summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/baseline/liftoff-assembler.cc
blob: 164325867ea98a952243d4feeba574977e0fd947 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/wasm/baseline/liftoff-assembler.h"

#include <sstream>

#include "src/base/optional.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler-inl.h"
#include "src/compiler/linkage.h"
#include "src/compiler/wasm-compiler.h"
#include "src/utils/ostreams.h"
#include "src/wasm/baseline/liftoff-register.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-opcodes.h"

namespace v8 {
namespace internal {
namespace wasm {

using VarState = LiftoffAssembler::VarState;

constexpr ValueType LiftoffAssembler::kWasmIntPtr;

namespace {

class StackTransferRecipe {
  struct RegisterMove {
    LiftoffRegister src;
    ValueType type;
    constexpr RegisterMove(LiftoffRegister src, ValueType type)
        : src(src), type(type) {}
  };

  struct RegisterLoad {
    enum LoadKind : uint8_t {
      kConstant,      // load a constant value into a register.
      kStack,         // fill a register from a stack slot.
      kLowHalfStack,  // fill a register from the low half of a stack slot.
      kHighHalfStack  // fill a register from the high half of a stack slot.
    };

    LoadKind kind;
    ValueType type;
    int32_t value;  // i32 constant value or stack offset, depending on kind.

    // Named constructors.
    static RegisterLoad Const(WasmValue constant) {
      if (constant.type() == kWasmI32) {
        return {kConstant, kWasmI32, constant.to_i32()};
      }
      DCHECK_EQ(kWasmI64, constant.type());
      DCHECK_EQ(constant.to_i32_unchecked(), constant.to_i64_unchecked());
      return {kConstant, kWasmI64, constant.to_i32_unchecked()};
    }
    static RegisterLoad Stack(int32_t offset, ValueType type) {
      return {kStack, type, offset};
    }
    static RegisterLoad HalfStack(int32_t offset, RegPairHalf half) {
      return {half == kLowWord ? kLowHalfStack : kHighHalfStack, kWasmI32,
              offset};
    }

   private:
    RegisterLoad(LoadKind kind, ValueType type, int32_t value)
        : kind(kind), type(type), value(value) {}
  };

 public:
  explicit StackTransferRecipe(LiftoffAssembler* wasm_asm) : asm_(wasm_asm) {}
  ~StackTransferRecipe() { Execute(); }

  void Execute() {
    // First, execute register moves. Then load constants and stack values into
    // registers.
    ExecuteMoves();
    DCHECK(move_dst_regs_.is_empty());
    ExecuteLoads();
    DCHECK(load_dst_regs_.is_empty());
  }

  V8_INLINE void TransferStackSlot(const VarState& dst, const VarState& src) {
    DCHECK_EQ(dst.type(), src.type());
    if (dst.is_reg()) {
      LoadIntoRegister(dst.reg(), src, src.offset());
      return;
    }
    if (dst.is_const()) {
      DCHECK_EQ(dst.i32_const(), src.i32_const());
      return;
    }
    DCHECK(dst.is_stack());
    switch (src.loc()) {
      case VarState::kStack:
        if (src.offset() != dst.offset()) {
          asm_->MoveStackValue(dst.offset(), src.offset(), src.type());
        }
        break;
      case VarState::kRegister:
        asm_->Spill(dst.offset(), src.reg(), src.type());
        break;
      case VarState::kIntConst:
        asm_->Spill(dst.offset(), src.constant());
        break;
    }
  }

  V8_INLINE void LoadIntoRegister(LiftoffRegister dst,
                                  const LiftoffAssembler::VarState& src,
                                  uint32_t src_offset) {
    switch (src.loc()) {
      case VarState::kStack:
        LoadStackSlot(dst, src_offset, src.type());
        break;
      case VarState::kRegister:
        DCHECK_EQ(dst.reg_class(), src.reg_class());
        if (dst != src.reg()) MoveRegister(dst, src.reg(), src.type());
        break;
      case VarState::kIntConst:
        LoadConstant(dst, src.constant());
        break;
    }
  }

  void LoadI64HalfIntoRegister(LiftoffRegister dst,
                               const LiftoffAssembler::VarState& src,
                               int offset, RegPairHalf half) {
    // Use CHECK such that the remaining code is statically dead if
    // {kNeedI64RegPair} is false.
    CHECK(kNeedI64RegPair);
    DCHECK_EQ(kWasmI64, src.type());
    switch (src.loc()) {
      case VarState::kStack:
        LoadI64HalfStackSlot(dst, offset, half);
        break;
      case VarState::kRegister: {
        LiftoffRegister src_half =
            half == kLowWord ? src.reg().low() : src.reg().high();
        if (dst != src_half) MoveRegister(dst, src_half, kWasmI32);
        break;
      }
      case VarState::kIntConst:
        int32_t value = src.i32_const();
        // The high word is the sign extension of the low word.
        if (half == kHighWord) value = value >> 31;
        LoadConstant(dst, WasmValue(value));
        break;
    }
  }

