if (StartsWithSingleUnderscore(name)) {
Error("Trying to reference '", name, "' which is marked as unused.")
.Throw();
}
auto binding = current_bindings_[name];
if (binding) {
(*binding)->SetUsed();
}
return binding;
}
private:
friend class Binding<T>;
std::unordered_map<std::string, base::Optional<Binding<T>*>>
current_bindings_;
};
template <class T>
class Binding : public T {
public:
template <class... Args>
Binding(BindingsManager<T>* manager, const std::string& name, Args&&... args)
: T(std::forward<Args>(args)...),
manager_(manager),
name_(name),
previous_binding_(this),
used_(false),
written_(false),
unique_index_(next_unique_binding_index++) {
std::swap(previous_binding_, manager_->current_bindings_[name]);
}
template <class... Args>
Binding(BindingsManager<T>* manager, const Identifier* name, Args&&... args)
: Binding(manager, name->value, std::forward<Args>(args)...) {
declaration_position_ = name->pos;
}
~Binding() {
if (!used_ && !SkipLintCheck()) {
Lint(BindingTypeString(), "'", name_,
"' is never used. Prefix with '_' if this is intentional.")
.Position(declaration_position_);
}
if (CheckWritten() && !written_ && !SkipLintCheck()) {
Lint(BindingTypeString(), "'", name_,
"' is never assigned to. Use 'const' instead of 'let'.")
.Position(declaration_position_);
}
manager_->current_bindings_[name_] = previous_binding_;
}
Binding(const Binding&) = delete;
Binding& operator=(const Binding&) = delete;
std::string BindingTypeString() const;
bool CheckWritten() const;
const std::string& name() const { return name_; }
SourcePosition declaration_position() const { return declaration_position_; }
bool Used() const { return used_; }
void SetUsed() { used_ = true; }
bool Written() const { return written_; }
void SetWritten() { written_ = true; }
uint64_t unique_index() const { return unique_index_; }
private:
bool SkipLintCheck() const { return name_.length() > 0 && name_[0] == '_'; }
BindingsManager<T>* manager_;
const std::string name_;
base::Optional<Binding*> previous_binding_;
SourcePosition declaration_position_ = CurrentSourcePosition::Get();
bool used_;
bool written_;
uint64_t unique_index_;
};
template <class T>
class BlockBindings {
public:
explicit BlockBindings(BindingsManager<T>* manager) : manager_(manager) {}
Binding<T>* Add(std::string name, T value, bool mark_as_used = false) {
ReportErrorIfAlreadyBound(name);
auto binding =
std::make_unique<Binding<T>>(manager_, name, std::move(value));
Binding<T>* result = binding.get();
if (mark_as_used) binding->SetUsed();
bindings_.push_back(std::move(binding));
return result;
}
Binding<T>* Add(const Identifier* name, T value, bool mark_as_used = false) {
ReportErrorIfAlreadyBound(name->value);
auto binding =
std::make_unique<Binding<T>>(manager_, name, std::move(value));
Binding<T>* result = binding.get();
if (mark_as_used) binding->SetUsed();
bindings_.push_back(std::move(binding));
return result;
}
std::vector<Binding<T>*> bindings() const {
std::vector<Binding<T>*> result;
result.reserve(bindings_.size());
for (auto& b : bindings_) {
result.push_back(b.get());
}
return result;
}
private:
void ReportErrorIfAlreadyBound(const std::string& name) {
for (const auto& binding : bindings_) {
if (binding->name() == name) {
ReportError(
"redeclaration of name \"", name,
"\" in the same block is illegal, previous declaration at: ",
binding->declaration_position());
}
}
}
BindingsManager<T>* manager_;
std::vector<std::unique_ptr<Binding<T>>> bindings_;
};
class LocalValue {
public:
explicit LocalValue(LocationReference reference)
: value(std::move(reference)) {}
explicit LocalValue(std::string inaccessible_explanation)
: inaccessible_explanation(std::move(inaccessible_explanation)) {}
explicit LocalValue(std::function<LocationReference()> lazy)
: lazy(std::move(lazy)) {}
LocationReference GetLocationReference(Binding<LocalValue>* binding) {
if (value) {
const LocationReference& ref = *value;
if (ref.IsVariableAccess()) {
// Attach the binding to enable the never-assigned-to lint check.
