summaryrefslogtreecommitdiff
path: root/deps/v8/src/utils/utils.h
blob: 7ec0dd2c000999fa624c4b0e751108fdb7177171 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_UTILS_UTILS_H_
#define V8_UTILS_UTILS_H_

#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <cmath>
#include <string>
#include <type_traits>

#include "src/base/bits.h"
#include "src/base/compiler-specific.h"
#include "src/base/logging.h"
#include "src/base/macros.h"
#include "src/base/platform/platform.h"
#include "src/base/v8-fallthrough.h"
#include "src/common/globals.h"
#include "src/utils/allocation.h"
#include "src/utils/vector.h"

#if defined(V8_USE_SIPHASH)
#include "src/third_party/siphash/halfsiphash.h"
#endif

#if defined(V8_OS_AIX)
#include <fenv.h>  // NOLINT(build/c++11)
#endif

namespace v8 {
namespace internal {

// ----------------------------------------------------------------------------
// General helper functions

// Returns the value (0 .. 15) of a hexadecimal character c.
// If c is not a legal hexadecimal character, returns a value < 0.
inline int HexValue(uc32 c) {
  c -= '0';
  if (static_cast<unsigned>(c) <= 9) return c;
  c = (c | 0x20) - ('a' - '0');  // detect 0x11..0x16 and 0x31..0x36.
  if (static_cast<unsigned>(c) <= 5) return c + 10;
  return -1;
}

inline char HexCharOfValue(int value) {
  DCHECK(0 <= value && value <= 16);
  if (value < 10) return value + '0';
  return value - 10 + 'A';
}

template <typename T>
static T ArithmeticShiftRight(T x, int shift) {
  DCHECK_LE(0, shift);
  if (x < 0) {
    // Right shift of signed values is implementation defined. Simulate a
    // true arithmetic right shift by adding leading sign bits.
    using UnsignedT = typename std::make_unsigned<T>::type;
    UnsignedT mask = ~(static_cast<UnsignedT>(~0) >> shift);
    return (static_cast<UnsignedT>(x) >> shift) | mask;
  } else {
    return x >> shift;
  }
}

// Returns the maximum of the two parameters.
template <typename T>
constexpr T Max(T a, T b) {
  return a < b ? b : a;
}

// Returns the minimum of the two parameters.
template <typename T>
constexpr T Min(T a, T b) {
  return a < b ? a : b;
}

// Returns the maximum of the two parameters according to JavaScript semantics.
template <typename T>
T JSMax(T x, T y) {
  if (std::isnan(x)) return x;
  if (std::isnan(y)) return y;
  if (std::signbit(x) < std::signbit(y)) return x;
  return x > y ? x : y;
}

// Returns the maximum of the two parameters according to JavaScript semantics.
template <typename T>
T JSMin(T x, T y) {
  if (std::isnan(x)) return x;
  if (std::isnan(y)) return y;
  if (std::signbit(x) < std::signbit(y)) return y;
  return x > y ? y : x;
}

// Returns the absolute value of its argument.
template <typename T,
          typename = typename std::enable_if<std::is_signed<T>::value>::type>
typename std::make_unsigned<T>::type Abs(T a) {
  // This is a branch-free implementation of the absolute value function and is
  // described in Warren's "Hacker's Delight", chapter 2. It avoids undefined
  // behavior with the arithmetic negation operation on signed values as well.
  using unsignedT = typename std::make_unsigned<T>::type;
  unsignedT x = static_cast<unsignedT>(a);
  unsignedT y = static_cast<unsignedT>(a >> (sizeof(T) * 8 - 1));
  return (x ^ y) - y;
}

inline double Modulo(double x, double y) {
#if defined(V8_OS_WIN)
  // Workaround MS fmod bugs. ECMA-262 says:
  // dividend is finite and divisor is an infinity => result equals dividend
  // dividend is a zero and divisor is nonzero finite => result equals dividend
  if (!(std::isfinite(x) && (!std::isfinite(y) && !std::isnan(y))) &&
      !(x == 0 && (y != 0 && std::isfinite(y)))) {
    double result = fmod(x, y);
    // Workaround MS bug in VS CRT in some OS versions, https://crbug.com/915045
    // fmod(-17, +/-1) should equal -0.0 but now returns 0.0.
    if (x < 0 && result == 0) result = -0.0;
    x = result;
  }
  return x;
#elif defined(V8_OS_AIX)
  // AIX raises an underflow exception for (Number.MIN_VALUE % Number.MAX_VALUE)
  feclearexcept(FE_ALL_EXCEPT);
  double result = std::fmod(x, y);
  int exception = fetestexcept(FE_UNDERFLOW);
  return (exception ? x : result);
#else
  return std::fmod(x, y);
#endif
}