  void MoveRegister(LiftoffRegister dst, LiftoffRegister src, ValueType type) {
    DCHECK_NE(dst, src);
    DCHECK_EQ(dst.reg_class(), src.reg_class());
    DCHECK_EQ(reg_class_for(type), src.reg_class());
    if (src.is_gp_pair()) {
      DCHECK_EQ(kWasmI64, type);
      if (dst.low() != src.low()) MoveRegister(dst.low(), src.low(), kWasmI32);
      if (dst.high() != src.high())
        MoveRegister(dst.high(), src.high(), kWasmI32);
      return;
    }
    if (src.is_fp_pair()) {
      DCHECK_EQ(kWasmS128, type);
      if (dst.low() != src.low()) {
        MoveRegister(dst.low(), src.low(), kWasmF64);
        MoveRegister(dst.high(), src.high(), kWasmF64);
      }
      return;
    }
    if (move_dst_regs_.has(dst)) {
      DCHECK_EQ(register_move(dst)->src, src);
      // Non-fp registers can only occur with the exact same type.
      DCHECK_IMPLIES(!dst.is_fp(), register_move(dst)->type == type);
      // It can happen that one fp register holds both the f32 zero and the f64
      // zero, as the initial value for local variables. Move the value as f64
      // in that case.
      if (type == kWasmF64) register_move(dst)->type = kWasmF64;
      return;
    }
    move_dst_regs_.set(dst);
    ++*src_reg_use_count(src);
    *register_move(dst) = {src, type};
  }

  void LoadConstant(LiftoffRegister dst, WasmValue value) {
    DCHECK(!load_dst_regs_.has(dst));
    load_dst_regs_.set(dst);
    if (dst.is_gp_pair()) {
      DCHECK_EQ(kWasmI64, value.type());
      int64_t i64 = value.to_i64();
      *register_load(dst.low()) =
          RegisterLoad::Const(WasmValue(static_cast<int32_t>(i64)));
      *register_load(dst.high()) =
          RegisterLoad::Const(WasmValue(static_cast<int32_t>(i64 >> 32)));
    } else {
      *register_load(dst) = RegisterLoad::Const(value);
    }
  }

  void LoadStackSlot(LiftoffRegister dst, uint32_t stack_offset,
                     ValueType type) {
    if (load_dst_regs_.has(dst)) {
      // It can happen that we spilled the same register to different stack
      // slots, and then we reload them later into the same dst register.
      // In that case, it is enough to load one of the stack slots.
      return;
    }
    load_dst_regs_.set(dst);
    if (dst.is_gp_pair()) {
      DCHECK_EQ(kWasmI64, type);
      *register_load(dst.low()) =
          RegisterLoad::HalfStack(stack_offset, kLowWord);
      *register_load(dst.high()) =
          RegisterLoad::HalfStack(stack_offset, kHighWord);
    } else if (dst.is_fp_pair()) {
      DCHECK_EQ(kWasmS128, type);
      // load_dst_regs_.set above will set both low and high fp regs.
      // But unlike gp_pair, we load a kWasm128 in one go in ExecuteLoads.
      // So unset the top fp register to skip loading it.
      load_dst_regs_.clear(dst.high());
      *register_load(dst.low()) = RegisterLoad::Stack(stack_offset, type);
    } else {
      *register_load(dst) = RegisterLoad::Stack(stack_offset, type);
    }
  }

  void LoadI64HalfStackSlot(LiftoffRegister dst, int offset, RegPairHalf half) {
    if (load_dst_regs_.has(dst)) {
      // It can happen that we spilled the same register to different stack
      // slots, and then we reload them later into the same dst register.
      // In that case, it is enough to load one of the stack slots.
      return;
    }
    load_dst_regs_.set(dst);
    *register_load(dst) = RegisterLoad::HalfStack(offset, half);
  }

 private:
  using MovesStorage =
      std::aligned_storage<kAfterMaxLiftoffRegCode * sizeof(RegisterMove),
                           alignof(RegisterMove)>::type;
  using LoadsStorage =
      std::aligned_storage<kAfterMaxLiftoffRegCode * sizeof(RegisterLoad),
                           alignof(RegisterLoad)>::type;

  ASSERT_TRIVIALLY_COPYABLE(RegisterMove);
  ASSERT_TRIVIALLY_COPYABLE(RegisterLoad);

  MovesStorage register_moves_;  // uninitialized
  LoadsStorage register_loads_;  // uninitialized
  int src_reg_use_count_[kAfterMaxLiftoffRegCode] = {0};
  LiftoffRegList move_dst_regs_;
  LiftoffRegList load_dst_regs_;
  LiftoffAssembler* const asm_;

  RegisterMove* register_move(LiftoffRegister reg) {
    return reinterpret_cast<RegisterMove*>(&register_moves_) +
           reg.liftoff_code();
  }
  RegisterLoad* register_load(LiftoffRegister reg) {
    return reinterpret_cast<RegisterLoad*>(&register_loads_) +
           reg.liftoff_code();
  }
  int* src_reg_use_count(LiftoffRegister reg) {
    return src_reg_use_count_ + reg.liftoff_code();
  }

  void ExecuteMove(LiftoffRegister dst) {
    RegisterMove* move = register_move(dst);
    DCHECK_EQ(0, *src_reg_use_count(dst));
    asm_->Move(dst, move->src, move->type);
    ClearExecutedMove(dst);
  }

  void ClearExecutedMove(LiftoffRegister dst) {
    DCHECK(move_dst_regs_.has(dst));
    move_dst_regs_.clear(dst);
    RegisterMove* move = register_move(dst);
    DCHECK_LT(0, *src_reg_use_count(move->src));
    if (--*src_reg_use_count(move->src)) return;
    // src count dropped to zero. If this is a destination register, execute
    // that move now.
    if (!move_dst_regs_.has(move->src)) return;
    ExecuteMove(move->src);
  }

  void ExecuteMoves() {
    // Execute all moves whose {dst} is not being used as src in another move.
    // If any src count drops to zero, also (transitively) execute the
    // corresponding move to that register.
    for (LiftoffRegister dst : move_dst_regs_) {
      // Check if already handled via transitivity in {ClearExecutedMove}.
      if (!move_dst_regs_.has(dst)) continue;
      if (*src_reg_use_count(dst)) continue;
      ExecuteMove(dst);
    }

