summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/baseline/liftoff-assembler.h
blob: aef63c647bf71c8c75f10ce8aafe16099633ea52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_WASM_BASELINE_LIFTOFF_ASSEMBLER_H_
#define V8_WASM_BASELINE_LIFTOFF_ASSEMBLER_H_

#include <iosfwd>
#include <memory>

#include "src/base/bits.h"
#include "src/base/small-vector.h"
#include "src/codegen/macro-assembler.h"
#include "src/wasm/baseline/liftoff-assembler-defs.h"
#include "src/wasm/baseline/liftoff-compiler.h"
#include "src/wasm/baseline/liftoff-register.h"
#include "src/wasm/function-body-decoder.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes.h"
#include "src/wasm/wasm-value.h"

namespace v8 {
namespace internal {

// Forward declarations.
namespace compiler {
class CallDescriptor;
}  // namespace compiler

namespace wasm {

inline constexpr Condition Negate(Condition cond) {
  switch (cond) {
    case kEqual:
      return kNotEqual;
    case kNotEqual:
      return kEqual;
    case kLessThan:
      return kGreaterThanEqual;
    case kLessThanEqual:
      return kGreaterThan;
    case kGreaterThanEqual:
      return kLessThan;
    case kGreaterThan:
      return kLessThanEqual;
    case kUnsignedLessThan:
      return kUnsignedGreaterThanEqual;
    case kUnsignedLessThanEqual:
      return kUnsignedGreaterThan;
    case kUnsignedGreaterThanEqual:
      return kUnsignedLessThan;
    case kUnsignedGreaterThan:
      return kUnsignedLessThanEqual;
    default:
      UNREACHABLE();
  }
}

inline constexpr Condition Flip(Condition cond) {
  switch (cond) {
    case kEqual:
      return kEqual;
    case kNotEqual:
      return kNotEqual;
    case kLessThan:
      return kGreaterThan;
    case kLessThanEqual:
      return kGreaterThanEqual;
    case kGreaterThanEqual:
      return kLessThanEqual;
    case kGreaterThan:
      return kLessThan;
    case kUnsignedLessThan:
      return kUnsignedGreaterThan;
    case kUnsignedLessThanEqual:
      return kUnsignedGreaterThanEqual;
    case kUnsignedGreaterThanEqual:
      return kUnsignedLessThanEqual;
    case kUnsignedGreaterThan:
      return kUnsignedLessThan;
    default:
      UNREACHABLE();
  }
}

class LiftoffAssembler;
class FreezeCacheState {
 public:
#if DEBUG
  explicit FreezeCacheState(LiftoffAssembler& assm);
  ~FreezeCacheState();

 private:
  LiftoffAssembler& assm_;
#else
  explicit FreezeCacheState(LiftoffAssembler& assm) {}
#endif
};

class LiftoffAssembler : public MacroAssembler {
 public:
  // Each slot in our stack frame currently has exactly 8 bytes.
  static constexpr int kStackSlotSize = 8;

  static constexpr ValueKind kIntPtrKind =
      kSystemPointerSize == kInt32Size ? kI32 : kI64;
  // A tagged value known to be a Smi can be treated like a ptr-sized int.
  static constexpr ValueKind kSmiKind = kTaggedSize == kInt32Size ? kI32 : kI64;

  using ValueKindSig = Signature<ValueKind>;

  class VarState {
   public:
    enum Location : uint8_t { kStack, kRegister, kIntConst };

    explicit VarState(ValueKind kind, int offset)
        : loc_(kStack), kind_(kind), spill_offset_(offset) {
      DCHECK_LE(0, offset);
    }
    explicit VarState(ValueKind kind, LiftoffRegister r, int offset)
        : loc_(kRegister), kind_(kind), reg_(r), spill_offset_(offset) {
      DCHECK_EQ(r.reg_class(), reg_class_for(kind));
      DCHECK_LE(0, offset);
    }
    explicit VarState(ValueKind kind, int32_t i32_const, int offset)
        : loc_(kIntConst),
          kind_(kind),
          i32_const_(i32_const),
          spill_offset_(offset) {
      DCHECK(kind_ == kI32 || kind_ == kI64);
      DCHECK_LE(0, offset);
    }

    bool is_stack() const { return loc_ == kStack; }
    bool is_gp_reg() const { return loc_ == kRegister && reg_.is_gp(); }
    bool is_fp_reg() const { return loc_ == kRegister && reg_.is_fp(); }
    bool is_reg() const { return loc_ == kRegister; }
    bool is_const() const { return loc_ == kIntConst; }