template <typename T>
T SaturateAdd(T a, T b) {
  if (std::is_signed<T>::value) {
    if (a > 0 && b > 0) {
      if (a > std::numeric_limits<T>::max() - b) {
        return std::numeric_limits<T>::max();
      }
    } else if (a < 0 && b < 0) {
      if (a < std::numeric_limits<T>::min() - b) {
        return std::numeric_limits<T>::min();
      }
    }
  } else {
    CHECK(std::is_unsigned<T>::value);
    if (a > std::numeric_limits<T>::max() - b) {
      return std::numeric_limits<T>::max();
    }
  }
  return a + b;
}

template <typename T>
T SaturateSub(T a, T b) {
  if (std::is_signed<T>::value) {
    if (a >= 0 && b < 0) {
      if (a > std::numeric_limits<T>::max() + b) {
        return std::numeric_limits<T>::max();
      }
    } else if (a < 0 && b > 0) {
      if (a < std::numeric_limits<T>::min() + b) {
        return std::numeric_limits<T>::min();
      }
    }
  } else {
    CHECK(std::is_unsigned<T>::value);
    if (a < b) {
      return static_cast<T>(0);
    }
  }
  return a - b;
}

// Helper macros for defining a contiguous sequence of field offset constants.
// Example: (backslashes at the ends of respective lines of this multi-line
// macro definition are omitted here to please the compiler)
//
// #define MAP_FIELDS(V)
//   V(kField1Offset, kTaggedSize)
//   V(kField2Offset, kIntSize)
//   V(kField3Offset, kIntSize)
//   V(kField4Offset, kSystemPointerSize)
//   V(kSize, 0)
//
// DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, MAP_FIELDS)
//
#define DEFINE_ONE_FIELD_OFFSET(Name, Size) Name, Name##End = Name + (Size)-1,

#define DEFINE_FIELD_OFFSET_CONSTANTS(StartOffset, LIST_MACRO) \
  enum {                                                       \
    LIST_MACRO##_StartOffset = StartOffset - 1,                \
    LIST_MACRO(DEFINE_ONE_FIELD_OFFSET)                        \
  };

// Size of the field defined by DEFINE_FIELD_OFFSET_CONSTANTS
#define FIELD_SIZE(Name) (Name##End + 1 - Name)

// Compare two offsets with static cast
#define STATIC_ASSERT_FIELD_OFFSETS_EQUAL(Offset1, Offset2) \
  STATIC_ASSERT(static_cast<int>(Offset1) == Offset2)
// ----------------------------------------------------------------------------
// Hash function.

static const uint64_t kZeroHashSeed = 0;

// Thomas Wang, Integer Hash Functions.
// http://www.concentric.net/~Ttwang/tech/inthash.htm`
inline uint32_t ComputeUnseededHash(uint32_t key) {
  uint32_t hash = key;
  hash = ~hash + (hash << 15);  // hash = (hash << 15) - hash - 1;
  hash = hash ^ (hash >> 12);
  hash = hash + (hash << 2);
  hash = hash ^ (hash >> 4);
  hash = hash * 2057;  // hash = (hash + (hash << 3)) + (hash << 11);
  hash = hash ^ (hash >> 16);
  return hash & 0x3fffffff;
}

inline uint32_t ComputeLongHash(uint64_t key) {
  uint64_t hash = key;
  hash = ~hash + (hash << 18);  // hash = (hash << 18) - hash - 1;
  hash = hash ^ (hash >> 31);
  hash = hash * 21;  // hash = (hash + (hash << 2)) + (hash << 4);
  hash = hash ^ (hash >> 11);
  hash = hash + (hash << 6);
  hash = hash ^ (hash >> 22);
  return static_cast<uint32_t>(hash & 0x3fffffff);
}

inline uint32_t ComputeSeededHash(uint32_t key, uint64_t seed) {
#ifdef V8_USE_SIPHASH
  return halfsiphash(key, seed);
#else
  return ComputeLongHash(static_cast<uint64_t>(key) ^ seed);
#endif  // V8_USE_SIPHASH
}

inline uint32_t ComputePointerHash(void* ptr) {
  return ComputeUnseededHash(
      static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)));
}

inline uint32_t ComputeAddressHash(Address address) {
  return ComputeUnseededHash(static_cast<uint32_t>(address & 0xFFFFFFFFul));
}

