summaryrefslogtreecommitdiff
path: root/deps/v8/src/torque/types.cc
blob: e8a8e63ba6490c12c12a96b1852dee4750afa2d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/torque/types.h"

#include <cmath>
#include <iostream>

#include "src/base/bits.h"
#include "src/base/optional.h"
#include "src/torque/ast.h"
#include "src/torque/declarable.h"
#include "src/torque/global-context.h"
#include "src/torque/source-positions.h"
#include "src/torque/type-oracle.h"
#include "src/torque/type-visitor.h"

namespace v8 {
namespace internal {
namespace torque {

// This custom copy constructor doesn't copy aliases_ and id_ because they
// should be distinct for each type.
Type::Type(const Type& other) V8_NOEXCEPT
    : TypeBase(other),
      parent_(other.parent_),
      aliases_(),
      id_(TypeOracle::FreshTypeId()),
      constexpr_version_(other.constexpr_version_) {}
Type::Type(TypeBase::Kind kind, const Type* parent,
           MaybeSpecializationKey specialized_from)
    : TypeBase(kind),
      parent_(parent),
      id_(TypeOracle::FreshTypeId()),
      specialized_from_(specialized_from),
      constexpr_version_(nullptr) {}

std::string Type::ToString() const {
  if (aliases_.size() == 0)
    return ComputeName(ToExplicitString(), GetSpecializedFrom());
  if (aliases_.size() == 1) return *aliases_.begin();
  std::stringstream result;
  int i = 0;
  for (const std::string& alias : aliases_) {
    if (i == 0) {
      result << alias << " (aka. ";
    } else if (i == 1) {
      result << alias;
    } else {
      result << ", " << alias;
    }
    ++i;
  }
  result << ")";
  return result.str();
}

std::string Type::SimpleName() const {
  if (aliases_.empty()) {
    std::stringstream result;
    result << SimpleNameImpl();
    if (GetSpecializedFrom()) {
      for (const Type* t : GetSpecializedFrom()->specialized_types) {
        result << "_" << t->SimpleName();
      }
    }
    return result.str();
  }
  return *aliases_.begin();
}

// TODO(danno): HandlifiedCppTypeName should be used universally in Torque
// where the C++ type of a Torque object is required.
std::string Type::HandlifiedCppTypeName() const {
  if (IsSubtypeOf(TypeOracle::GetSmiType())) return "int";
  if (IsSubtypeOf(TypeOracle::GetTaggedType())) {
    return "Handle<" + UnhandlifiedCppTypeName() + ">";
  } else {
    return UnhandlifiedCppTypeName();
  }
}

std::string Type::UnhandlifiedCppTypeName() const {
  if (IsSubtypeOf(TypeOracle::GetSmiType())) return "int";
  if (this == TypeOracle::GetObjectType()) return "Object";
  return GetConstexprGeneratedTypeName();
}

bool Type::IsSubtypeOf(const Type* supertype) const {
  if (supertype->IsTopType()) return true;
  if (IsNever()) return true;
  if (const UnionType* union_type = UnionType::DynamicCast(supertype)) {
    return union_type->IsSupertypeOf(this);
  }
  const Type* subtype = this;
  while (subtype != nullptr) {
    if (subtype == supertype) return true;
    subtype = subtype->parent();
  }
  return false;
}

std::string Type::GetConstexprGeneratedTypeName() const {
  const Type* constexpr_version = ConstexprVersion();
  if (constexpr_version == nullptr) {
    Error("Type '", ToString(), "' requires a constexpr representation");
    return "";
  }
  return constexpr_version->GetGeneratedTypeName();
}

base::Optional<const ClassType*> Type::ClassSupertype() const {
  for (const Type* t = this; t != nullptr; t = t->parent()) {
    if (auto* class_type = ClassType::DynamicCast(t)) {
      return class_type;
    }
  }
  return base::nullopt;
}

base::Optional<const StructType*> Type::StructSupertype() const {
  for (const Type* t = this; t != nullptr; t = t->parent()) {
    if (auto* struct_type = StructType::DynamicCast(t)) {
      return struct_type;
    }
  }
  return base::nullopt;
}

base::Optional<const AggregateType*> Type::AggregateSupertype() const {
  for (const Type* t = this; t != nullptr; t = t->parent()) {
    if (auto* aggregate_type = AggregateType::DynamicCast(t)) {
      return aggregate_type;
    }
  }
  return base::nullopt;
}

// static
const Type* Type::CommonSupertype(const Type* a, const Type* b) {
  int diff = a->Depth() - b->Depth();
  const Type* a_supertype = a;
  const Type* b_supertype = b;
  for (; diff > 0; --diff) a_supertype = a_supertype->parent();
  for (; diff < 0; ++diff) b_supertype = b_supertype->parent();
  while (a_supertype && b_supertype) {
    if (a_supertype == b_supertype) return a_supertype;
    a_supertype = a_supertype->parent();
    b_supertype = b_supertype->parent();
  }
  ReportError("types " + a->ToString() + " and " + b->ToString() +
              " have no common supertype");
}

int Type::Depth() const {
  int result = 0;
  for (const Type* current = parent_; current; current = current->parent_) {
    ++result;
  }
  return result;
}

bool Type::IsAbstractName(const std::string& name) const {
  if (!IsAbstractType()) return false;
  return AbstractType::cast(this)->name() == name;
}

std::string Type::GetGeneratedTypeName() const {
  std::string result = GetGeneratedTypeNameImpl();
  if (result.empty() || result == "TNode<>") {
    ReportError("Generated type is required for type '", ToString(),
                "'. Use 'generates' clause in definition.");
  }
  return result;
}

std::string Type::GetGeneratedTNodeTypeName() const {
  std::string result = GetGeneratedTNodeTypeNameImpl();
  if (result.empty() || IsConstexpr()) {
    ReportError("Generated TNode type is required for type '", ToString(),
                "'. Use 'generates' clause in definition.");
  }
  return result;
}