    ValueKind kind() const { return kind_; }

    Location loc() const { return loc_; }

    int32_t i32_const() const {
      DCHECK_EQ(loc_, kIntConst);
      return i32_const_;
    }
    WasmValue constant() const {
      DCHECK(kind_ == kI32 || kind_ == kI64);
      DCHECK_EQ(loc_, kIntConst);
      return kind_ == kI32 ? WasmValue(i32_const_)
                           : WasmValue(int64_t{i32_const_});
    }

    int offset() const {
      V8_ASSUME(spill_offset_ >= 0);
      return spill_offset_;
    }
    void set_offset(int offset) {
      DCHECK_LE(0, spill_offset_);
      spill_offset_ = offset;
    }

    Register gp_reg() const { return reg().gp(); }
    DoubleRegister fp_reg() const { return reg().fp(); }
    LiftoffRegister reg() const {
      DCHECK_EQ(loc_, kRegister);
      return reg_;
    }
    RegClass reg_class() const { return reg().reg_class(); }

    void MakeStack() { loc_ = kStack; }

    void MakeRegister(LiftoffRegister r) {
      loc_ = kRegister;
      reg_ = r;
    }

    void MakeConstant(int32_t i32_const) {
      DCHECK(kind_ == kI32 || kind_ == kI64);
      loc_ = kIntConst;
      i32_const_ = i32_const;
    }

    // Copy src to this, except for offset, since src and this could have been
    // from different stack states.
    void Copy(VarState src) {
      loc_ = src.loc();
      kind_ = src.kind();
      if (loc_ == kRegister) {
        reg_ = src.reg();
      } else if (loc_ == kIntConst) {
        i32_const_ = src.i32_const();
      }
    }

   private:
    Location loc_;
    // TODO(wasm): This is redundant, the decoder already knows the type of each
    // stack value. Try to collapse.
    ValueKind kind_;

    union {
      LiftoffRegister reg_;  // used if loc_ == kRegister
      int32_t i32_const_;    // used if loc_ == kIntConst
    };
    int spill_offset_;
  };

  ASSERT_TRIVIALLY_COPYABLE(VarState);

  struct CacheState {
    explicit CacheState(Zone* zone)
        : stack_state(ZoneAllocator<VarState>{zone}) {}

    // Allow move construction and move assignment.
    CacheState(CacheState&&) V8_NOEXCEPT = default;
    CacheState& operator=(CacheState&&) V8_NOEXCEPT = default;
    // Disallow copy construction.
    CacheState(const CacheState&) = delete;

    enum class SpillLocation { kTopOfStack, kStackSlots };
    // Generates two lists of locations that contain references. {slots}
    // contains the indices of slots on the value stack that contain references.
    // {spills} contains all registers that contain references. The
    // {spill_location} defines where register values will be spilled for a
    // function call within the out-of-line code. {kStackSlots} means that the
    // values in the registers will be written back to their stack slots.
    // {kTopOfStack} means that the registers will be spilled on the stack with
    // a {push} instruction.
    void GetTaggedSlotsForOOLCode(/*out*/ ZoneVector<int>* slots,
                                  /*out*/ LiftoffRegList* spills,
                                  SpillLocation spill_location);

    void DefineSafepoint(SafepointTableBuilder::Safepoint& safepoint);

    void DefineSafepointWithCalleeSavedRegisters(
        SafepointTableBuilder::Safepoint& safepoint);

    // TODO(jkummerow): Wrap all accesses to {stack_state} in accessors that
    // check {frozen}.
    base::SmallVector<VarState, 16, ZoneAllocator<VarState>> stack_state;
    LiftoffRegList used_registers;
    uint32_t register_use_count[kAfterMaxLiftoffRegCode] = {0};
    LiftoffRegList last_spilled_regs;
    Register cached_instance = no_reg;
    Register cached_mem_start = no_reg;
#if DEBUG
    uint32_t frozen = 0;
#endif

    bool has_unused_register(RegClass rc, LiftoffRegList pinned = {}) const {
      if (kNeedI64RegPair && rc == kGpRegPair) {
        LiftoffRegList available_regs =
            kGpCacheRegList.MaskOut(used_registers).MaskOut(pinned);
        return available_regs.GetNumRegsSet() >= 2;
      } else if (kNeedS128RegPair && rc == kFpRegPair) {
        LiftoffRegList available_regs =
            kFpCacheRegList.MaskOut(used_registers).MaskOut(pinned);
        return available_regs.HasAdjacentFpRegsSet();
      }
      LiftoffRegList candidates = GetCacheRegList(rc);
      return has_unused_register(candidates.MaskOut(pinned));
    }

    bool has_unused_register(LiftoffRegList candidates) const {
      LiftoffRegList available_regs = candidates.MaskOut(used_registers);
      return !available_regs.is_empty();
    }