    // All remaining moves are parts of a cycle. Just spill the first one, then
    // process all remaining moves in that cycle. Repeat for all cycles.
    int last_spill_offset = asm_->TopSpillOffset();
    while (!move_dst_regs_.is_empty()) {
      // TODO(clemensb): Use an unused register if available.
      LiftoffRegister dst = move_dst_regs_.GetFirstRegSet();
      RegisterMove* move = register_move(dst);
      last_spill_offset += LiftoffAssembler::SlotSizeForType(move->type);
      LiftoffRegister spill_reg = move->src;
      asm_->Spill(last_spill_offset, spill_reg, move->type);
      // Remember to reload into the destination register later.
      LoadStackSlot(dst, last_spill_offset, move->type);
      ClearExecutedMove(dst);
    }
  }

  void ExecuteLoads() {
    for (LiftoffRegister dst : load_dst_regs_) {
      RegisterLoad* load = register_load(dst);
      switch (load->kind) {
        case RegisterLoad::kConstant:
          asm_->LoadConstant(dst, load->type == kWasmI64
                                      ? WasmValue(int64_t{load->value})
                                      : WasmValue(int32_t{load->value}));
          break;
        case RegisterLoad::kStack:
          if (kNeedS128RegPair && load->type == kWasmS128) {
            asm_->Fill(LiftoffRegister::ForFpPair(dst.fp()), load->value,
                       load->type);
          } else {
            asm_->Fill(dst, load->value, load->type);
          }
          break;
        case RegisterLoad::kLowHalfStack:
          // Half of a register pair, {dst} must be a gp register.
          asm_->FillI64Half(dst.gp(), load->value, kLowWord);
          break;
        case RegisterLoad::kHighHalfStack:
          // Half of a register pair, {dst} must be a gp register.
          asm_->FillI64Half(dst.gp(), load->value, kHighWord);
          break;
      }
    }
    load_dst_regs_ = {};
  }

  DISALLOW_COPY_AND_ASSIGN(StackTransferRecipe);
};

class RegisterReuseMap {
 public:
  void Add(LiftoffRegister src, LiftoffRegister dst) {
    if (auto previous = Lookup(src)) {
      DCHECK_EQ(previous, dst);
      return;
    }
    map_.emplace_back(src);
    map_.emplace_back(dst);
  }

  base::Optional<LiftoffRegister> Lookup(LiftoffRegister src) {
    for (auto it = map_.begin(), end = map_.end(); it != end; it += 2) {
      if (it->is_gp_pair() == src.is_gp_pair() &&
          it->is_fp_pair() == src.is_fp_pair() && *it == src)
        return *(it + 1);
    }
    return {};
  }

 private:
  // {map_} holds pairs of <src, dst>.
  base::SmallVector<LiftoffRegister, 8> map_;
};

enum MergeKeepStackSlots : bool {
  kKeepStackSlots = true,
  kTurnStackSlotsIntoRegisters = false
};
enum MergeAllowConstants : bool {
  kConstantsAllowed = true,
  kConstantsNotAllowed = false
};
enum ReuseRegisters : bool {
  kReuseRegisters = true,
  kNoReuseRegisters = false
};
void InitMergeRegion(LiftoffAssembler::CacheState* state,
                     const VarState* source, VarState* target, uint32_t count,
                     MergeKeepStackSlots keep_stack_slots,
                     MergeAllowConstants allow_constants,
                     ReuseRegisters reuse_registers, LiftoffRegList used_regs) {
  RegisterReuseMap register_reuse_map;
  for (const VarState* source_end = source + count; source < source_end;
       ++source, ++target) {
    if ((source->is_stack() && keep_stack_slots) ||
        (source->is_const() && allow_constants)) {
      *target = *source;
      continue;
    }
    base::Optional<LiftoffRegister> reg;
    // First try: Keep the same register, if it's free.
    if (source->is_reg() && state->is_free(source->reg())) {
      reg = source->reg();
    }
    // Second try: Use the same register we used before (if we reuse registers).
    if (!reg && reuse_registers) {
      reg = register_reuse_map.Lookup(source->reg());
    }
    // Third try: Use any free register.
    RegClass rc = reg_class_for(source->type());
    if (!reg && state->has_unused_register(rc, used_regs)) {
      reg = state->unused_register(rc, used_regs);
    }
    if (!reg) {
      // No free register; make this a stack slot.
      *target = VarState(source->type(), source->offset());
      continue;
    }
    if (reuse_registers) register_reuse_map.Add(source->reg(), *reg);
    state->inc_used(*reg);
    *target = VarState(source->type(), *reg, source->offset());
  }
}

}  // namespace

// TODO(clemensb): Don't copy the full parent state (this makes us N^2).
void LiftoffAssembler::CacheState::InitMerge(const CacheState& source,
                                             uint32_t num_locals,
                                             uint32_t arity,
                                             uint32_t stack_depth) {
  // |------locals------|---(in between)----|--(discarded)--|----merge----|
  //  <-- num_locals --> <-- stack_depth -->^stack_base      <-- arity -->

  uint32_t stack_base = stack_depth + num_locals;
  uint32_t target_height = stack_base + arity;
  uint32_t discarded = source.stack_height() - target_height;
  DCHECK(stack_state.empty());