std::string AbstractType::GetGeneratedTypeNameImpl() const {
  // A special case that is not very well represented by the "generates"
  // syntax in the .tq files: Lazy<T> represents a std::function that
  // produces a TNode of the wrapped type.
  if (base::Optional<const Type*> type_wrapped_in_lazy =
          Type::MatchUnaryGeneric(this, TypeOracle::GetLazyGeneric())) {
    DCHECK(!IsConstexpr());
    return "std::function<" + (*type_wrapped_in_lazy)->GetGeneratedTypeName() +
           "()>";
  }

  if (generated_type_.empty()) {
    return parent()->GetGeneratedTypeName();
  }
  return IsConstexpr() ? generated_type_ : "TNode<" + generated_type_ + ">";
}

std::string AbstractType::GetGeneratedTNodeTypeNameImpl() const {
  if (generated_type_.empty()) return parent()->GetGeneratedTNodeTypeName();
  return generated_type_;
}

std::vector<TypeChecker> AbstractType::GetTypeCheckers() const {
  if (UseParentTypeChecker()) return parent()->GetTypeCheckers();
  std::string type_name = name();
  if (auto strong_type =
          Type::MatchUnaryGeneric(this, TypeOracle::GetWeakGeneric())) {
    auto strong_runtime_types = (*strong_type)->GetTypeCheckers();
    std::vector<TypeChecker> result;
    for (const TypeChecker& type : strong_runtime_types) {
      // Generic parameter in Weak<T> should have already been checked to
      // extend HeapObject, so it couldn't itself be another weak type.
      DCHECK(type.weak_ref_to.empty());
      result.push_back({type_name, type.type});
    }
    return result;
  }
  return {{type_name, ""}};
}

std::string BuiltinPointerType::ToExplicitString() const {
  std::stringstream result;
  result << "builtin (";
  PrintCommaSeparatedList(result, parameter_types_);
  result << ") => " << *return_type_;
  return result.str();
}

std::string BuiltinPointerType::SimpleNameImpl() const {
  std::stringstream result;
  result << "BuiltinPointer";
  for (const Type* t : parameter_types_) {
    result << "_" << t->SimpleName();
  }
  result << "_" << return_type_->SimpleName();
  return result.str();
}

std::string UnionType::ToExplicitString() const {
  std::stringstream result;
  result << "(";
  bool first = true;
  for (const Type* t : types_) {
    if (!first) {
      result << " | ";
    }
    first = false;
    result << *t;
  }
  result << ")";
  return result.str();
}

std::string UnionType::SimpleNameImpl() const {
  std::stringstream result;
  bool first = true;
  for (const Type* t : types_) {
    if (!first) {
      result << "_OR_";
    }
    first = false;
    result << t->SimpleName();
  }
  return result.str();
}

std::string UnionType::GetGeneratedTNodeTypeNameImpl() const {
  if (types_.size() <= 3) {
    std::set<std::string> members;
    for (const Type* t : types_) {
      members.insert(t->GetGeneratedTNodeTypeName());
    }
    if (members == std::set<std::string>{"Smi", "HeapNumber"}) {
      return "Number";
    }
    if (members == std::set<std::string>{"Smi", "HeapNumber", "BigInt"}) {
      return "Numeric";
    }
  }
  return parent()->GetGeneratedTNodeTypeName();
}

void UnionType::RecomputeParent() {
  const Type* parent = nullptr;
  for (const Type* t : types_) {
    if (parent == nullptr) {
      parent = t;
    } else {
      parent = CommonSupertype(parent, t);
    }
  }
  set_parent(parent);
}

void UnionType::Subtract(const Type* t) {
  for (auto it = types_.begin(); it != types_.end();) {
    if ((*it)->IsSubtypeOf(t)) {
      it = types_.erase(it);
    } else {
      ++it;
    }
  }
  if (types_.size() == 0) types_.insert(TypeOracle::GetNeverType());
  RecomputeParent();
}

const Type* SubtractType(const Type* a, const Type* b) {
  UnionType result = UnionType::FromType(a);
  result.Subtract(b);
  return TypeOracle::GetUnionType(result);
}

std::string BitFieldStructType::ToExplicitString() const {
  return "bitfield struct " + name();
}

const BitField& BitFieldStructType::LookupField(const std::string& name) const {
  for (const BitField& field : fields_) {
    if (field.name_and_type.name == name) {
      return field;
    }
  }
  ReportError("Couldn't find bitfield ", name);
}

void AggregateType::CheckForDuplicateFields() const {
  // Check the aggregate hierarchy and currently defined class for duplicate
  // field declarations.
  auto hierarchy = GetHierarchy();
  std::map<std::string, const AggregateType*> field_names;
  for (const AggregateType* aggregate_type : hierarchy) {
    for (const Field& field : aggregate_type->fields()) {
      const std::string& field_name = field.name_and_type.name;
      auto i = field_names.find(field_name);
      if (i != field_names.end()) {
        CurrentSourcePosition::Scope current_source_position(field.pos);
        std::string aggregate_type_name =
            aggregate_type->IsClassType() ? "class" : "struct";
        if (i->second == this) {
          ReportError(aggregate_type_name, " '", name(),
                      "' declares a field with the name '", field_name,
                      "' more than once");
        } else {
          ReportError(aggregate_type_name, " '", name(),
                      "' declares a field with the name '", field_name,
                      "' that masks an inherited field from class '",
                      i->second->name(), "'");
        }
      }
      field_names[field_name] = aggregate_type;
    }
  }
}

std::vector<const AggregateType*> AggregateType::GetHierarchy() const {
  if (!is_finalized_) Finalize();
  std::vector<const AggregateType*> hierarchy;
  const AggregateType* current_container_type = this;
  while (current_container_type != nullptr) {
    hierarchy.push_back(current_container_type);
    current_container_type =
        current_container_type->IsClassType()
            ? ClassType::cast(current_container_type)->GetSuperClass()
            : nullptr;
  }
  std::reverse(hierarchy.begin(), hierarchy.end());
  return hierarchy;
}

bool AggregateType::HasField(const std::string& name) const {
  if (!is_finalized_) Finalize();
  for (auto& field : fields_) {
    if (field.name_and_type.name == name) return true;
  }
  if (parent() != nullptr) {
    if (auto parent_class = ClassType::DynamicCast(parent())) {
      return parent_class->HasField(name);
    }
  }
  return false;
}

const Field& AggregateType::LookupFieldInternal(const std::string& name) const {
  for (auto& field : fields_) {
    if (field.name_and_type.name == name) return field;
  }
  if (parent() != nullptr) {
    if (auto parent_class = ClassType::DynamicCast(parent())) {
      return parent_class->LookupField(name);
    }
  }
  ReportError("no field ", name, " found in ", this->ToString());
}

const Field& AggregateType::LookupField(const std::string& name) const {
  if (!is_finalized_) Finalize();
  return LookupFieldInternal(name);
}