    LiftoffRegister unused_register(RegClass rc,
                                    LiftoffRegList pinned = {}) const {
      if (kNeedI64RegPair && rc == kGpRegPair) {
        Register low = pinned.set(unused_register(kGpReg, pinned)).gp();
        Register high = unused_register(kGpReg, pinned).gp();
        return LiftoffRegister::ForPair(low, high);
      } else if (kNeedS128RegPair && rc == kFpRegPair) {
        LiftoffRegList available_regs =
            kFpCacheRegList.MaskOut(used_registers).MaskOut(pinned);
        DoubleRegister low =
            available_regs.GetAdjacentFpRegsSet().GetFirstRegSet().fp();
        DCHECK(is_free(LiftoffRegister::ForFpPair(low)));
        return LiftoffRegister::ForFpPair(low);
      }
      LiftoffRegList candidates = GetCacheRegList(rc);
      return unused_register(candidates, pinned);
    }

    LiftoffRegister unused_register(LiftoffRegList candidates,
                                    LiftoffRegList pinned = {}) const {
      LiftoffRegList available_regs =
          candidates.MaskOut(used_registers).MaskOut(pinned);
      return available_regs.GetFirstRegSet();
    }

    // Volatile registers are registers which are used for caching values that
    // can easily be reloaded. Those are returned first if we run out of free
    // registers.
    bool has_volatile_register(LiftoffRegList candidates) {
      return (cached_instance != no_reg && candidates.has(cached_instance)) ||
             (cached_mem_start != no_reg && candidates.has(cached_mem_start));
    }

    LiftoffRegister take_volatile_register(LiftoffRegList candidates) {
      DCHECK(!frozen);
      DCHECK(has_volatile_register(candidates));
      Register reg = no_reg;
      if (cached_instance != no_reg && candidates.has(cached_instance)) {
        reg = cached_instance;
        cached_instance = no_reg;
      } else {
        DCHECK(candidates.has(cached_mem_start));
        reg = cached_mem_start;
        cached_mem_start = no_reg;
      }

      LiftoffRegister ret{reg};
      DCHECK_EQ(1, register_use_count[ret.liftoff_code()]);
      register_use_count[ret.liftoff_code()] = 0;
      used_registers.clear(ret);
      return ret;
    }

    void SetCacheRegister(Register* cache, Register reg) {
      DCHECK(!frozen);
      DCHECK_EQ(no_reg, *cache);
      *cache = reg;
      int liftoff_code = LiftoffRegister{reg}.liftoff_code();
      DCHECK_EQ(0, register_use_count[liftoff_code]);
      register_use_count[liftoff_code] = 1;
      used_registers.set(reg);
    }

    void SetInstanceCacheRegister(Register reg) {
      SetCacheRegister(&cached_instance, reg);
    }

    void SetMemStartCacheRegister(Register reg) {
      SetCacheRegister(&cached_mem_start, reg);
    }

    Register TrySetCachedInstanceRegister(LiftoffRegList pinned) {
      DCHECK_EQ(no_reg, cached_instance);
      LiftoffRegList available_regs =
          kGpCacheRegList.MaskOut(pinned).MaskOut(used_registers);
      if (available_regs.is_empty()) return no_reg;
      // Prefer the {kWasmInstanceRegister}, because that's where the instance
      // initially is, and where it needs to be for calls.
      Register new_cache_reg = available_regs.has(kWasmInstanceRegister)
                                   ? kWasmInstanceRegister
                                   : available_regs.GetFirstRegSet().gp();
      SetInstanceCacheRegister(new_cache_reg);
      DCHECK_EQ(new_cache_reg, cached_instance);
      return new_cache_reg;
    }

    void ClearCacheRegister(Register* cache) {
      DCHECK(!frozen);
      DCHECK(cache == &cached_instance || cache == &cached_mem_start);
      if (*cache == no_reg) return;
      int liftoff_code = LiftoffRegister{*cache}.liftoff_code();
      DCHECK_EQ(1, register_use_count[liftoff_code]);
      register_use_count[liftoff_code] = 0;
      used_registers.clear(*cache);
      *cache = no_reg;
    }

    void ClearCachedInstanceRegister() { ClearCacheRegister(&cached_instance); }

    void ClearCachedMemStartRegister() {
      ClearCacheRegister(&cached_mem_start);
    }

    void ClearAllCacheRegisters() {
      ClearCacheRegister(&cached_instance);
      ClearCacheRegister(&cached_mem_start);
    }

    void inc_used(LiftoffRegister reg) {
      DCHECK(!frozen);
      if (reg.is_pair()) {
        inc_used(reg.low());
        inc_used(reg.high());
        return;
      }
      used_registers.set(reg);
      DCHECK_GT(kMaxInt, register_use_count[reg.liftoff_code()]);
      ++register_use_count[reg.liftoff_code()];
    }