// ----------------------------------------------------------------------------
// Miscellaneous

// Memory offset for lower and higher bits in a 64 bit integer.
#if defined(V8_TARGET_LITTLE_ENDIAN)
static const int kInt64LowerHalfMemoryOffset = 0;
static const int kInt64UpperHalfMemoryOffset = 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
static const int kInt64LowerHalfMemoryOffset = 4;
static const int kInt64UpperHalfMemoryOffset = 0;
#endif  // V8_TARGET_LITTLE_ENDIAN

// A pointer that can only be set once and doesn't allow NULL values.
template <typename T>
class SetOncePointer {
 public:
  SetOncePointer() = default;

  bool is_set() const { return pointer_ != nullptr; }

  T* get() const {
    DCHECK_NOT_NULL(pointer_);
    return pointer_;
  }

  void set(T* value) {
    DCHECK(pointer_ == nullptr && value != nullptr);
    pointer_ = value;
  }

  SetOncePointer& operator=(T* value) {
    set(value);
    return *this;
  }

  bool operator==(std::nullptr_t) const { return pointer_ == nullptr; }
  bool operator!=(std::nullptr_t) const { return pointer_ != nullptr; }

 private:
  T* pointer_ = nullptr;
};

// Compare 8bit/16bit chars to 8bit/16bit chars.
template <typename lchar, typename rchar>
inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs,
                                size_t chars) {
  const lchar* limit = lhs + chars;
  if (sizeof(*lhs) == sizeof(char) && sizeof(*rhs) == sizeof(char)) {
    // memcmp compares byte-by-byte, yielding wrong results for two-byte
    // strings on little-endian systems.
    return memcmp(lhs, rhs, chars);
  }
  while (lhs < limit) {
    int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
    if (r != 0) return r;
    ++lhs;
    ++rhs;
  }
  return 0;
}

template <typename lchar, typename rchar>
inline int CompareChars(const lchar* lhs, const rchar* rhs, size_t chars) {
  DCHECK_LE(sizeof(lchar), 2);
  DCHECK_LE(sizeof(rchar), 2);
  if (sizeof(lchar) == 1) {
    if (sizeof(rchar) == 1) {
      return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
                                  reinterpret_cast<const uint8_t*>(rhs), chars);
    } else {
      return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
                                  reinterpret_cast<const uint16_t*>(rhs),
                                  chars);
    }
  } else {
    if (sizeof(rchar) == 1) {
      return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
                                  reinterpret_cast<const uint8_t*>(rhs), chars);
    } else {
      return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
                                  reinterpret_cast<const uint16_t*>(rhs),
                                  chars);
    }
  }
}

// Calculate 10^exponent.
inline int TenToThe(int exponent) {
  DCHECK_LE(exponent, 9);
  DCHECK_GE(exponent, 1);
  int answer = 10;
  for (int i = 1; i < exponent; i++) answer *= 10;
  return answer;
}

// Helper class for building result strings in a character buffer. The
// purpose of the class is to use safe operations that checks the
// buffer bounds on all operations in debug mode.
// This simple base class does not allow formatted output.
class SimpleStringBuilder {
 public:
  // Create a string builder with a buffer of the given size. The
  // buffer is allocated through NewArray<char> and must be
  // deallocated by the caller of Finalize().
  explicit SimpleStringBuilder(int size);

  SimpleStringBuilder(char* buffer, int size)
      : buffer_(buffer, size), position_(0) {}

  ~SimpleStringBuilder() {
    if (!is_finalized()) Finalize();
  }

  int size() const { return buffer_.length(); }

  // Get the current position in the builder.
  int position() const {
    DCHECK(!is_finalized());
    return position_;
  }