  DCHECK_GE(source.stack_height(), stack_base);
  stack_state.resize_no_init(target_height);

  const VarState* source_begin = source.stack_state.data();
  VarState* target_begin = stack_state.data();

  // Try to keep locals and the merge region in their registers. Register used
  // multiple times need to be copied to another free register. Compute the list
  // of used registers.
  LiftoffRegList used_regs;
  for (auto& src : VectorOf(source_begin, num_locals)) {
    if (src.is_reg()) used_regs.set(src.reg());
  }
  for (auto& src : VectorOf(source_begin + stack_base + discarded, arity)) {
    if (src.is_reg()) used_regs.set(src.reg());
  }

  // Initialize the merge region. If this region moves, try to turn stack slots
  // into registers since we need to load the value anyways.
  MergeKeepStackSlots keep_merge_stack_slots =
      discarded == 0 ? kKeepStackSlots : kTurnStackSlotsIntoRegisters;
  InitMergeRegion(this, source_begin + stack_base + discarded,
                  target_begin + stack_base, arity, keep_merge_stack_slots,
                  kConstantsNotAllowed, kNoReuseRegisters, used_regs);

  // Initialize the locals region. Here, stack slots stay stack slots (because
  // they do not move). Try to keep register in registers, but avoid duplicates.
  InitMergeRegion(this, source_begin, target_begin, num_locals, kKeepStackSlots,
                  kConstantsNotAllowed, kNoReuseRegisters, used_regs);
  // Consistency check: All the {used_regs} are really in use now.
  DCHECK_EQ(used_regs, used_registers & used_regs);

  // Last, initialize the section in between. Here, constants are allowed, but
  // registers which are already used for the merge region or locals must be
  // moved to other registers or spilled. If a register appears twice in the
  // source region, ensure to use the same register twice in the target region.
  InitMergeRegion(this, source_begin + num_locals, target_begin + num_locals,
                  stack_depth, kKeepStackSlots, kConstantsAllowed,
                  kReuseRegisters, used_regs);
}

void LiftoffAssembler::CacheState::Steal(const CacheState& source) {
  // Just use the move assignment operator.
  *this = std::move(source);
}

void LiftoffAssembler::CacheState::Split(const CacheState& source) {
  // Call the private copy assignment operator.
  *this = source;
}

namespace {

constexpr AssemblerOptions DefaultLiftoffOptions() {
  return AssemblerOptions{};
}

}  // namespace

LiftoffAssembler::LiftoffAssembler(std::unique_ptr<AssemblerBuffer> buffer)
    : TurboAssembler(nullptr, DefaultLiftoffOptions(), CodeObjectRequired::kNo,
                     std::move(buffer)) {
  set_abort_hard(true);  // Avoid calls to Abort.
}

LiftoffAssembler::~LiftoffAssembler() {
  if (num_locals_ > kInlineLocalTypes) {
    free(more_local_types_);
  }
}

LiftoffRegister LiftoffAssembler::LoadToRegister(VarState slot,
                                                 LiftoffRegList pinned) {
  if (slot.is_reg()) return slot.reg();
  LiftoffRegister reg = GetUnusedRegister(reg_class_for(slot.type()), pinned);
  if (slot.is_const()) {
    LoadConstant(reg, slot.constant());
  } else {
    DCHECK(slot.is_stack());
    Fill(reg, slot.offset(), slot.type());
  }
  return reg;
}

LiftoffRegister LiftoffAssembler::LoadI64HalfIntoRegister(VarState slot,
                                                          RegPairHalf half) {
  if (slot.is_reg()) {
    return half == kLowWord ? slot.reg().low() : slot.reg().high();
  }
  LiftoffRegister dst = GetUnusedRegister(kGpReg, {});
  if (slot.is_stack()) {
    FillI64Half(dst.gp(), slot.offset(), half);
    return dst;
  }
  DCHECK(slot.is_const());
  int32_t half_word =
      static_cast<int32_t>(half == kLowWord ? slot.constant().to_i64()
                                            : slot.constant().to_i64() >> 32);
  LoadConstant(dst, WasmValue(half_word));
  return dst;
}

LiftoffRegister LiftoffAssembler::PeekToRegister(int index,
                                                 LiftoffRegList pinned) {
  DCHECK_LT(index, cache_state_.stack_state.size());
  VarState& slot = cache_state_.stack_state.end()[-1 - index];
  if (slot.is_reg()) {
    cache_state_.dec_used(slot.reg());
    return slot.reg();
  }
  LiftoffRegister reg = LoadToRegister(slot, pinned);
  slot.MakeRegister(reg);
  return reg;
}

void LiftoffAssembler::PrepareLoopArgs(int num) {
  for (int i = 0; i < num; ++i) {
    VarState& slot = cache_state_.stack_state.end()[-1 - i];
    if (slot.is_stack()) continue;
    RegClass rc = reg_class_for(slot.type());
    if (slot.is_reg()) {
      if (cache_state_.get_use_count(slot.reg()) > 1) {
        // If the register is used more than once, we cannot use it for the
        // merge. Move it to an unused register instead.
        LiftoffRegList pinned;
        pinned.set(slot.reg());
        LiftoffRegister dst_reg = GetUnusedRegister(rc, pinned);
        Move(dst_reg, slot.reg(), slot.type());
        cache_state_.dec_used(slot.reg());
        cache_state_.inc_used(dst_reg);
        slot.MakeRegister(dst_reg);
      }
      continue;
    }
    LiftoffRegister reg = GetUnusedRegister(rc, {});
    LoadConstant(reg, slot.constant());
    slot.MakeRegister(reg);
    cache_state_.inc_used(reg);
  }
}