    // Returns whether this was the last use.
    void dec_used(LiftoffRegister reg) {
      DCHECK(!frozen);
      DCHECK(is_used(reg));
      if (reg.is_pair()) {
        dec_used(reg.low());
        dec_used(reg.high());
        return;
      }
      int code = reg.liftoff_code();
      DCHECK_LT(0, register_use_count[code]);
      if (--register_use_count[code] == 0) used_registers.clear(reg);
    }

    bool is_used(LiftoffRegister reg) const {
      if (reg.is_pair()) return is_used(reg.low()) || is_used(reg.high());
      bool used = used_registers.has(reg);
      DCHECK_EQ(used, register_use_count[reg.liftoff_code()] != 0);
      return used;
    }

    uint32_t get_use_count(LiftoffRegister reg) const {
      if (reg.is_pair()) {
        DCHECK_EQ(register_use_count[reg.low().liftoff_code()],
                  register_use_count[reg.high().liftoff_code()]);
        reg = reg.low();
      }
      DCHECK_GT(arraysize(register_use_count), reg.liftoff_code());
      return register_use_count[reg.liftoff_code()];
    }

    void clear_used(LiftoffRegister reg) {
      DCHECK(!frozen);
      if (reg.is_pair()) {
        clear_used(reg.low());
        clear_used(reg.high());
        return;
      }
      register_use_count[reg.liftoff_code()] = 0;
      used_registers.clear(reg);
    }

    bool is_free(LiftoffRegister reg) const { return !is_used(reg); }

    void reset_used_registers() {
      DCHECK(!frozen);
      used_registers = {};
      memset(register_use_count, 0, sizeof(register_use_count));
    }

    LiftoffRegister GetNextSpillReg(LiftoffRegList candidates) {
      DCHECK(!frozen);
      DCHECK(!candidates.is_empty());
      // This method should only be called if none of the candidates is free.
      DCHECK(candidates.MaskOut(used_registers).is_empty());
      LiftoffRegList unspilled = candidates.MaskOut(last_spilled_regs);
      if (unspilled.is_empty()) {
        unspilled = candidates;
        last_spilled_regs = {};
      }
      LiftoffRegister reg = unspilled.GetFirstRegSet();
      return reg;
    }

    void Steal(CacheState& source);

    void Split(const CacheState& source);

    uint32_t stack_height() const {
      return static_cast<uint32_t>(stack_state.size());
    }

   private:
    // Make the copy assignment operator private (to be used from {Split()}).
    CacheState& operator=(const CacheState&) V8_NOEXCEPT = default;
  };

  explicit LiftoffAssembler(Zone*, std::unique_ptr<AssemblerBuffer>);
  ~LiftoffAssembler() override;

  Zone* zone() const { return cache_state_.stack_state.get_allocator().zone(); }

  // Load a cache slot to a free register.
  V8_INLINE LiftoffRegister LoadToRegister(VarState slot,
                                           LiftoffRegList pinned) {
    if (V8_LIKELY(slot.is_reg())) return slot.reg();
    return LoadToRegister_Slow(slot, pinned);
  }

  // Slow path called for the method above.
  V8_NOINLINE V8_PRESERVE_MOST LiftoffRegister
  LoadToRegister_Slow(VarState slot, LiftoffRegList pinned);

  // Load a non-register cache slot to a given (fixed) register.
  void LoadToFixedRegister(VarState slot, LiftoffRegister reg) {
    DCHECK(slot.is_const() || slot.is_stack());
    if (slot.is_const()) {
      LoadConstant(reg, slot.constant());
    } else {
      Fill(reg, slot.offset(), slot.kind());
    }
  }

  V8_INLINE LiftoffRegister PopToRegister(LiftoffRegList pinned = {}) {
    DCHECK(!cache_state_.stack_state.empty());
    VarState slot = cache_state_.stack_state.back();
    cache_state_.stack_state.pop_back();
    if (V8_LIKELY(slot.is_reg())) {
      cache_state_.dec_used(slot.reg());
      return slot.reg();
    }
    return LoadToRegister(slot, pinned);
  }

  void PopToFixedRegister(LiftoffRegister reg) {
    DCHECK(!cache_state_.stack_state.empty());
    VarState slot = cache_state_.stack_state.back();
    cache_state_.stack_state.pop_back();
    if (V8_LIKELY(slot.is_reg())) {
      cache_state_.dec_used(slot.reg());
      if (slot.reg() == reg) return;
      if (cache_state_.is_used(reg)) SpillRegister(reg);
      Move(reg, slot.reg(), slot.kind());
      return;
    }
    if (cache_state_.is_used(reg)) SpillRegister(reg);
    LoadToFixedRegister(slot, reg);
  }

  // Use this to pop a value into a register that has no other uses, so it
  // can be modified.
  LiftoffRegister PopToModifiableRegister(LiftoffRegList pinned = {}) {
    ValueKind kind = cache_state_.stack_state.back().kind();
    LiftoffRegister reg = PopToRegister(pinned);
    if (cache_state()->is_free(reg) && !pinned.has(reg)) return reg;