StructType::StructType(Namespace* nspace, const StructDeclaration* decl,
                       MaybeSpecializationKey specialized_from)
    : AggregateType(Kind::kStructType, nullptr, nspace, decl->name->value,
                    specialized_from),
      decl_(decl) {
  if (decl->flags & StructFlag::kExport) {
    generated_type_name_ = "TorqueStruct" + name();
  } else {
    generated_type_name_ =
        GlobalContext::MakeUniqueName("TorqueStruct" + SimpleName());
  }
}

std::string StructType::GetGeneratedTypeNameImpl() const {
  return generated_type_name_;
}

size_t StructType::PackedSize() const {
  size_t result = 0;
  for (const Field& field : fields()) {
    result += std::get<0>(field.GetFieldSizeInformation());
  }
  return result;
}

StructType::Classification StructType::ClassifyContents() const {
  Classification result = ClassificationFlag::kEmpty;
  for (const Field& struct_field : fields()) {
    const Type* field_type = struct_field.name_and_type.type;
    if (field_type->IsSubtypeOf(TypeOracle::GetStrongTaggedType())) {
      result |= ClassificationFlag::kStrongTagged;
    } else if (field_type->IsSubtypeOf(TypeOracle::GetTaggedType())) {
      result |= ClassificationFlag::kWeakTagged;
    } else if (auto field_as_struct = field_type->StructSupertype()) {
      result |= (*field_as_struct)->ClassifyContents();
    } else {
      result |= ClassificationFlag::kUntagged;
    }
  }
  return result;
}

// static
std::string Type::ComputeName(const std::string& basename,
                              MaybeSpecializationKey specialized_from) {
  if (!specialized_from) return basename;
  if (specialized_from->generic == TypeOracle::GetConstReferenceGeneric()) {
    return torque::ToString("const &", *specialized_from->specialized_types[0]);
  }
  if (specialized_from->generic == TypeOracle::GetMutableReferenceGeneric()) {
    return torque::ToString("&", *specialized_from->specialized_types[0]);
  }
  std::stringstream s;
  s << basename << "<";
  bool first = true;
  for (auto t : specialized_from->specialized_types) {
    if (!first) {
      s << ", ";
    }
    s << t->ToString();
    first = false;
  }
  s << ">";
  return s.str();
}

std::string StructType::SimpleNameImpl() const { return decl_->name->value; }

// static
base::Optional<const Type*> Type::MatchUnaryGeneric(const Type* type,
                                                    GenericType* generic) {
  DCHECK_EQ(generic->generic_parameters().size(), 1);
  if (!type->GetSpecializedFrom()) {
    return base::nullopt;
  }
  auto& key = type->GetSpecializedFrom().value();
  if (key.generic != generic || key.specialized_types.size() != 1) {
    return base::nullopt;
  }
  return {key.specialized_types[0]};
}

std::vector<Method*> AggregateType::Methods(const std::string& name) const {
  if (!is_finalized_) Finalize();
  std::vector<Method*> result;
  std::copy_if(methods_.begin(), methods_.end(), std::back_inserter(result),
               [name](Macro* macro) { return macro->ReadableName() == name; });
  if (result.empty() && parent() != nullptr) {
    if (auto aggregate_parent = parent()->AggregateSupertype()) {
      return (*aggregate_parent)->Methods(name);
    }
  }
  return result;
}

std::string StructType::ToExplicitString() const { return "struct " + name(); }

void StructType::Finalize() const {
  if (is_finalized_) return;
  {
    CurrentScope::Scope scope_activator(nspace());
    CurrentSourcePosition::Scope position_activator(decl_->pos);
    TypeVisitor::VisitStructMethods(const_cast<StructType*>(this), decl_);
  }
  is_finalized_ = true;
  CheckForDuplicateFields();
}

ClassType::ClassType(const Type* parent, Namespace* nspace,
                     const std::string& name, ClassFlags flags,
                     const std::string& generates, const ClassDeclaration* decl,
                     const TypeAlias* alias)
    : AggregateType(Kind::kClassType, parent, nspace, name),
      size_(ResidueClass::Unknown()),
      flags_(flags),
      generates_(generates),
      decl_(decl),
      alias_(alias) {}

std::string ClassType::GetGeneratedTNodeTypeNameImpl() const {
  return generates_;
}

std::string ClassType::GetGeneratedTypeNameImpl() const {
  return IsConstexpr() ? GetGeneratedTNodeTypeName()
                       : "TNode<" + GetGeneratedTNodeTypeName() + ">";
}

std::string ClassType::ToExplicitString() const { return "class " + name(); }

bool ClassType::AllowInstantiation() const {
  return (!IsExtern() || nspace()->IsDefaultNamespace()) && !IsAbstract();
}

void ClassType::Finalize() const {
  if (is_finalized_) return;
  CurrentScope::Scope scope_activator(alias_->ParentScope());
  CurrentSourcePosition::Scope position_activator(decl_->pos);
  TypeVisitor::VisitClassFieldsAndMethods(const_cast<ClassType*>(this),
                                          this->decl_);
  is_finalized_ = true;
  CheckForDuplicateFields();
}

std::vector<Field> ClassType::ComputeAllFields() const {
  std::vector<Field> all_fields;
  const ClassType* super_class = this->GetSuperClass();
  if (super_class) {
    all_fields = super_class->ComputeAllFields();
  }
  const std::vector<Field>& fields = this->fields();
  all_fields.insert(all_fields.end(), fields.begin(), fields.end());
  return all_fields;
}