void LiftoffAssembler::MergeFullStackWith(const CacheState& target,
                                          const CacheState& source) {
  DCHECK_EQ(source.stack_height(), target.stack_height());
  // TODO(clemensb): Reuse the same StackTransferRecipe object to save some
  // allocations.
  StackTransferRecipe transfers(this);
  for (uint32_t i = 0, e = source.stack_height(); i < e; ++i) {
    transfers.TransferStackSlot(target.stack_state[i], source.stack_state[i]);
  }
}

void LiftoffAssembler::MergeStackWith(const CacheState& target,
                                      uint32_t arity) {
  // Before: ----------------|----- (discarded) ----|--- arity ---|
  //                         ^target_stack_height   ^stack_base   ^stack_height
  // After:  ----|-- arity --|
  //             ^           ^target_stack_height
  //             ^target_stack_base
  uint32_t stack_height = cache_state_.stack_height();
  uint32_t target_stack_height = target.stack_height();
  DCHECK_LE(target_stack_height, stack_height);
  DCHECK_LE(arity, target_stack_height);
  uint32_t stack_base = stack_height - arity;
  uint32_t target_stack_base = target_stack_height - arity;
  StackTransferRecipe transfers(this);
  for (uint32_t i = 0; i < target_stack_base; ++i) {
    transfers.TransferStackSlot(target.stack_state[i],
                                cache_state_.stack_state[i]);
  }
  for (uint32_t i = 0; i < arity; ++i) {
    transfers.TransferStackSlot(target.stack_state[target_stack_base + i],
                                cache_state_.stack_state[stack_base + i]);
  }
}

void LiftoffAssembler::Spill(VarState* slot) {
  switch (slot->loc()) {
    case VarState::kStack:
      return;
    case VarState::kRegister:
      Spill(slot->offset(), slot->reg(), slot->type());
      cache_state_.dec_used(slot->reg());
      break;
    case VarState::kIntConst:
      Spill(slot->offset(), slot->constant());
      break;
  }
  slot->MakeStack();
}

void LiftoffAssembler::SpillLocals() {
  for (uint32_t i = 0; i < num_locals_; ++i) {
    Spill(&cache_state_.stack_state[i]);
  }
}

void LiftoffAssembler::SpillAllRegisters() {
  for (uint32_t i = 0, e = cache_state_.stack_height(); i < e; ++i) {
    auto& slot = cache_state_.stack_state[i];
    if (!slot.is_reg()) continue;
    Spill(slot.offset(), slot.reg(), slot.type());
    slot.MakeStack();
  }
  cache_state_.reset_used_registers();
}

void LiftoffAssembler::ClearRegister(
    Register reg, std::initializer_list<Register*> possible_uses,
    LiftoffRegList pinned) {
  if (cache_state()->is_used(LiftoffRegister(reg))) {
    SpillRegister(LiftoffRegister(reg));
  }
  Register replacement = no_reg;
  for (Register* use : possible_uses) {
    if (reg != *use) continue;
    if (replacement == no_reg) {
      replacement = GetUnusedRegister(kGpReg, pinned).gp();
      Move(replacement, reg, LiftoffAssembler::kWasmIntPtr);
    }
    // We cannot leave this loop early. There may be multiple uses of {reg}.
    *use = replacement;
  }
}

namespace {
void PrepareStackTransfers(const FunctionSig* sig,
                           compiler::CallDescriptor* call_descriptor,
                           const VarState* slots,
                           LiftoffStackSlots* stack_slots,
                           StackTransferRecipe* stack_transfers,
                           LiftoffRegList* param_regs) {
  // Process parameters backwards, such that pushes of caller frame slots are
  // in the correct order.
  uint32_t call_desc_input_idx =
      static_cast<uint32_t>(call_descriptor->InputCount());
  uint32_t num_params = static_cast<uint32_t>(sig->parameter_count());
  for (uint32_t i = num_params; i > 0; --i) {
    const uint32_t param = i - 1;
    ValueType type = sig->GetParam(param);
    const bool is_gp_pair = kNeedI64RegPair && type == kWasmI64;
    const int num_lowered_params = is_gp_pair ? 2 : 1;
    const VarState& slot = slots[param];
    const uint32_t stack_offset = slot.offset();
    // Process both halfs of a register pair separately, because they are passed
    // as separate parameters. One or both of them could end up on the stack.
    for (int lowered_idx = 0; lowered_idx < num_lowered_params; ++lowered_idx) {
      const RegPairHalf half =
          is_gp_pair && lowered_idx == 0 ? kHighWord : kLowWord;
      --call_desc_input_idx;
      compiler::LinkageLocation loc =
          call_descriptor->GetInputLocation(call_desc_input_idx);
      if (loc.IsRegister()) {
        DCHECK(!loc.IsAnyRegister());
        RegClass rc = is_gp_pair ? kGpReg : reg_class_for(type);
        int reg_code = loc.AsRegister();
        LiftoffRegister reg =
            LiftoffRegister::from_external_code(rc, type, reg_code);
        param_regs->set(reg);
        if (is_gp_pair) {
          stack_transfers->LoadI64HalfIntoRegister(reg, slot, stack_offset,
                                                   half);
        } else {
          stack_transfers->LoadIntoRegister(reg, slot, stack_offset);
        }
      } else {
        DCHECK(loc.IsCallerFrameSlot());
        stack_slots->Add(slot, stack_offset, half);
      }
    }
  }
}