    LiftoffRegister new_reg = GetUnusedRegister(reg.reg_class(), pinned);
    // {new_reg} could be equal to {reg}, but it's unused by the stack now.
    // Also, {reg} still holds the previous value, even if it was spilled.
    if (new_reg != reg) Move(new_reg, reg, kind);
    return new_reg;
  }

  // Returns the register which holds the value of stack slot {index}. If the
  // value is not stored in a register yet, a register is allocated for it. The
  // register is then assigned to the stack slot. The value stack height is not
  // modified. The top of the stack is index 0, i.e. {PopToRegister()} and
  // {PeekToRegister(0)} should result in the same register.
  // When the value is finally popped, the use counter of its register has to be
  // decremented. This can be done by popping the value with {DropValues}.
  LiftoffRegister PeekToRegister(int index, LiftoffRegList pinned);

  void DropValues(int count);

  // Drop a specific value from the stack; this is an expensive operation which
  // is currently only used for exceptions.
  // Careful: this indexes "from the other end", i.e. offset=0 is the value at
  // the bottom of the stack.
  void DropExceptionValueAtOffset(int offset);

  // Ensure that the loop inputs are either in a register or spilled to the
  // stack, so that we can merge different values on the back-edge.
  void PrepareLoopArgs(int num);

  V8_INLINE static int NextSpillOffset(ValueKind kind, int top_spill_offset) {
    int offset = top_spill_offset + SlotSizeForType(kind);
    if (NeedsAlignment(kind)) {
      offset = RoundUp(offset, SlotSizeForType(kind));
    }
    return offset;
  }

  int NextSpillOffset(ValueKind kind) {
    return NextSpillOffset(kind, TopSpillOffset());
  }

  int TopSpillOffset() const {
    return cache_state_.stack_state.empty()
               ? StaticStackFrameSize()
               : cache_state_.stack_state.back().offset();
  }

  void PushRegister(ValueKind kind, LiftoffRegister reg) {
    DCHECK_EQ(reg_class_for(kind), reg.reg_class());
    cache_state_.inc_used(reg);
    cache_state_.stack_state.emplace_back(kind, reg, NextSpillOffset(kind));
  }

  // Assumes that the exception is in {kReturnRegister0}. This is where the
  // exception is stored by the unwinder after a throwing call.
  void PushException() {
    LiftoffRegister reg{kReturnRegister0};
    // This is used after a call, so {kReturnRegister0} is not used yet.
    DCHECK(cache_state_.is_free(reg));
    cache_state_.inc_used(reg);
    cache_state_.stack_state.emplace_back(kRef, reg, NextSpillOffset(kRef));
  }

  void PushConstant(ValueKind kind, int32_t i32_const) {
    V8_ASSUME(kind == kI32 || kind == kI64);
    cache_state_.stack_state.emplace_back(kind, i32_const,
                                          NextSpillOffset(kind));
  }

  void PushStack(ValueKind kind) {
    cache_state_.stack_state.emplace_back(kind, NextSpillOffset(kind));
  }

  V8_NOINLINE V8_PRESERVE_MOST void SpillRegister(LiftoffRegister);

  uint32_t GetNumUses(LiftoffRegister reg) const {
    return cache_state_.get_use_count(reg);
  }

  // Get an unused register for class {rc}, reusing one of {try_first} if
  // possible.
  LiftoffRegister GetUnusedRegister(
      RegClass rc, std::initializer_list<LiftoffRegister> try_first,
      LiftoffRegList pinned) {
    DCHECK(!cache_state_.frozen);
    for (LiftoffRegister reg : try_first) {
      DCHECK_EQ(reg.reg_class(), rc);
      if (cache_state_.is_free(reg)) return reg;
    }
    return GetUnusedRegister(rc, pinned);
  }

  // Get an unused register for class {rc}, excluding registers from {pinned},
  // potentially spilling to free one.
  LiftoffRegister GetUnusedRegister(RegClass rc, LiftoffRegList pinned) {
    DCHECK(!cache_state_.frozen);
    if (kNeedI64RegPair && rc == kGpRegPair) {
      LiftoffRegList candidates = kGpCacheRegList.MaskOut(pinned);
      Register low = candidates.clear(GetUnusedRegister(candidates)).gp();
      Register high = GetUnusedRegister(candidates).gp();
      return LiftoffRegister::ForPair(low, high);
    } else if (kNeedS128RegPair && rc == kFpRegPair) {
      // kFpRegPair specific logic here because we need adjacent registers, not
      // just any two registers (like kGpRegPair).
      if (cache_state_.has_unused_register(rc, pinned)) {
        return cache_state_.unused_register(rc, pinned);
      }
      DoubleRegister low_fp = SpillAdjacentFpRegisters(pinned).fp();
      return LiftoffRegister::ForFpPair(low_fp);
    }
    LiftoffRegList candidates = GetCacheRegList(rc).MaskOut(pinned);
    return GetUnusedRegister(candidates);
  }