std::vector<Field> ClassType::ComputeHeaderFields() const {
  std::vector<Field> result;
  for (Field& field : ComputeAllFields()) {
    if (field.index) break;
    DCHECK(*field.offset < header_size());
    result.push_back(std::move(field));
  }
  return result;
}

std::vector<Field> ClassType::ComputeArrayFields() const {
  std::vector<Field> result;
  for (Field& field : ComputeAllFields()) {
    if (!field.index) {
      DCHECK(*field.offset < header_size());
      continue;
    }
    result.push_back(std::move(field));
  }
  return result;
}

void ClassType::InitializeInstanceTypes(
    base::Optional<int> own, base::Optional<std::pair<int, int>> range) const {
  DCHECK(!own_instance_type_.has_value());
  DCHECK(!instance_type_range_.has_value());
  own_instance_type_ = own;
  instance_type_range_ = range;
}

base::Optional<int> ClassType::OwnInstanceType() const {
  DCHECK(GlobalContext::IsInstanceTypesInitialized());
  return own_instance_type_;
}

base::Optional<std::pair<int, int>> ClassType::InstanceTypeRange() const {
  DCHECK(GlobalContext::IsInstanceTypesInitialized());
  return instance_type_range_;
}

namespace {
void ComputeSlotKindsHelper(std::vector<ObjectSlotKind>* slots,
                            size_t start_offset,
                            const std::vector<Field>& fields) {
  size_t offset = start_offset;
  for (const Field& field : fields) {
    size_t field_size = std::get<0>(field.GetFieldSizeInformation());
    size_t slot_index = offset / TargetArchitecture::TaggedSize();
    // Rounding-up division to find the number of slots occupied by all the
    // fields up to and including the current one.
    size_t used_slots =
        (offset + field_size + TargetArchitecture::TaggedSize() - 1) /
        TargetArchitecture::TaggedSize();
    while (used_slots > slots->size()) {
      slots->push_back(ObjectSlotKind::kNoPointer);
    }
    const Type* type = field.name_and_type.type;
    if (auto struct_type = type->StructSupertype()) {
      ComputeSlotKindsHelper(slots, offset, (*struct_type)->fields());
    } else {
      ObjectSlotKind kind;
      if (type->IsSubtypeOf(TypeOracle::GetObjectType())) {
        if (field.custom_weak_marking) {
          kind = ObjectSlotKind::kCustomWeakPointer;
        } else {
          kind = ObjectSlotKind::kStrongPointer;
        }
      } else if (type->IsSubtypeOf(TypeOracle::GetTaggedType())) {
        DCHECK(!field.custom_weak_marking);
        kind = ObjectSlotKind::kMaybeObjectPointer;
      } else {
        kind = ObjectSlotKind::kNoPointer;
      }
      DCHECK(slots->at(slot_index) == ObjectSlotKind::kNoPointer);
      slots->at(slot_index) = kind;
    }

    offset += field_size;
  }
}
}  // namespace

std::vector<ObjectSlotKind> ClassType::ComputeHeaderSlotKinds() const {
  std::vector<ObjectSlotKind> result;
  std::vector<Field> header_fields = ComputeHeaderFields();
  ComputeSlotKindsHelper(&result, 0, header_fields);
  DCHECK_EQ(std::ceil(static_cast<double>(header_size()) /
                      TargetArchitecture::TaggedSize()),
            result.size());
  return result;
}

base::Optional<ObjectSlotKind> ClassType::ComputeArraySlotKind() const {
  std::vector<ObjectSlotKind> kinds;
  ComputeSlotKindsHelper(&kinds, 0, ComputeArrayFields());
  if (kinds.empty()) return base::nullopt;
  std::sort(kinds.begin(), kinds.end());
  if (kinds.front() == kinds.back()) return {kinds.front()};
  if (kinds.front() == ObjectSlotKind::kStrongPointer &&
      kinds.back() == ObjectSlotKind::kMaybeObjectPointer) {
    return ObjectSlotKind::kMaybeObjectPointer;
  }
  Error("Array fields mix types with different GC visitation requirements.")
      .Throw();
}

bool ClassType::HasNoPointerSlots() const {
  for (ObjectSlotKind slot : ComputeHeaderSlotKinds()) {
    if (slot != ObjectSlotKind::kNoPointer) return false;
  }
  if (auto slot = ComputeArraySlotKind()) {
    if (*slot != ObjectSlotKind::kNoPointer) return false;
  }
  return true;
}

bool ClassType::HasIndexedFieldsIncludingInParents() const {
  for (const auto& field : fields_) {
    if (field.index.has_value()) return true;
  }
  if (const ClassType* parent = GetSuperClass()) {
    return parent->HasIndexedFieldsIncludingInParents();
  }
  return false;
}

const Field* ClassType::GetFieldPreceding(size_t field_index) const {
  if (field_index > 0) {
    return &fields_[field_index - 1];
  }
  if (const ClassType* parent = GetSuperClass()) {
    return parent->GetFieldPreceding(parent->fields_.size());
  }
  return nullptr;
}

const ClassType* ClassType::GetClassDeclaringField(const Field& f) const {
  for (const Field& field : fields_) {
    if (f.name_and_type.name == field.name_and_type.name) return this;
  }
  return GetSuperClass()->GetClassDeclaringField(f);
}

std::string ClassType::GetSliceMacroName(const Field& field) const {
  const ClassType* declarer = GetClassDeclaringField(field);
  return "FieldSlice" + declarer->name() +
         CamelifyString(field.name_and_type.name);
}

void ClassType::GenerateAccessors() {
  bool at_or_after_indexed_field = false;
  if (const ClassType* parent = GetSuperClass()) {
    at_or_after_indexed_field = parent->HasIndexedFieldsIncludingInParents();
  }
  // For each field, construct AST snippets that implement a CSA accessor
  // function. The implementation iterator will turn the snippets into code.
  for (size_t field_index = 0; field_index < fields_.size(); ++field_index) {
    Field& field = fields_[field_index];
    if (field.name_and_type.type == TypeOracle::GetVoidType()) {
      continue;
    }
    at_or_after_indexed_field =
        at_or_after_indexed_field || field.index.has_value();
    CurrentSourcePosition::Scope position_activator(field.pos);