  // Reset the position.
  void Reset() { position_ = 0; }

  // Add a single character to the builder. It is not allowed to add
  // 0-characters; use the Finalize() method to terminate the string
  // instead.
  void AddCharacter(char c) {
    DCHECK_NE(c, '\0');
    DCHECK(!is_finalized() && position_ < buffer_.length());
    buffer_[position_++] = c;
  }

  // Add an entire string to the builder. Uses strlen() internally to
  // compute the length of the input string.
  void AddString(const char* s);

  // Add the first 'n' characters of the given 0-terminated string 's' to the
  // builder. The input string must have enough characters.
  void AddSubstring(const char* s, int n);

  // Add character padding to the builder. If count is non-positive,
  // nothing is added to the builder.
  void AddPadding(char c, int count);

  // Add the decimal representation of the value.
  void AddDecimalInteger(int value);

  // Finalize the string by 0-terminating it and returning the buffer.
  char* Finalize();

 protected:
  Vector<char> buffer_;
  int position_;

  bool is_finalized() const { return position_ < 0; }

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
};

// Bit field extraction.
inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
  return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
}

inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
  return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
}

inline int32_t signed_bitextract_32(int msb, int lsb, uint32_t x) {
  return static_cast<int32_t>(x << (31 - msb)) >> (lsb + 31 - msb);
}

// Check number width.
inline bool is_intn(int64_t x, unsigned n) {
  DCHECK((0 < n) && (n < 64));
  int64_t limit = static_cast<int64_t>(1) << (n - 1);
  return (-limit <= x) && (x < limit);
}

inline bool is_uintn(int64_t x, unsigned n) {
  DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
  return !(x >> n);
}

template <class T>
inline T truncate_to_intn(T x, unsigned n) {
  DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
  return (x & ((static_cast<T>(1) << n) - 1));
}

// clang-format off
#define INT_1_TO_63_LIST(V)                                   \
  V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) V(9) V(10)          \
  V(11) V(12) V(13) V(14) V(15) V(16) V(17) V(18) V(19) V(20) \
  V(21) V(22) V(23) V(24) V(25) V(26) V(27) V(28) V(29) V(30) \
  V(31) V(32) V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \
  V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) V(49) V(50) \
  V(51) V(52) V(53) V(54) V(55) V(56) V(57) V(58) V(59) V(60) \
  V(61) V(62) V(63)
// clang-format on

#define DECLARE_IS_INT_N(N) \
  inline bool is_int##N(int64_t x) { return is_intn(x, N); }
#define DECLARE_IS_UINT_N(N)    \
  template <class T>            \
  inline bool is_uint##N(T x) { \
    return is_uintn(x, N);      \
  }
#define DECLARE_TRUNCATE_TO_INT_N(N) \
  template <class T>                 \
  inline T truncate_to_int##N(T x) { \
    return truncate_to_intn(x, N);   \
  }
INT_1_TO_63_LIST(DECLARE_IS_INT_N)
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
#undef DECLARE_IS_INT_N
#undef DECLARE_IS_UINT_N
#undef DECLARE_TRUNCATE_TO_INT_N

// clang-format off
#define INT_0_TO_127_LIST(V)                                          \
V(0)   V(1)   V(2)   V(3)   V(4)   V(5)   V(6)   V(7)   V(8)   V(9)   \
V(10)  V(11)  V(12)  V(13)  V(14)  V(15)  V(16)  V(17)  V(18)  V(19)  \
V(20)  V(21)  V(22)  V(23)  V(24)  V(25)  V(26)  V(27)  V(28)  V(29)  \
V(30)  V(31)  V(32)  V(33)  V(34)  V(35)  V(36)  V(37)  V(38)  V(39)  \
V(40)  V(41)  V(42)  V(43)  V(44)  V(45)  V(46)  V(47)  V(48)  V(49)  \
V(50)  V(51)  V(52)  V(53)  V(54)  V(55)  V(56)  V(57)  V(58)  V(59)  \
V(60)  V(61)  V(62)  V(63)  V(64)  V(65)  V(66)  V(67)  V(68)  V(69)  \
V(70)  V(71)  V(72)  V(73)  V(74)  V(75)  V(76)  V(77)  V(78)  V(79)  \
V(80)  V(81)  V(82)  V(83)  V(84)  V(85)  V(86)  V(87)  V(88)  V(89)  \
V(90)  V(91)  V(92)  V(93)  V(94)  V(95)  V(96)  V(97)  V(98)  V(99)  \
V(100) V(101) V(102) V(103) V(104) V(105) V(106) V(107) V(108) V(109) \
V(110) V(111) V(112) V(113) V(114) V(115) V(116) V(117) V(118) V(119) \
V(120) V(121) V(122) V(123) V(124) V(125) V(126) V(127)
// clang-format on