}  // namespace

void LiftoffAssembler::PrepareBuiltinCall(
    const FunctionSig* sig, compiler::CallDescriptor* call_descriptor,
    std::initializer_list<VarState> params) {
  LiftoffStackSlots stack_slots(this);
  StackTransferRecipe stack_transfers(this);
  LiftoffRegList param_regs;
  PrepareStackTransfers(sig, call_descriptor, params.begin(), &stack_slots,
                        &stack_transfers, &param_regs);
  // Create all the slots.
  // Builtin stack parameters are pushed in reversed order.
  stack_slots.Reverse();
  stack_slots.Construct();
  // Execute the stack transfers before filling the instance register.
  stack_transfers.Execute();

  // Reset register use counters.
  cache_state_.reset_used_registers();
  SpillAllRegisters();
}

void LiftoffAssembler::PrepareCall(const FunctionSig* sig,
                                   compiler::CallDescriptor* call_descriptor,
                                   Register* target,
                                   Register* target_instance) {
  uint32_t num_params = static_cast<uint32_t>(sig->parameter_count());
  // Input 0 is the call target.
  constexpr size_t kInputShift = 1;

  // Spill all cache slots which are not being used as parameters.
  for (VarState* it = cache_state_.stack_state.end() - 1 - num_params;
       it >= cache_state_.stack_state.begin() &&
       !cache_state_.used_registers.is_empty();
       --it) {
    if (!it->is_reg()) continue;
    Spill(it->offset(), it->reg(), it->type());
    cache_state_.dec_used(it->reg());
    it->MakeStack();
  }

  LiftoffStackSlots stack_slots(this);
  StackTransferRecipe stack_transfers(this);
  LiftoffRegList param_regs;

  // Move the target instance (if supplied) into the correct instance register.
  compiler::LinkageLocation instance_loc =
      call_descriptor->GetInputLocation(kInputShift);
  DCHECK(instance_loc.IsRegister() && !instance_loc.IsAnyRegister());
  Register instance_reg = Register::from_code(instance_loc.AsRegister());
  param_regs.set(instance_reg);
  if (target_instance && *target_instance != instance_reg) {
    stack_transfers.MoveRegister(LiftoffRegister(instance_reg),
                                 LiftoffRegister(*target_instance),
                                 kWasmIntPtr);
  }

  if (num_params) {
    uint32_t param_base = cache_state_.stack_height() - num_params;
    PrepareStackTransfers(sig, call_descriptor,
                          &cache_state_.stack_state[param_base], &stack_slots,
                          &stack_transfers, &param_regs);
  }

  // If the target register overlaps with a parameter register, then move the
  // target to another free register, or spill to the stack.
  if (target && param_regs.has(LiftoffRegister(*target))) {
    // Try to find another free register.
    LiftoffRegList free_regs = kGpCacheRegList.MaskOut(param_regs);
    if (!free_regs.is_empty()) {
      LiftoffRegister new_target = free_regs.GetFirstRegSet();
      stack_transfers.MoveRegister(new_target, LiftoffRegister(*target),
                                   kWasmIntPtr);
      *target = new_target.gp();
    } else {
      stack_slots.Add(LiftoffAssembler::VarState(LiftoffAssembler::kWasmIntPtr,
                                                 LiftoffRegister(*target), 0));
      *target = no_reg;
    }
  }

  // Create all the slots.
  stack_slots.Construct();
  // Execute the stack transfers before filling the instance register.
  stack_transfers.Execute();
  // Pop parameters from the value stack.
  cache_state_.stack_state.pop_back(num_params);

  // Reset register use counters.
  cache_state_.reset_used_registers();

  // Reload the instance from the stack.
  if (!target_instance) {
    FillInstanceInto(instance_reg);
  }
}

void LiftoffAssembler::FinishCall(const FunctionSig* sig,
                                  compiler::CallDescriptor* call_descriptor) {
  // Offset of the current return value relative to the stack pointer.
  int return_offset = 0;
  int call_desc_return_idx = 0;
  for (ValueType return_type : sig->returns()) {
    DCHECK_LT(call_desc_return_idx, call_descriptor->ReturnCount());
    const bool needs_gp_pair = needs_gp_reg_pair(return_type);
    const int num_lowered_params = 1 + needs_gp_pair;
    const ValueType lowered_type = needs_gp_pair ? kWasmI32 : return_type;
    const RegClass rc = reg_class_for(lowered_type);
    // Initialize to anything, will be set in the loop and used afterwards.
    LiftoffRegister reg_pair[2] = {kGpCacheRegList.GetFirstRegSet(),
                                   kGpCacheRegList.GetFirstRegSet()};
    LiftoffRegList pinned;
    for (int pair_idx = 0; pair_idx < num_lowered_params; ++pair_idx) {
      compiler::LinkageLocation loc =
          call_descriptor->GetReturnLocation(call_desc_return_idx++);
      if (loc.IsRegister()) {
        DCHECK(!loc.IsAnyRegister());
        reg_pair[pair_idx] = LiftoffRegister::from_external_code(
            rc, lowered_type, loc.AsRegister());
      } else {
        DCHECK(loc.IsCallerFrameSlot());
        reg_pair[pair_idx] = GetUnusedRegister(rc, pinned);
        LoadReturnStackSlot(reg_pair[pair_idx], return_offset, lowered_type);
        const int type_size = lowered_type.element_size_bytes();
        const int slot_size = RoundUp<kSystemPointerSize>(type_size);
        return_offset += slot_size;
      }
      if (pair_idx == 0) {
        pinned.set(reg_pair[0]);
      }
    }
    if (num_lowered_params == 1) {
      PushRegister(return_type, reg_pair[0]);
    } else {
      PushRegister(return_type, LiftoffRegister::ForPair(reg_pair[0].gp(),
                                                         reg_pair[1].gp()));
    }
  }
  RecordUsedSpillOffset(TopSpillOffset() + return_offset);
}