    IdentifierExpression* parameter = MakeIdentifierExpression("o");
    IdentifierExpression* index = MakeIdentifierExpression("i");

    std::string camel_field_name = CamelifyString(field.name_and_type.name);

    if (at_or_after_indexed_field) {
      if (!field.index.has_value()) {
        // There's no fundamental reason we couldn't generate functions to get
        // references instead of slices, but it's not yet implemented.
        ReportError(
            "Torque doesn't yet support non-indexed fields after indexed "
            "fields");
      }

      GenerateSliceAccessor(field_index);
    }

    // For now, only generate indexed accessors for simple types
    if (field.index.has_value() && field.name_and_type.type->IsStructType()) {
      continue;
    }

    // An explicit index is only used for indexed fields not marked as optional.
    // Optional fields implicitly load or store item zero.
    bool use_index = field.index && !field.index->optional;

    // Load accessor
    std::string load_macro_name = "Load" + this->name() + camel_field_name;
    Signature load_signature;
    load_signature.parameter_names.push_back(MakeNode<Identifier>("o"));
    load_signature.parameter_types.types.push_back(this);
    if (use_index) {
      load_signature.parameter_names.push_back(MakeNode<Identifier>("i"));
      load_signature.parameter_types.types.push_back(
          TypeOracle::GetIntPtrType());
    }
    load_signature.parameter_types.var_args = false;
    load_signature.return_type = field.name_and_type.type;

    Expression* load_expression =
        MakeFieldAccessExpression(parameter, field.name_and_type.name);
    if (use_index) {
      load_expression =
          MakeNode<ElementAccessExpression>(load_expression, index);
    }
    Statement* load_body = MakeNode<ReturnStatement>(load_expression);
    Declarations::DeclareMacro(load_macro_name, true, base::nullopt,
                               load_signature, load_body, base::nullopt);

    // Store accessor
    if (!field.const_qualified) {
      IdentifierExpression* value = MakeIdentifierExpression("v");
      std::string store_macro_name = "Store" + this->name() + camel_field_name;
      Signature store_signature;
      store_signature.parameter_names.push_back(MakeNode<Identifier>("o"));
      store_signature.parameter_types.types.push_back(this);
      if (use_index) {
        store_signature.parameter_names.push_back(MakeNode<Identifier>("i"));
        store_signature.parameter_types.types.push_back(
            TypeOracle::GetIntPtrType());
      }
      store_signature.parameter_names.push_back(MakeNode<Identifier>("v"));
      store_signature.parameter_types.types.push_back(field.name_and_type.type);
      store_signature.parameter_types.var_args = false;
      // TODO(danno): Store macros probably should return their value argument
      store_signature.return_type = TypeOracle::GetVoidType();
      Expression* store_expression =
          MakeFieldAccessExpression(parameter, field.name_and_type.name);
      if (use_index) {
        store_expression =
            MakeNode<ElementAccessExpression>(store_expression, index);
      }
      Statement* store_body = MakeNode<ExpressionStatement>(
          MakeNode<AssignmentExpression>(store_expression, value));
      Declarations::DeclareMacro(store_macro_name, true, base::nullopt,
                                 store_signature, store_body, base::nullopt,
                                 false);
    }
  }
}

void ClassType::GenerateSliceAccessor(size_t field_index) {
  // Generate a Torque macro for getting a Slice to this field. This macro can
  // be called by the dot operator for this field. In Torque, this function for
  // class "ClassName" and field "field_name" and field type "FieldType" would
  // be written as one of the following:
  //
  // If the field has a known offset (in this example, 16):
  // FieldSliceClassNameFieldName(o: ClassName) {
  //   return torque_internal::unsafe::New{Const,Mutable}Slice<FieldType>(
  //     /*object:*/ o,
  //     /*offset:*/ 16,
  //     /*length:*/ torque_internal::%IndexedFieldLength<ClassName>(
  //                     o, "field_name")
  //   );
  // }
  //
  // If the field has an unknown offset, and the previous field is named p, is
  // not const, and is of type PType with size 4:
  // FieldSliceClassNameFieldName(o: ClassName) {
  //   const previous = %FieldSlice<ClassName, MutableSlice<PType>>(o, "p");
  //   return torque_internal::unsafe::New{Const,Mutable}Slice<FieldType>(
  //     /*object:*/ o,
  //     /*offset:*/ previous.offset + 4 * previous.length,
  //     /*length:*/ torque_internal::%IndexedFieldLength<ClassName>(
  //                     o, "field_name")
  //   );
  // }
  const Field& field = fields_[field_index];
  std::string macro_name = GetSliceMacroName(field);
  Signature signature;
  Identifier* parameter_identifier = MakeNode<Identifier>("o");
  signature.parameter_names.push_back(parameter_identifier);
  signature.parameter_types.types.push_back(this);
  signature.parameter_types.var_args = false;
  signature.return_type =
      field.const_qualified
          ? TypeOracle::GetConstSliceType(field.name_and_type.type)
          : TypeOracle::GetMutableSliceType(field.name_and_type.type);

  std::vector<Statement*> statements;
  Expression* offset_expression = nullptr;
  IdentifierExpression* parameter =
      MakeNode<IdentifierExpression>(parameter_identifier);

  if (field.offset.has_value()) {
    offset_expression =
        MakeNode<IntegerLiteralExpression>(IntegerLiteral(*field.offset));
  } else {
    const Field* previous = GetFieldPreceding(field_index);
    DCHECK_NOT_NULL(previous);

    const Type* previous_slice_type =
        previous->const_qualified
            ? TypeOracle::GetConstSliceType(previous->name_and_type.type)
            : TypeOracle::GetMutableSliceType(previous->name_and_type.type);

    // %FieldSlice<ClassName, MutableSlice<PType>>(o, "p")
    Expression* previous_expression = MakeCallExpression(
        MakeIdentifierExpression(
            {"torque_internal"}, "%FieldSlice",
            {MakeNode<PrecomputedTypeExpression>(this),
             MakeNode<PrecomputedTypeExpression>(previous_slice_type)}),
        {parameter, MakeNode<StringLiteralExpression>(
                        StringLiteralQuote(previous->name_and_type.name))});