  // Get an unused register of {candidates}, potentially spilling to free one.
  LiftoffRegister GetUnusedRegister(LiftoffRegList candidates) {
    DCHECK(!cache_state_.frozen);
    DCHECK(!candidates.is_empty());
    if (V8_LIKELY(cache_state_.has_unused_register(candidates))) {
      return cache_state_.unused_register(candidates);
    }
    return SpillOneRegister(candidates);
  }

  // Performs operations on locals and the top {arity} value stack entries
  // that would (very likely) have to be done by branches. Doing this up front
  // avoids making each subsequent (conditional) branch repeat this work.
  void PrepareForBranch(uint32_t arity, LiftoffRegList pinned);

  // These methods handle control-flow merges. {MergeIntoNewState} is used to
  // generate a new {CacheState} for a merge point, and also emits code to
  // transfer values from the current state to the new merge state.
  // {MergeFullStackWith} and {MergeStackWith} then later generate the code for
  // more merges into an existing state.
  V8_NODISCARD CacheState MergeIntoNewState(uint32_t num_locals, uint32_t arity,
                                            uint32_t stack_depth);
  void MergeFullStackWith(CacheState& target);
  enum JumpDirection { kForwardJump, kBackwardJump };
  void MergeStackWith(CacheState& target, uint32_t arity, JumpDirection);

  void Spill(VarState* slot);
  void SpillLocals();
  void SpillAllRegisters();
  inline void LoadSpillAddress(Register dst, int offset, ValueKind kind);

  // Clear any uses of {reg} in both the cache and in {possible_uses}.
  // Any use in the stack is spilled. If any register in {possible_uses} matches
  // {reg}, then the content of {reg} is moved to a new temporary register, and
  // all matches in {possible_uses} are rewritten to that temporary register.
  void ClearRegister(Register reg,
                     std::initializer_list<Register*> possible_uses,
                     LiftoffRegList pinned);

  // Spills all passed registers.
  template <typename... Regs>
  void SpillRegisters(Regs... regs) {
    for (LiftoffRegister r : {LiftoffRegister(regs)...}) {
      if (cache_state_.is_free(r)) continue;
      if (r.is_gp() && cache_state_.cached_instance == r.gp()) {
        cache_state_.ClearCachedInstanceRegister();
      } else if (r.is_gp() && cache_state_.cached_mem_start == r.gp()) {
        cache_state_.ClearCachedMemStartRegister();
      } else {
        SpillRegister(r);
      }
    }
  }

  // Call this method whenever spilling something, such that the number of used
  // spill slot can be tracked and the stack frame will be allocated big enough.
  void RecordUsedSpillOffset(int offset) {
    if (offset >= max_used_spill_offset_) max_used_spill_offset_ = offset;
  }

  void RecordOolSpillSpaceSize(int size) {
    if (size > ool_spill_space_size_) ool_spill_space_size_ = size;
  }

  // Load parameters into the right registers / stack slots for the call.
  void PrepareBuiltinCall(const ValueKindSig* sig,
                          compiler::CallDescriptor* call_descriptor,
                          std::initializer_list<VarState> params);

  // Load parameters into the right registers / stack slots for the call.
  // Move {*target} into another register if needed and update {*target} to that
  // register, or {no_reg} if target was spilled to the stack.
  void PrepareCall(const ValueKindSig*, compiler::CallDescriptor*,
                   Register* target = nullptr,
                   Register target_instance = no_reg);
  // Process return values of the call.
  void FinishCall(const ValueKindSig*, compiler::CallDescriptor*);

  // Move {src} into {dst}. {src} and {dst} must be different.
  void Move(LiftoffRegister dst, LiftoffRegister src, ValueKind);

  // Parallel register move: For a list of tuples <dst, src, kind>, move the
  // {src} register of kind {kind} into {dst}. If {src} equals {dst}, ignore
  // that tuple.
  struct ParallelRegisterMoveTuple {
    LiftoffRegister dst;
    LiftoffRegister src;
    ValueKind kind;
    template <typename Dst, typename Src>
    ParallelRegisterMoveTuple(Dst dst, Src src, ValueKind kind)
        : dst(dst), src(src), kind(kind) {}
  };

  void ParallelRegisterMove(base::Vector<const ParallelRegisterMoveTuple>);

  void ParallelRegisterMove(
      std::initializer_list<ParallelRegisterMoveTuple> moves) {
    ParallelRegisterMove(base::VectorOf(moves));
  }