return LocationReference::VariableAccess(ref.GetVisitResult(), binding);
}
return ref;
} else if (lazy) {
return (*lazy)();
} else {
Error("Cannot access ", binding->name(), ": ", inaccessible_explanation)
.Throw();
}
}
bool IsAccessibleNonLazy() const { return value.has_value(); }
private:
base::Optional<LocationReference> value;
base::Optional<std::function<LocationReference()>> lazy;
std::string inaccessible_explanation;
};
struct LocalLabel {
Block* block;
std::vector<const Type*> parameter_types;
explicit LocalLabel(Block* block,
std::vector<const Type*> parameter_types = {})
: block(block), parameter_types(std::move(parameter_types)) {}
};
template <>
inline std::string Binding<LocalValue>::BindingTypeString() const {
return "Variable ";
}
template <>
inline bool Binding<LocalValue>::CheckWritten() const {
// Do the check only for non-const variables and non struct types.
auto binding = *manager_->current_bindings_[name_];
if (!binding->IsAccessibleNonLazy()) return false;
const LocationReference& ref = binding->GetLocationReference(binding);
if (!ref.IsVariableAccess()) return false;
return !ref.GetVisitResult().type()->StructSupertype();
}
template <>
inline std::string Binding<LocalLabel>::BindingTypeString() const {
return "Label ";
}
template <>
inline bool Binding<LocalLabel>::CheckWritten() const {
return false;
}
struct Arguments {
VisitResultVector parameters;
std::vector<Binding<LocalLabel>*> labels;
};
// Determine if a callable should be considered as an overload.
bool IsCompatibleSignature(const Signature& sig, const TypeVector& types,
size_t label_count);
class ImplementationVisitor {
public:
void GenerateBuiltinDefinitionsAndInterfaceDescriptors(
const std::string& output_directory);
void GenerateVisitorLists(const std::string& output_directory);
void GenerateBitFields(const std::string& output_directory);
void GeneratePrintDefinitions(const std::string& output_directory);
void GenerateClassDefinitions(const std::string& output_directory);
void GenerateBodyDescriptors(const std::string& output_directory);
void GenerateInstanceTypes(const std::string& output_directory);
void GenerateClassVerifiers(const std::string& output_directory);
void GenerateEnumVerifiers(const std::string& output_directory);
void GenerateClassDebugReaders(const std::string& output_directory);
void GenerateExportedMacrosAssembler(const std::string& output_directory);
void GenerateCSATypes(const std::string& output_directory);
VisitResult Visit(Expression* expr);
const Type* Visit(Statement* stmt);
template <typename T>
void CheckInitializersWellformed(
const std::string& aggregate_name, const std::vector<T>& aggregate_fields,
const std::vector<NameAndExpression>& initializers,
bool ignore_first_field = false) {
size_t fields_offset = ignore_first_field ? 1 : 0;
size_t fields_size = aggregate_fields.size() - fields_offset;
for (size_t i = 0; i < std::min(fields_size, initializers.size()); i++) {
const std::string& field_name =
aggregate_fields[i + fields_offset].name_and_type.name;
Identifier* found_name = initializers[i].name;
if (field_name != found_name->value) {
Error("Expected field name \"", field_name, "\" instead of \"",
found_name->value, "\"")
.Position(found_name->pos)
.Throw();
}
}
if (fields_size != initializers.size()) {
ReportError("expected ", fields_size, " initializers for ",
aggregate_name, " found ", initializers.size());
}
}
InitializerResults VisitInitializerResults(
const ClassType* class_type,
const std::vector<NameAndExpression>& expressions);
LocationReference GenerateFieldReference(
VisitResult object, const Field& field, const ClassType* class_type,
bool treat_optional_as_indexed = false);
LocationReference GenerateFieldReferenceForInit(
VisitResult object, const Field& field,
const LayoutForInitialization& layout);
VisitResult GenerateArrayLength(
Expression* array_length, Namespace* nspace,
const std::map<std::string, LocalValue>& bindings);
VisitResult GenerateArrayLength(VisitResult object, const Field& field);
VisitResult GenerateArrayLength(const ClassType* class_type,
const InitializerResults& initializer_results,
const Field& field);
LayoutForInitialization GenerateLayoutForInitialization(
const ClassType* class_type,
const InitializerResults& initializer_results);
void InitializeClass(const ClassType* class_type, VisitResult allocate_result,
const InitializerResults& initializer_results,
const LayoutForInitialization& layout);