    // const previous = %FieldSlice<ClassName, MutableSlice<PType>>(o, "p");
    Statement* define_previous =
        MakeConstDeclarationStatement("previous", previous_expression);
    statements.push_back(define_previous);

    // 4
    size_t previous_element_size;
    std::tie(previous_element_size, std::ignore) =
        *SizeOf(previous->name_and_type.type);
    Expression* previous_element_size_expression =
        MakeNode<IntegerLiteralExpression>(
            IntegerLiteral(previous_element_size));

    // previous.length
    Expression* previous_length_expression = MakeFieldAccessExpression(
        MakeIdentifierExpression("previous"), "length");

    // previous.offset
    Expression* previous_offset_expression = MakeFieldAccessExpression(
        MakeIdentifierExpression("previous"), "offset");

    // 4 * previous.length
    // In contrast to the code used for allocation, we don't need overflow
    // checks here because we already know all the offsets fit into memory.
    offset_expression = MakeCallExpression(
        "*", {previous_element_size_expression, previous_length_expression});

    // previous.offset + 4 * previous.length
    offset_expression = MakeCallExpression(
        "+", {previous_offset_expression, offset_expression});
  }

  // torque_internal::%IndexedFieldLength<ClassName>(o, "field_name")
  Expression* length_expression = MakeCallExpression(
      MakeIdentifierExpression({"torque_internal"}, "%IndexedFieldLength",
                               {MakeNode<PrecomputedTypeExpression>(this)}),
      {parameter, MakeNode<StringLiteralExpression>(
                      StringLiteralQuote(field.name_and_type.name))});

  // torque_internal::unsafe::New{Const,Mutable}Slice<FieldType>(
  //   /*object:*/ o,
  //   /*offset:*/ <<offset_expression>>,
  //   /*length:*/ torque_internal::%IndexedFieldLength<ClassName>(
  //                   o, "field_name")
  // )
  IdentifierExpression* new_struct = MakeIdentifierExpression(
      {"torque_internal", "unsafe"},
      field.const_qualified ? "NewConstSlice" : "NewMutableSlice",
      {MakeNode<PrecomputedTypeExpression>(field.name_and_type.type)});
  Expression* slice_expression = MakeCallExpression(
      new_struct, {parameter, offset_expression, length_expression});

  statements.push_back(MakeNode<ReturnStatement>(slice_expression));
  Statement* block =
      MakeNode<BlockStatement>(/*deferred=*/false, std::move(statements));

  Macro* macro = Declarations::DeclareMacro(macro_name, true, base::nullopt,
                                            signature, block, base::nullopt);
  GlobalContext::EnsureInCCOutputList(TorqueMacro::cast(macro),
                                      macro->Position().source);
}

bool ClassType::HasStaticSize() const {
  if (IsSubtypeOf(TypeOracle::GetJSObjectType()) && !IsShape()) return false;
  return size().SingleValue().has_value();
}

SourceId ClassType::AttributedToFile() const {
  bool in_test_directory = StringStartsWith(
      SourceFileMap::PathFromV8Root(GetPosition().source).substr(), "test/");
  if (!in_test_directory && (IsExtern() || ShouldExport())) {
    return GetPosition().source;
  }
  return SourceFileMap::GetSourceId("src/objects/torque-defined-classes.tq");
}

void PrintSignature(std::ostream& os, const Signature& sig, bool with_names) {
  os << "(";
  for (size_t i = 0; i < sig.parameter_types.types.size(); ++i) {
    if (i == 0 && sig.implicit_count != 0) os << "implicit ";
    if (sig.implicit_count > 0 && sig.implicit_count == i) {
      os << ")(";
    } else {
      if (i > 0) os << ", ";
    }
    if (with_names && !sig.parameter_names.empty()) {
      if (i < sig.parameter_names.size()) {
        os << sig.parameter_names[i] << ": ";
      }
    }
    os << *sig.parameter_types.types[i];
  }
  if (sig.parameter_types.var_args) {
    if (sig.parameter_names.size()) os << ", ";
    os << "...";
  }
  os << ")";
  os << ": " << *sig.return_type;

  if (sig.labels.empty()) return;

  os << " labels ";
  for (size_t i = 0; i < sig.labels.size(); ++i) {
    if (i > 0) os << ", ";
    os << sig.labels[i].name;
    if (sig.labels[i].types.size() > 0) os << "(" << sig.labels[i].types << ")";
  }
}

std::ostream& operator<<(std::ostream& os, const NameAndType& name_and_type) {
  os << name_and_type.name;
  os << ": ";
  os << *name_and_type.type;
  return os;
}

std::ostream& operator<<(std::ostream& os, const Field& field) {
  os << field.name_and_type;
  if (field.custom_weak_marking) {
    os << " (custom weak)";
  }
  return os;
}

std::ostream& operator<<(std::ostream& os, const Signature& sig) {
  PrintSignature(os, sig, true);
  return os;
}

std::ostream& operator<<(std::ostream& os, const TypeVector& types) {
  PrintCommaSeparatedList(os, types);
  return os;
}

std::ostream& operator<<(std::ostream& os, const ParameterTypes& p) {
  PrintCommaSeparatedList(os, p.types);
  if (p.var_args) {
    if (p.types.size() > 0) os << ", ";
    os << "...";
  }
  return os;
}

bool Signature::HasSameTypesAs(const Signature& other,
                               ParameterMode mode) const {
  auto compare_types = types();
  auto other_compare_types = other.types();
  if (mode == ParameterMode::kIgnoreImplicit) {
    compare_types = GetExplicitTypes();
    other_compare_types = other.GetExplicitTypes();
  }
  if (!(compare_types == other_compare_types &&
        parameter_types.var_args == other.parameter_types.var_args &&
        return_type == other.return_type)) {
    return false;
  }
  if (labels.size() != other.labels.size()) {
    return false;
  }
  size_t i = 0;
  for (const auto& l : labels) {
    if (l.types != other.labels[i++].types) {
      return false;
    }
  }
  return true;
}

namespace {
bool FirstTypeIsContext(const std::vector<const Type*> parameter_types) {
  return !parameter_types.empty() &&
         parameter_types[0] == TypeOracle::GetContextType();
}
}  // namespace

bool Signature::HasContextParameter() const {
  return FirstTypeIsContext(types());
}

bool BuiltinPointerType::HasContextParameter() const {
  return FirstTypeIsContext(parameter_types());
}

bool IsAssignableFrom(const Type* to, const Type* from) {
  if (to == from) return true;
  if (from->IsSubtypeOf(to)) return true;
  return TypeOracle::ImplicitlyConvertableFrom(to, from).has_value();
}

bool operator<(const Type& a, const Type& b) { return a.id() < b.id(); }

VisitResult ProjectStructField(VisitResult structure,
                               const std::string& fieldname) {
  BottomOffset begin = structure.stack_range().begin();