  // Move the top stack values into the expected return locations specified by
  // the given call descriptor.
  void MoveToReturnLocations(const FunctionSig*, compiler::CallDescriptor*);
  // Slow path for multi-return, called from {MoveToReturnLocations}.
  V8_NOINLINE V8_PRESERVE_MOST void MoveToReturnLocationsMultiReturn(
      const FunctionSig*, compiler::CallDescriptor*);
#if DEBUG
  void SetCacheStateFrozen() { cache_state_.frozen++; }
  void UnfreezeCacheState() {
    DCHECK_GT(cache_state_.frozen, 0);
    cache_state_.frozen--;
  }
#endif
#ifdef ENABLE_SLOW_DCHECKS
  // Validate that the register use counts reflect the state of the cache.
  bool ValidateCacheState() const;
#endif

  ////////////////////////////////////
  // Platform-specific part.        //
  ////////////////////////////////////

  // This function emits machine code to prepare the stack frame, before the
  // size of the stack frame is known. It returns an offset in the machine code
  // which can later be patched (via {PatchPrepareStackFrame)} when the size of
  // the frame is known.
  inline int PrepareStackFrame();
  inline void CallFrameSetupStub(int declared_function_index);
  inline void PrepareTailCall(int num_callee_stack_params,
                              int stack_param_delta);
  inline void AlignFrameSize();
  inline void PatchPrepareStackFrame(int offset, SafepointTableBuilder*,
                                     bool feedback_vector_slot);
  inline void FinishCode();
  inline void AbortCompilation();
  inline static constexpr int StaticStackFrameSize();
  inline static int SlotSizeForType(ValueKind kind);
  inline static bool NeedsAlignment(ValueKind kind);

  inline void LoadConstant(LiftoffRegister, WasmValue);
  inline void LoadInstanceFromFrame(Register dst);
  inline void LoadFromInstance(Register dst, Register instance, int offset,
                               int size);
  inline void LoadTaggedPointerFromInstance(Register dst, Register instance,
                                            int offset);
  inline void LoadExternalPointer(Register dst, Register instance, int offset,
                                  ExternalPointerTag tag, Register scratch);
  inline void SpillInstance(Register instance);
  inline void ResetOSRTarget();
  inline void LoadTaggedPointer(Register dst, Register src_addr,
                                Register offset_reg, int32_t offset_imm,
                                bool offset_reg_needs_shift = false);
  inline void LoadFullPointer(Register dst, Register src_addr,
                              int32_t offset_imm);
  enum SkipWriteBarrier : bool {
    kSkipWriteBarrier = true,
    kNoSkipWriteBarrier = false
  };
  inline void StoreTaggedPointer(Register dst_addr, Register offset_reg,
                                 int32_t offset_imm, LiftoffRegister src,
                                 LiftoffRegList pinned,
                                 SkipWriteBarrier = kNoSkipWriteBarrier);
  void LoadFixedArrayLengthAsInt32(LiftoffRegister dst, Register array,
                                   LiftoffRegList pinned) {
    int offset = FixedArray::kLengthOffset - kHeapObjectTag;
    LoadSmiAsInt32(dst, array, offset);
  }
  void LoadSmiAsInt32(LiftoffRegister dst, Register src_addr, int32_t offset) {
    if (SmiValuesAre32Bits()) {
#if V8_TARGET_LITTLE_ENDIAN
      DCHECK_EQ(kSmiShiftSize + kSmiTagSize, 4 * kBitsPerByte);
      offset += 4;
#endif
      Load(dst, src_addr, no_reg, offset, LoadType::kI32Load);
    } else {
      DCHECK(SmiValuesAre31Bits());
      Load(dst, src_addr, no_reg, offset, LoadType::kI32Load);
      emit_i32_sari(dst.gp(), dst.gp(), kSmiTagSize);
    }
  }
  // Warning: may clobber {dst} on some architectures!
  inline void IncrementSmi(LiftoffRegister dst, int offset);
  inline void Load(LiftoffRegister dst, Register src_addr, Register offset_reg,
                   uintptr_t offset_imm, LoadType type,
                   uint32_t* protected_load_pc = nullptr,
                   bool is_load_mem = false, bool i64_offset = false,
                   bool needs_shift = false);
  inline void Store(Register dst_addr, Register offset_reg,
                    uintptr_t offset_imm, LiftoffRegister src, StoreType type,
                    LiftoffRegList pinned,
                    uint32_t* protected_store_pc = nullptr,
                    bool is_store_mem = false, bool i64_offset = false);
  inline void AtomicLoad(LiftoffRegister dst, Register src_addr,
                         Register offset_reg, uintptr_t offset_imm,
                         LoadType type, LiftoffRegList pinned, bool i64_offset);
  inline void AtomicStore(Register dst_addr, Register offset_reg,
                          uintptr_t offset_imm, LiftoffRegister src,
                          StoreType type, LiftoffRegList pinned,
                          bool i64_offset);

  inline void AtomicAdd(Register dst_addr, Register offset_reg,
                        uintptr_t offset_imm, LiftoffRegister value,
                        LiftoffRegister result, StoreType type,
                        bool i64_offset);