void LiftoffAssembler::Move(LiftoffRegister dst, LiftoffRegister src,
                            ValueType type) {
  DCHECK_EQ(dst.reg_class(), src.reg_class());
  DCHECK_NE(dst, src);
  if (kNeedI64RegPair && dst.is_gp_pair()) {
    // Use the {StackTransferRecipe} to move pairs, as the registers in the
    // pairs might overlap.
    StackTransferRecipe(this).MoveRegister(dst, src, type);
  } else if (kNeedS128RegPair && dst.is_fp_pair()) {
    // Calling low_fp is fine, Move will automatically check the type and
    // convert this FP to its SIMD register, and use a SIMD move.
    Move(dst.low_fp(), src.low_fp(), type);
  } else if (dst.is_gp()) {
    Move(dst.gp(), src.gp(), type);
  } else {
    Move(dst.fp(), src.fp(), type);
  }
}

void LiftoffAssembler::ParallelRegisterMove(
    Vector<const ParallelRegisterMoveTuple> tuples) {
  StackTransferRecipe stack_transfers(this);
  for (auto tuple : tuples) {
    if (tuple.dst == tuple.src) continue;
    stack_transfers.MoveRegister(tuple.dst, tuple.src, tuple.type);
  }
}

void LiftoffAssembler::MoveToReturnLocations(
    const FunctionSig* sig, compiler::CallDescriptor* descriptor) {
  StackTransferRecipe stack_transfers(this);
  if (sig->return_count() == 1) {
    ValueType return_type = sig->GetReturn(0);
    // Defaults to a gp reg, will be set below if return type is not gp.
    LiftoffRegister return_reg = LiftoffRegister(kGpReturnRegisters[0]);

    if (needs_gp_reg_pair(return_type)) {
      return_reg = LiftoffRegister::ForPair(kGpReturnRegisters[0],
                                            kGpReturnRegisters[1]);
    } else if (needs_fp_reg_pair(return_type)) {
      return_reg = LiftoffRegister::ForFpPair(kFpReturnRegisters[0]);
    } else if (reg_class_for(return_type) == kFpReg) {
      return_reg = LiftoffRegister(kFpReturnRegisters[0]);
    } else {
      DCHECK_EQ(kGpReg, reg_class_for(return_type));
    }
    stack_transfers.LoadIntoRegister(return_reg,
                                     cache_state_.stack_state.back(),
                                     cache_state_.stack_state.back().offset());
    return;
  }

  // Slow path for multi-return.
  int call_desc_return_idx = 0;
  DCHECK_LE(sig->return_count(), cache_state_.stack_height());
  VarState* slots = cache_state_.stack_state.end() - sig->return_count();
  // Fill return frame slots first to ensure that all potential spills happen
  // before we prepare the stack transfers.
  for (size_t i = 0; i < sig->return_count(); ++i) {
    ValueType return_type = sig->GetReturn(i);
    bool needs_gp_pair = needs_gp_reg_pair(return_type);
    int num_lowered_params = 1 + needs_gp_pair;
    for (int pair_idx = 0; pair_idx < num_lowered_params; ++pair_idx) {
      compiler::LinkageLocation loc =
          descriptor->GetReturnLocation(call_desc_return_idx++);
      if (loc.IsCallerFrameSlot()) {
        RegPairHalf half = pair_idx == 0 ? kLowWord : kHighWord;
        VarState& slot = slots[i];
        LiftoffRegister reg = needs_gp_pair
                                  ? LoadI64HalfIntoRegister(slot, half)
                                  : LoadToRegister(slot, {});
        ValueType lowered_type = needs_gp_pair ? kWasmI32 : return_type;
        StoreCallerFrameSlot(reg, -loc.AsCallerFrameSlot(), lowered_type);
      }
    }
  }
  // Prepare and execute stack transfers.
  call_desc_return_idx = 0;
  for (size_t i = 0; i < sig->return_count(); ++i) {
    ValueType return_type = sig->GetReturn(i);
    bool needs_gp_pair = needs_gp_reg_pair(return_type);
    int num_lowered_params = 1 + needs_gp_pair;
    for (int pair_idx = 0; pair_idx < num_lowered_params; ++pair_idx) {
      RegPairHalf half = pair_idx == 0 ? kLowWord : kHighWord;
      compiler::LinkageLocation loc =
          descriptor->GetReturnLocation(call_desc_return_idx++);
      if (loc.IsRegister()) {
        DCHECK(!loc.IsAnyRegister());
        int reg_code = loc.AsRegister();
        ValueType lowered_type = needs_gp_pair ? kWasmI32 : return_type;
        RegClass rc = reg_class_for(lowered_type);
        LiftoffRegister reg =
            LiftoffRegister::from_external_code(rc, return_type, reg_code);
        VarState& slot = slots[i];
        if (needs_gp_pair) {
          stack_transfers.LoadI64HalfIntoRegister(reg, slot, slot.offset(),
                                                  half);
        } else {
          stack_transfers.LoadIntoRegister(reg, slot, slot.offset());
        }
      }
    }
  }
}