class FeedbackSlot {
 public:
  FeedbackSlot() : id_(kInvalidSlot) {}
  explicit FeedbackSlot(int id) : id_(id) {}

  int ToInt() const { return id_; }

  static FeedbackSlot Invalid() { return FeedbackSlot(); }
  bool IsInvalid() const { return id_ == kInvalidSlot; }

  bool operator==(FeedbackSlot that) const { return this->id_ == that.id_; }
  bool operator!=(FeedbackSlot that) const { return !(*this == that); }

  friend size_t hash_value(FeedbackSlot slot) { return slot.ToInt(); }
  V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream& os,
                                                    FeedbackSlot);

  FeedbackSlot WithOffset(int offset) const {
    return FeedbackSlot(id_ + offset);
  }

 private:
  static const int kInvalidSlot = -1;

  int id_;
};

V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, FeedbackSlot);

class BailoutId {
 public:
  explicit BailoutId(int id) : id_(id) {}
  int ToInt() const { return id_; }

  static BailoutId None() { return BailoutId(kNoneId); }

  // Special bailout id support for deopting into the {JSConstructStub} stub.
  // The following hard-coded deoptimization points are supported by the stub:
  //  - {ConstructStubCreate} maps to {construct_stub_create_deopt_pc_offset}.
  //  - {ConstructStubInvoke} maps to {construct_stub_invoke_deopt_pc_offset}.
  static BailoutId ConstructStubCreate() { return BailoutId(1); }
  static BailoutId ConstructStubInvoke() { return BailoutId(2); }
  bool IsValidForConstructStub() const {
    return id_ == ConstructStubCreate().ToInt() ||
           id_ == ConstructStubInvoke().ToInt();
  }

  bool IsNone() const { return id_ == kNoneId; }
  bool operator==(const BailoutId& other) const { return id_ == other.id_; }
  bool operator!=(const BailoutId& other) const { return id_ != other.id_; }
  friend size_t hash_value(BailoutId);
  V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream&, BailoutId);

 private:
  friend class Builtins;

  static const int kNoneId = -1;

  // Using 0 could disguise errors.
  // Builtin continuations bailout ids start here. If you need to add a
  // non-builtin BailoutId, add it before this id so that this Id has the
  // highest number.
  static const int kFirstBuiltinContinuationId = 1;

  int id_;
};

// ----------------------------------------------------------------------------
// I/O support.

// Our version of printf().
V8_EXPORT_PRIVATE void PRINTF_FORMAT(1, 2) PrintF(const char* format, ...);
V8_EXPORT_PRIVATE void PRINTF_FORMAT(2, 3)
    PrintF(FILE* out, const char* format, ...);

// Prepends the current process ID to the output.
void PRINTF_FORMAT(1, 2) PrintPID(const char* format, ...);

// Prepends the current process ID and given isolate pointer to the output.
void PRINTF_FORMAT(2, 3) PrintIsolate(void* isolate, const char* format, ...);

// Safe formatting print. Ensures that str is always null-terminated.
// Returns the number of chars written, or -1 if output was truncated.
V8_EXPORT_PRIVATE int PRINTF_FORMAT(2, 3)
    SNPrintF(Vector<char> str, const char* format, ...);
V8_EXPORT_PRIVATE int PRINTF_FORMAT(2, 0)
    VSNPrintF(Vector<char> str, const char* format, va_list args);

void StrNCpy(Vector<char> dest, const char* src, size_t n);

// Read a line of characters after printing the prompt to stdout. The resulting
// char* needs to be disposed off with DeleteArray by the caller.
char* ReadLine(const char* prompt);

// Write size chars from str to the file given by filename.
// The file is overwritten. Returns the number of chars written.
int WriteChars(const char* filename, const char* str, int size,
               bool verbose = true);

// Write size bytes to the file given by filename.
// The file is overwritten. Returns the number of bytes written.
int WriteBytes(const char* filename, const byte* bytes, int size,
               bool verbose = true);