  // Check constructor this super classes for fields.
  const StructType* type = *structure.type()->StructSupertype();
  auto& fields = type->fields();
  for (auto& field : fields) {
    BottomOffset end = begin + LoweredSlotCount(field.name_and_type.type);
    if (field.name_and_type.name == fieldname) {
      return VisitResult(field.name_and_type.type, StackRange{begin, end});
    }
    begin = end;
  }

  ReportError("struct '", type->name(), "' doesn't contain a field '",
              fieldname, "'");
}

namespace {
void AppendLoweredTypes(const Type* type, std::vector<const Type*>* result) {
  DCHECK_NE(type, TypeOracle::GetNeverType());
  if (type->IsConstexpr()) return;
  if (type == TypeOracle::GetVoidType()) return;
  if (base::Optional<const StructType*> s = type->StructSupertype()) {
    for (const Field& field : (*s)->fields()) {
      AppendLoweredTypes(field.name_and_type.type, result);
    }
  } else {
    result->push_back(type);
  }
}
}  // namespace

TypeVector LowerType(const Type* type) {
  TypeVector result;
  AppendLoweredTypes(type, &result);
  return result;
}

size_t LoweredSlotCount(const Type* type) { return LowerType(type).size(); }

TypeVector LowerParameterTypes(const TypeVector& parameters) {
  std::vector<const Type*> result;
  for (const Type* t : parameters) {
    AppendLoweredTypes(t, &result);
  }
  return result;
}

TypeVector LowerParameterTypes(const ParameterTypes& parameter_types,
                               size_t arg_count) {
  std::vector<const Type*> result = LowerParameterTypes(parameter_types.types);
  for (size_t i = parameter_types.types.size(); i < arg_count; ++i) {
    DCHECK(parameter_types.var_args);
    AppendLoweredTypes(TypeOracle::GetObjectType(), &result);
  }
  return result;
}

VisitResult VisitResult::NeverResult() {
  VisitResult result;
  result.type_ = TypeOracle::GetNeverType();
  return result;
}

VisitResult VisitResult::TopTypeResult(std::string top_reason,
                                       const Type* from_type) {
  VisitResult result;
  result.type_ = TypeOracle::GetTopType(std::move(top_reason), from_type);
  return result;
}

std::tuple<size_t, std::string> Field::GetFieldSizeInformation() const {
  auto optional = SizeOf(this->name_and_type.type);
  if (optional.has_value()) {
    return *optional;
  }
  Error("fields of type ", *name_and_type.type, " are not (yet) supported")
      .Position(pos)
      .Throw();
}

size_t Type::AlignmentLog2() const {
  if (parent()) return parent()->AlignmentLog2();
  return TargetArchitecture::TaggedSize();
}

size_t AbstractType::AlignmentLog2() const {
  size_t alignment;
  if (this == TypeOracle::GetTaggedType()) {
    alignment = TargetArchitecture::TaggedSize();
  } else if (this == TypeOracle::GetRawPtrType()) {
    alignment = TargetArchitecture::RawPtrSize();
  } else if (this == TypeOracle::GetExternalPointerType()) {
    alignment = TargetArchitecture::ExternalPointerSize();
  } else if (this == TypeOracle::GetVoidType()) {
    alignment = 1;
  } else if (this == TypeOracle::GetInt8Type()) {
    alignment = kUInt8Size;
  } else if (this == TypeOracle::GetUint8Type()) {
    alignment = kUInt8Size;
  } else if (this == TypeOracle::GetInt16Type()) {
    alignment = kUInt16Size;
  } else if (this == TypeOracle::GetUint16Type()) {
    alignment = kUInt16Size;
  } else if (this == TypeOracle::GetInt32Type()) {
    alignment = kInt32Size;
  } else if (this == TypeOracle::GetUint32Type()) {
    alignment = kInt32Size;
  } else if (this == TypeOracle::GetFloat64Type()) {
    alignment = kDoubleSize;
  } else if (this == TypeOracle::GetIntPtrType()) {
    alignment = TargetArchitecture::RawPtrSize();
  } else if (this == TypeOracle::GetUIntPtrType()) {
    alignment = TargetArchitecture::RawPtrSize();
  } else {
    return Type::AlignmentLog2();
  }
  alignment = std::min(alignment, TargetArchitecture::TaggedSize());
  return base::bits::WhichPowerOfTwo(alignment);
}

size_t StructType::AlignmentLog2() const {
  if (this == TypeOracle::GetFloat64OrHoleType()) {
    return TypeOracle::GetFloat64Type()->AlignmentLog2();
  }
  size_t alignment_log_2 = 0;
  for (const Field& field : fields()) {
    alignment_log_2 =
        std::max(alignment_log_2, field.name_and_type.type->AlignmentLog2());
  }
  return alignment_log_2;
}

void Field::ValidateAlignment(ResidueClass at_offset) const {
  const Type* type = name_and_type.type;
  base::Optional<const StructType*> struct_type = type->StructSupertype();
  if (struct_type && struct_type != TypeOracle::GetFloat64OrHoleType()) {
    for (const Field& field : (*struct_type)->fields()) {
      field.ValidateAlignment(at_offset);
      size_t field_size = std::get<0>(field.GetFieldSizeInformation());
      at_offset += field_size;
    }
  } else {
    size_t alignment_log_2 = name_and_type.type->AlignmentLog2();
    if (at_offset.AlignmentLog2() < alignment_log_2) {
      Error("field ", name_and_type.name, " at offset ", at_offset, " is not ",
            size_t{1} << alignment_log_2, "-byte aligned.")
          .Position(pos);
    }
  }
}