#ifdef ENABLE_SLOW_DCHECKS
bool LiftoffAssembler::ValidateCacheState() const {
  uint32_t register_use_count[kAfterMaxLiftoffRegCode] = {0};
  LiftoffRegList used_regs;
  for (const VarState& var : cache_state_.stack_state) {
    if (!var.is_reg()) continue;
    LiftoffRegister reg = var.reg();
    if ((kNeedI64RegPair || kNeedS128RegPair) && reg.is_pair()) {
      ++register_use_count[reg.low().liftoff_code()];
      ++register_use_count[reg.high().liftoff_code()];
    } else {
      ++register_use_count[reg.liftoff_code()];
    }
    used_regs.set(reg);
  }
  bool valid = memcmp(register_use_count, cache_state_.register_use_count,
                      sizeof(register_use_count)) == 0 &&
               used_regs == cache_state_.used_registers;
  if (valid) return true;
  std::ostringstream os;
  os << "Error in LiftoffAssembler::ValidateCacheState().\n";
  os << "expected: used_regs " << used_regs << ", counts "
     << PrintCollection(register_use_count) << "\n";
  os << "found:    used_regs " << cache_state_.used_registers << ", counts "
     << PrintCollection(cache_state_.register_use_count) << "\n";
  os << "Use --trace-wasm-decoder and --trace-liftoff to debug.";
  FATAL("%s", os.str().c_str());
}
#endif

LiftoffRegister LiftoffAssembler::SpillOneRegister(LiftoffRegList candidates,
                                                   LiftoffRegList pinned) {
  // Spill one cached value to free a register.
  LiftoffRegister spill_reg = cache_state_.GetNextSpillReg(candidates, pinned);
  SpillRegister(spill_reg);
  return spill_reg;
}

LiftoffRegister LiftoffAssembler::SpillAdjacentFpRegisters(
    LiftoffRegList pinned) {
  // We end up in this call only when:
  // [1] kNeedS128RegPair, and
  // [2] there are no pair of adjacent FP registers that are free
  CHECK(kNeedS128RegPair);
  DCHECK(!kFpCacheRegList.MaskOut(pinned)
              .MaskOut(cache_state_.used_registers)
              .HasAdjacentFpRegsSet());

  // Special logic, if the top fp register is even, we might hit a case of an
  // invalid register in case 2.
  LiftoffRegister last_fp = kFpCacheRegList.GetLastRegSet();
  if (last_fp.fp().code() % 2 == 0) {
    pinned.set(last_fp);
  }

  // We can try to optimize the spilling here:
  // 1. Try to get a free fp register, either:
  //  a. This register is already free, or
  //  b. it had to be spilled.
  // 2. If 1a, the adjacent register is used (invariant [2]), spill it.
  // 3. If 1b, check the adjacent register:
  //  a. If free, done!
  //  b. If used, spill it.
  // We spill one register in 2 and 3a, and two registers in 3b.

  LiftoffRegister first_reg = GetUnusedRegister(kFpCacheRegList, pinned);
  LiftoffRegister second_reg = first_reg, low_reg = first_reg;

  if (first_reg.fp().code() % 2 == 0) {
    second_reg =
        LiftoffRegister::from_liftoff_code(first_reg.liftoff_code() + 1);
  } else {
    second_reg =
        LiftoffRegister::from_liftoff_code(first_reg.liftoff_code() - 1);
    low_reg = second_reg;
  }

  if (cache_state_.is_used(second_reg)) {
    SpillRegister(second_reg);
  }

  return low_reg;
}

void LiftoffAssembler::SpillRegister(LiftoffRegister reg) {
  int remaining_uses = cache_state_.get_use_count(reg);
  DCHECK_LT(0, remaining_uses);
  for (uint32_t idx = cache_state_.stack_height() - 1;; --idx) {
    DCHECK_GT(cache_state_.stack_height(), idx);
    auto* slot = &cache_state_.stack_state[idx];
    if (!slot->is_reg() || !slot->reg().overlaps(reg)) continue;
    if (slot->reg().is_pair()) {
      // Make sure to decrement *both* registers in a pair, because the
      // {clear_used} call below only clears one of them.
      cache_state_.dec_used(slot->reg().low());
      cache_state_.dec_used(slot->reg().high());
      cache_state_.last_spilled_regs.set(slot->reg().low());
      cache_state_.last_spilled_regs.set(slot->reg().high());
    }
    Spill(slot->offset(), slot->reg(), slot->type());
    slot->MakeStack();
    if (--remaining_uses == 0) break;
  }
  cache_state_.clear_used(reg);
  cache_state_.last_spilled_regs.set(reg);
}

void LiftoffAssembler::set_num_locals(uint32_t num_locals) {
  DCHECK_EQ(0, num_locals_);  // only call this once.
  num_locals_ = num_locals;
  if (num_locals > kInlineLocalTypes) {
    more_local_types_ =
        reinterpret_cast<ValueType*>(malloc(num_locals * sizeof(ValueType)));
    DCHECK_NOT_NULL(more_local_types_);
  }
}

std::ostream& operator<<(std::ostream& os, VarState slot) {
  os << slot.type().name() << ":";
  switch (slot.loc()) {
    case VarState::kStack:
      return os << "s";
    case VarState::kRegister:
      return os << slot.reg();
    case VarState::kIntConst:
      return os << "c" << slot.i32_const();
  }
  UNREACHABLE();
}

}  // namespace wasm
}  // namespace internal
}  // namespace v8