// Simple support to read a file into std::string.
// On return, *exits tells whether the file existed.
V8_EXPORT_PRIVATE std::string ReadFile(const char* filename, bool* exists,
                                       bool verbose = true);
V8_EXPORT_PRIVATE std::string ReadFile(FILE* file, bool* exists,
                                       bool verbose = true);

class StringBuilder : public SimpleStringBuilder {
 public:
  explicit StringBuilder(int size) : SimpleStringBuilder(size) {}
  StringBuilder(char* buffer, int size) : SimpleStringBuilder(buffer, size) {}

  // Add formatted contents to the builder just like printf().
  void PRINTF_FORMAT(2, 3) AddFormatted(const char* format, ...);

  // Add formatted contents like printf based on a va_list.
  void PRINTF_FORMAT(2, 0) AddFormattedList(const char* format, va_list list);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
};

bool DoubleToBoolean(double d);

template <typename Char>
bool TryAddIndexChar(uint32_t* index, Char c);

enum ToIndexMode { kToArrayIndex, kToIntegerIndex };

// {index_t} is meant to be {uint32_t} or {size_t}.
template <typename Stream, typename index_t,
          enum ToIndexMode mode = kToArrayIndex>
bool StringToIndex(Stream* stream, index_t* index);

// Returns the current stack top. Works correctly with ASAN and SafeStack.
// GetCurrentStackPosition() should not be inlined, because it works on stack
// frames if it were inlined into a function with a huge stack frame it would
// return an address significantly above the actual current stack position.
V8_EXPORT_PRIVATE V8_NOINLINE uintptr_t GetCurrentStackPosition();

static inline uint16_t ByteReverse16(uint16_t value) {
#if V8_HAS_BUILTIN_BSWAP16
  return __builtin_bswap16(value);
#else
  return value << 8 | (value >> 8 & 0x00FF);
#endif
}

static inline uint32_t ByteReverse32(uint32_t value) {
#if V8_HAS_BUILTIN_BSWAP32
  return __builtin_bswap32(value);
#else
  return value << 24 | ((value << 8) & 0x00FF0000) |
         ((value >> 8) & 0x0000FF00) | ((value >> 24) & 0x00000FF);
#endif
}

static inline uint64_t ByteReverse64(uint64_t value) {
#if V8_HAS_BUILTIN_BSWAP64
  return __builtin_bswap64(value);
#else
  size_t bits_of_v = sizeof(value) * kBitsPerByte;
  return value << (bits_of_v - 8) |
         ((value << (bits_of_v - 24)) & 0x00FF000000000000) |
         ((value << (bits_of_v - 40)) & 0x0000FF0000000000) |
         ((value << (bits_of_v - 56)) & 0x000000FF00000000) |
         ((value >> (bits_of_v - 56)) & 0x00000000FF000000) |
         ((value >> (bits_of_v - 40)) & 0x0000000000FF0000) |
         ((value >> (bits_of_v - 24)) & 0x000000000000FF00) |
         ((value >> (bits_of_v - 8)) & 0x00000000000000FF);
#endif
}

template <typename V>
static inline V ByteReverse(V value) {
  size_t size_of_v = sizeof(value);
  switch (size_of_v) {
    case 1:
      return value;
    case 2:
      return static_cast<V>(ByteReverse16(static_cast<uint16_t>(value)));
    case 4:
      return static_cast<V>(ByteReverse32(static_cast<uint32_t>(value)));
    case 8:
      return static_cast<V>(ByteReverse64(static_cast<uint64_t>(value)));
    default:
      UNREACHABLE();
  }
}

V8_EXPORT_PRIVATE bool PassesFilter(Vector<const char> name,
                                    Vector<const char> filter);

// Zap the specified area with a specific byte pattern. This currently defaults
// to int3 on x64 and ia32. On other architectures this will produce unspecified
// instruction sequences.
// TODO(jgruber): Better support for other architectures.
V8_INLINE void ZapCode(Address addr, size_t size_in_bytes) {
  static constexpr int kZapByte = 0xCC;
  std::memset(reinterpret_cast<void*>(addr), kZapByte, size_in_bytes);
}

}  // namespace internal
}  // namespace v8

#endif  // V8_UTILS_UTILS_H_