base::Optional<std::tuple<size_t, std::string>> SizeOf(const Type* type) {
  std::string size_string;
  size_t size;
  if (type->IsSubtypeOf(TypeOracle::GetTaggedType())) {
    size = TargetArchitecture::TaggedSize();
    size_string = "kTaggedSize";
  } else if (type->IsSubtypeOf(TypeOracle::GetRawPtrType())) {
    size = TargetArchitecture::RawPtrSize();
    size_string = "kSystemPointerSize";
  } else if (type->IsSubtypeOf(TypeOracle::GetExternalPointerType())) {
    size = TargetArchitecture::ExternalPointerSize();
    size_string = "kExternalPointerSlotSize";
  } else if (type->IsSubtypeOf(TypeOracle::GetVoidType())) {
    size = 0;
    size_string = "0";
  } else if (type->IsSubtypeOf(TypeOracle::GetInt8Type())) {
    size = kUInt8Size;
    size_string = "kUInt8Size";
  } else if (type->IsSubtypeOf(TypeOracle::GetUint8Type())) {
    size = kUInt8Size;
    size_string = "kUInt8Size";
  } else if (type->IsSubtypeOf(TypeOracle::GetInt16Type())) {
    size = kUInt16Size;
    size_string = "kUInt16Size";
  } else if (type->IsSubtypeOf(TypeOracle::GetUint16Type())) {
    size = kUInt16Size;
    size_string = "kUInt16Size";
  } else if (type->IsSubtypeOf(TypeOracle::GetInt32Type())) {
    size = kInt32Size;
    size_string = "kInt32Size";
  } else if (type->IsSubtypeOf(TypeOracle::GetUint32Type())) {
    size = kInt32Size;
    size_string = "kInt32Size";
  } else if (type->IsSubtypeOf(TypeOracle::GetFloat64Type())) {
    size = kDoubleSize;
    size_string = "kDoubleSize";
  } else if (type->IsSubtypeOf(TypeOracle::GetIntPtrType())) {
    size = TargetArchitecture::RawPtrSize();
    size_string = "kIntptrSize";
  } else if (type->IsSubtypeOf(TypeOracle::GetUIntPtrType())) {
    size = TargetArchitecture::RawPtrSize();
    size_string = "kIntptrSize";
  } else if (auto struct_type = type->StructSupertype()) {
    if (type == TypeOracle::GetFloat64OrHoleType()) {
      size = kDoubleSize;
      size_string = "kDoubleSize";
    } else {
      size = (*struct_type)->PackedSize();
      size_string = std::to_string(size);
    }
  } else {
    return {};
  }
  return std::make_tuple(size, size_string);
}

bool IsAnyUnsignedInteger(const Type* type) {
  return type == TypeOracle::GetUint32Type() ||
         type == TypeOracle::GetUint31Type() ||
         type == TypeOracle::GetUint16Type() ||
         type == TypeOracle::GetUint8Type() ||
         type == TypeOracle::GetUIntPtrType();
}

bool IsAllowedAsBitField(const Type* type) {
  if (type->IsBitFieldStructType()) {
    // No nested bitfield structs for now. We could reconsider if there's a
    // compelling use case.
    return false;
  }
  // Any integer-ish type, including bools and enums which inherit from integer
  // types, are allowed. Note, however, that we always zero-extend during
  // decoding regardless of signedness.
  return IsPointerSizeIntegralType(type) || Is32BitIntegralType(type);
}

bool IsPointerSizeIntegralType(const Type* type) {
  return type->IsSubtypeOf(TypeOracle::GetUIntPtrType()) ||
         type->IsSubtypeOf(TypeOracle::GetIntPtrType());
}

bool Is32BitIntegralType(const Type* type) {
  return type->IsSubtypeOf(TypeOracle::GetUint32Type()) ||
         type->IsSubtypeOf(TypeOracle::GetInt32Type()) ||
         type->IsSubtypeOf(TypeOracle::GetBoolType());
}

base::Optional<NameAndType> ExtractSimpleFieldArraySize(
    const ClassType& class_type, Expression* array_size) {
  IdentifierExpression* identifier =
      IdentifierExpression::DynamicCast(array_size);
  if (!identifier || !identifier->generic_arguments.empty() ||
      !identifier->namespace_qualification.empty())
    return {};
  if (!class_type.HasField(identifier->name->value)) return {};
  return class_type.LookupField(identifier->name->value).name_and_type;
}

std::string Type::GetRuntimeType() const {
  if (IsSubtypeOf(TypeOracle::GetSmiType())) return "Smi";
  if (IsSubtypeOf(TypeOracle::GetTaggedType())) {
    return GetGeneratedTNodeTypeName();
  }
  if (base::Optional<const StructType*> struct_type = StructSupertype()) {
    std::stringstream result;
    result << "std::tuple<";
    bool first = true;
    for (const Type* field_type : LowerType(*struct_type)) {
      if (!first) result << ", ";
      first = false;
      result << field_type->GetRuntimeType();
    }
    result << ">";
    return result.str();
  }
  return ConstexprVersion()->GetGeneratedTypeName();
}

std::string Type::GetDebugType() const {
  if (IsSubtypeOf(TypeOracle::GetSmiType())) return "uintptr_t";
  if (IsSubtypeOf(TypeOracle::GetTaggedType())) {
    return "uintptr_t";
  }
  if (base::Optional<const StructType*> struct_type = StructSupertype()) {
    std::stringstream result;
    result << "std::tuple<";
    bool first = true;
    for (const Type* field_type : LowerType(*struct_type)) {
      if (!first) result << ", ";
      first = false;
      result << field_type->GetDebugType();
    }
    result << ">";
    return result.str();
  }
  return ConstexprVersion()->GetGeneratedTypeName();
}

}  // namespace torque
}  // namespace internal
}  // namespace v8