VisitResult Visit(StructExpression* decl);
LocationReference GetLocationReference(Expression* location);
LocationReference LookupLocalValue(const std::string& name);
LocationReference GetLocationReference(IdentifierExpression* expr);
LocationReference GetLocationReference(DereferenceExpression* expr);
LocationReference GetLocationReference(FieldAccessExpression* expr);
LocationReference GenerateFieldAccess(
LocationReference reference, const std::string& fieldname,
bool ignore_stuct_field_constness = false,
base::Optional<SourcePosition> pos = {});
LocationReference GetLocationReference(ElementAccessExpression* expr);
LocationReference GenerateReferenceToItemInHeapSlice(LocationReference slice,
VisitResult index);
VisitResult GenerateFetchFromLocation(const LocationReference& reference);
VisitResult GetBuiltinCode(Builtin* builtin);
VisitResult Visit(LocationExpression* expr);
VisitResult Visit(FieldAccessExpression* expr);
void VisitAllDeclarables();
void Visit(Declarable* delarable, base::Optional<SourceId> file = {});
void Visit(TypeAlias* decl);
VisitResult InlineMacro(Macro* macro,
base::Optional<LocationReference> this_reference,
const std::vector<VisitResult>& arguments,
const std::vector<Block*> label_blocks);
void VisitMacroCommon(Macro* macro);
void Visit(ExternMacro* macro) {}
void Visit(TorqueMacro* macro);
void Visit(Method* macro);
void Visit(Builtin* builtin);
void Visit(NamespaceConstant* decl);
VisitResult Visit(CallExpression* expr, bool is_tail = false);
VisitResult Visit(CallMethodExpression* expr);
VisitResult Visit(IntrinsicCallExpression* intrinsic);
const Type* Visit(TailCallStatement* stmt);
VisitResult Visit(ConditionalExpression* expr);
VisitResult Visit(LogicalOrExpression* expr);
VisitResult Visit(LogicalAndExpression* expr);
VisitResult Visit(IncrementDecrementExpression* expr);
VisitResult Visit(AssignmentExpression* expr);
VisitResult Visit(StringLiteralExpression* expr);
VisitResult Visit(NumberLiteralExpression* expr);
VisitResult Visit(AssumeTypeImpossibleExpression* expr);
VisitResult Visit(TryLabelExpression* expr);
VisitResult Visit(StatementExpression* expr);
VisitResult Visit(NewExpression* expr);
VisitResult Visit(SpreadExpression* expr);
const Type* Visit(ReturnStatement* stmt);
const Type* Visit(GotoStatement* stmt);
const Type* Visit(IfStatement* stmt);
const Type* Visit(WhileStatement* stmt);
const Type* Visit(BreakStatement* stmt);
const Type* Visit(ContinueStatement* stmt);
const Type* Visit(ForLoopStatement* stmt);
const Type* Visit(VarDeclarationStatement* stmt);
const Type* Visit(VarDeclarationStatement* stmt,
BlockBindings<LocalValue>* block_bindings);
const Type* Visit(BlockStatement* block);
const Type* Visit(ExpressionStatement* stmt);
const Type* Visit(DebugStatement* stmt);
const Type* Visit(AssertStatement* stmt);
void BeginGeneratedFiles();
void EndGeneratedFiles();
void BeginDebugMacrosFile();
void EndDebugMacrosFile();
void GenerateImplementation(const std::string& dir);
DECLARE_CONTEXTUAL_VARIABLE(ValueBindingsManager,
BindingsManager<LocalValue>);
DECLARE_CONTEXTUAL_VARIABLE(LabelBindingsManager,
BindingsManager<LocalLabel>);
DECLARE_CONTEXTUAL_VARIABLE(CurrentCallable, Callable*);
DECLARE_CONTEXTUAL_VARIABLE(CurrentFileStreams,
GlobalContext::PerFileStreams*);
DECLARE_CONTEXTUAL_VARIABLE(CurrentReturnValue, base::Optional<VisitResult>);
// A BindingsManagersScope has to be active for local bindings to be created.
// Shadowing an existing BindingsManagersScope by creating a new one hides all
// existing bindings while the additional BindingsManagersScope is active.
struct BindingsManagersScope {
ValueBindingsManager::Scope value_bindings_manager;
LabelBindingsManager::Scope label_bindings_manager;
};
void SetDryRun(bool is_dry_run) { is_dry_run_ = is_dry_run; }
private:
base::Optional<Block*> GetCatchBlock();
void GenerateCatchBlock(base::Optional<Block*> catch_block);
// {StackScope} records the stack height at creation time and reconstructs it
// when being destructed by emitting a {DeleteRangeInstruction}, except for
// the slots protected by {StackScope::Yield}. Calling {Yield(v)} deletes all
// slots above the initial stack height except for the slots of {v}, which are
// moved to form the only slots above the initial height and marks them to
// survive destruction of the {StackScope}. A typical pattern is the
// following:
//
// VisitResult result;
// {
// StackScope stack_scope(this);
// // ... create temporary slots ...
// result = stack_scope.Yield(surviving_slots);
// }
class V8_NODISCARD StackScope {
public:
explicit StackScope(ImplementationVisitor* visitor) : visitor_(visitor) {
base_ = visitor_->assembler().CurrentStack().AboveTop();
}
VisitResult Yield(VisitResult result) {
DCHECK(!closed_);
closed_ = true;
if (!result.IsOnStack()) {
if (!visitor_->assembler().CurrentBlockIsComplete()) {
visitor_->assembler().DropTo(base_);
}
return result;
}
DCHECK_LE(base_, result.stack_range().begin());
DCHECK_LE(result.stack_range().end(),
visitor_->assembler().CurrentStack().AboveTop());
visitor_->assembler().DropTo(result.stack_range().end());
visitor_->assembler().DeleteRange(
StackRange{base_, result.stack_range().begin()});
base_ = visitor_->assembler().CurrentStack().AboveTop();
return VisitResult(result.type(), visitor_->assembler().TopRange(
result.stack_range().Size()));
}
void Close() {
DCHECK(!closed_);
closed_ = true;
if (!visitor_->assembler().CurrentBlockIsComplete()) {
visitor_->assembler().DropTo(base_);
}
}
~StackScope() {
if (closed_) {
DCHECK_IMPLIES(
!visitor_->assembler().CurrentBlockIsComplete(),
base_ == visitor_->assembler().CurrentStack().AboveTop());
} else {
Close();
}
}
private:
ImplementationVisitor* visitor_;
BottomOffset base_;
bool closed_ = false;
};
class BreakContinueActivator {
public:
BreakContinueActivator(Block* break_block, Block* continue_block)
: break_binding_{&LabelBindingsManager::Get(), kBreakLabelName,
LocalLabel{break_block}},
continue_binding_{&LabelBindingsManager::Get(), kContinueLabelName,
LocalLabel{continue_block}} {}
private:
Binding<LocalLabel> break_binding_;
Binding<LocalLabel> continue_binding_;
};
base::Optional<Binding<LocalValue>*> TryLookupLocalValue(
const std::string& name);
base::Optional<Binding<LocalLabel>*> TryLookupLabel(const std::string& name);
Binding<LocalLabel>* LookupLabel(const std::string& name);
Block* LookupSimpleLabel(const std::string& name);
template <class Container>
Callable* LookupCallable(const QualifiedName& name,
const Container& declaration_container,
const TypeVector& types,
const std::vector<Binding<LocalLabel>*>& labels,
const TypeVector& specialization_types,
bool silence_errors = false);
bool TestLookupCallable(const QualifiedName& name,
const TypeVector& parameter_types);
template <class Container>
Callable* LookupCallable(const QualifiedName& name,
const Container& declaration_container,
const Arguments& arguments,
const TypeVector& specialization_types);
Method* LookupMethod(const std::string& name,
const AggregateType* receiver_type,
const Arguments& arguments,
const TypeVector& specialization_types);
TypeArgumentInference InferSpecializationTypes(
GenericCallable* generic, const TypeVector& explicit_specialization_types,
const TypeVector& explicit_arguments);
const Type* GetCommonType(const Type* left, const Type* right);
VisitResult GenerateCopy(const VisitResult& to_copy);
void GenerateAssignToLocation(const LocationReference& reference,
const VisitResult& assignment_value);
void AddCallParameter(Callable* callable, VisitResult parameter,
const Type* parameter_type,
std::vector<VisitResult>* converted_arguments,
StackRange* argument_range,
std::vector<std::string>* constexpr_arguments,
bool inline_macro);
VisitResult GenerateCall(Callable* callable,
base::Optional<LocationReference> this_parameter,
Arguments parameters,
const TypeVector& specialization_types = {},
bool tail_call = false);
VisitResult GenerateCall(const QualifiedName& callable_name,
Arguments parameters,
const TypeVector& specialization_types = {},
bool tail_call = false);
VisitResult GenerateCall(std::string callable_name, Arguments parameters,
const TypeVector& specialization_types = {},
bool tail_call = false) {
return GenerateCall(QualifiedName(std::move(callable_name)),
std::move(parameters), specialization_types, tail_call);
}
VisitResult GeneratePointerCall(Expression* callee,
const Arguments& parameters, bool tail_call);
void GenerateBranch(const VisitResult& condition, Block* true_block,
Block* false_block);
VisitResult GenerateBoolConstant(bool constant);
void GenerateExpressionBranch(Expression* expression, Block* true_block,
Block* false_block);
cpp::Function GenerateMacroFunctionDeclaration(Macro* macro);
cpp::Function GenerateFunction(
cpp::Class* owner, const std::string& name, const Signature& signature,
const NameVector& parameter_names, bool pass_code_assembler_state = true,
std::vector<std::string>* generated_parameter_names = nullptr);
VisitResult GenerateImplicitConvert(const Type* destination_type,
VisitResult source);
StackRange GenerateLabelGoto(LocalLabel* label,
base::Optional<StackRange> arguments = {});
VisitResult GenerateSetBitField(const Type* bitfield_struct_type,
const BitField& bitfield,
VisitResult bitfield_struct,
VisitResult value,
bool starts_as_zero = false);
std::vector<Binding<LocalLabel>*> LabelsFromIdentifiers(
const std::vector<Identifier*>& names);
StackRange LowerParameter(const Type* type, const std::string& parameter_name,
Stack<std::string>* lowered_parameters);
void LowerLabelParameter(const Type* type, const std::string& parameter_name,
std::vector<std::string>* lowered_parameters);
std::string ExternalLabelName(const std::string& label_name);
std::string ExternalLabelParameterName(const std::string& label_name,
size_t i);
std::string ExternalParameterName(const std::string& name);
std::ostream& csa_ccfile() {
if (auto* streams = CurrentFileStreams::Get()) {
switch (output_type_) {
case OutputType::kCSA:
return streams->csa_ccfile;
case OutputType::kCC:
return streams->class_definition_inline_headerfile_macro_definitions;
case OutputType::kCCDebug:
return debug_macros_cc_;
default:
UNREACHABLE();
}
}
return null_stream_;
}
std::ostream& csa_headerfile() {
if (auto* streams = CurrentFileStreams::Get()) {
switch (output_type_) {
case OutputType::kCSA:
return streams->csa_headerfile;
case OutputType::kCC:
return streams->class_definition_inline_headerfile_macro_declarations;
case OutputType::kCCDebug:
return debug_macros_h_;
default:
UNREACHABLE();
}
}
return null_stream_;
}
CfgAssembler& assembler() { return *assembler_; }
void SetReturnValue(VisitResult return_value) {
base::Optional<VisitResult>& current_return_value =
CurrentReturnValue::Get();
DCHECK_IMPLIES(current_return_value, *current_return_value == return_value);
current_return_value = std::move(return_value);
}
VisitResult GetAndClearReturnValue() {
VisitResult return_value = *CurrentReturnValue::Get();
CurrentReturnValue::Get() = base::nullopt;
return return_value;
}
void WriteFile(const std::string& file, const std::string& content) {
if (is_dry_run_) return;
ReplaceFileContentsIfDifferent(file, content);
}
const Identifier* TryGetSourceForBitfieldExpression(
const Expression* expr) const {
auto it = bitfield_expressions_.find(expr);
if (it == bitfield_expressions_.end()) return nullptr;
return it->second;
}
void PropagateBitfieldMark(const Expression* original,
const Expression* derived) {
if (const Identifier* source =
TryGetSourceForBitfieldExpression(original)) {
bitfield_expressions_[derived] = source;
}
}
class MacroInliningScope;
base::Optional<CfgAssembler> assembler_;
NullOStream null_stream_;
bool is_dry_run_;
// Just for allowing us to emit warnings. After visiting an Expression, if
// that Expression is a bitfield load, plus an optional inversion or an
// equality check with a constant, then that Expression will be present in
// this map. The Identifier associated is the bitfield struct that contains
// the value to load.
std::unordered_map<const Expression*, const Identifier*>
bitfield_expressions_;
// For emitting warnings. Contains the current set of macros being inlined in
// calls to InlineMacro.
std::unordered_set<const Macro*> inlining_macros_;
// The contents of the debug macros output files. These contain all Torque
// macros that have been generated using the C++ backend with debug purpose.
std::stringstream debug_macros_cc_;
std::stringstream debug_macros_h_;
OutputType output_type_ = OutputType::kCSA;
};
void ReportAllUnusedMacros();
} // namespace torque
} // namespace internal
} // namespace v8
#endif // V8_TORQUE_IMPLEMENTATION_VISITOR_H_
|