  inline void AtomicSub(Register dst_addr, Register offset_reg,
                        uintptr_t offset_imm, LiftoffRegister value,
                        LiftoffRegister result, StoreType type,
                        bool i64_offset);

  inline void AtomicAnd(Register dst_addr, Register offset_reg,
                        uintptr_t offset_imm, LiftoffRegister value,
                        LiftoffRegister result, StoreType type,
                        bool i64_offset);

  inline void AtomicOr(Register dst_addr, Register offset_reg,
                       uintptr_t offset_imm, LiftoffRegister value,
                       LiftoffRegister result, StoreType type, bool i64_offset);

  inline void AtomicXor(Register dst_addr, Register offset_reg,
                        uintptr_t offset_imm, LiftoffRegister value,
                        LiftoffRegister result, StoreType type,
                        bool i64_offset);

  inline void AtomicExchange(Register dst_addr, Register offset_reg,
                             uintptr_t offset_imm, LiftoffRegister value,
                             LiftoffRegister result, StoreType type,
                             bool i64_offset);

  inline void AtomicCompareExchange(Register dst_addr, Register offset_reg,
                                    uintptr_t offset_imm,
                                    LiftoffRegister expected,
                                    LiftoffRegister new_value,
                                    LiftoffRegister value, StoreType type,
                                    bool i64_offset);

  inline void AtomicFence();

  inline void LoadCallerFrameSlot(LiftoffRegister, uint32_t caller_slot_idx,
                                  ValueKind);
  inline void StoreCallerFrameSlot(LiftoffRegister, uint32_t caller_slot_idx,
                                   ValueKind);
  inline void LoadReturnStackSlot(LiftoffRegister, int offset, ValueKind);
  inline void MoveStackValue(uint32_t dst_offset, uint32_t src_offset,
                             ValueKind);

  inline void Move(Register dst, Register src, ValueKind);
  inline void Move(DoubleRegister dst, DoubleRegister src, ValueKind);

  inline void Spill(int offset, LiftoffRegister, ValueKind);
  inline void Spill(int offset, WasmValue);
  inline void Fill(LiftoffRegister, int offset, ValueKind);
  // Only used on 32-bit systems: Fill a register from a "half stack slot", i.e.
  // 4 bytes on the stack holding half of a 64-bit value.
  inline void FillI64Half(Register, int offset, RegPairHalf);
  inline void FillStackSlotsWithZero(int start, int size);

  inline void emit_trace_instruction(uint32_t markid);

  // i32 binops.
  inline void emit_i32_add(Register dst, Register lhs, Register rhs);
  inline void emit_i32_addi(Register dst, Register lhs, int32_t imm);
  inline void emit_i32_sub(Register dst, Register lhs, Register rhs);
  inline void emit_i32_subi(Register dst, Register lhs, int32_t imm);
  inline void emit_i32_mul(Register dst, Register lhs, Register rhs);
  inline void emit_i32_divs(Register dst, Register lhs, Register rhs,
                            Label* trap_div_by_zero,
                            Label* trap_div_unrepresentable);
  inline void emit_i32_divu(Register dst, Register lhs, Register rhs,
                            Label* trap_div_by_zero);
  inline void emit_i32_rems(Register dst, Register lhs, Register rhs,
                            Label* trap_rem_by_zero);
  inline void emit_i32_remu(Register dst, Register lhs, Register rhs,
                            Label* trap_rem_by_zero);
  inline void emit_i32_and(Register dst, Register lhs, Register rhs);
  inline void emit_i32_andi(Register dst, Register lhs, int32_t imm);
  inline void emit_i32_or(Register dst, Register lhs, Register rhs);
  inline void emit_i32_ori(Register dst, Register lhs, int32_t imm);
  inline void emit_i32_xor(Register dst, Register lhs, Register rhs);
  inline void emit_i32_xori(Register dst, Register lhs, int32_t imm);
  inline void emit_i32_shl(Register dst, Register src, Register amount);
  inline void emit_i32_shli(Register dst, Register src, int32_t amount);
  inline void emit_i32_sar(Register dst, Register src, Register amount);
  inline void emit_i32_sari(Register dst, Register src, int32_t amount);
  inline void emit_i32_shr(Register dst, Register src, Register amount);
  inline void emit_i32_shri(Register dst, Register src, int32_t amount);

  // i32 unops.
  inline void emit_i32_clz(Register dst, Register src);
  inline void emit_i32_ctz(Register dst, Register src);
  inline bool emit_i32_popcnt(Register dst, Register src);

  // i64 binops.
  inline void emit_i64_add(LiftoffRegister dst, LiftoffRegister lhs,
                           LiftoffRegister rhs);
  inline void emit_i64_addi(LiftoffRegister dst, LiftoffRegister lhs,
                            int64_t imm);
  inline void emit_i64_sub(LiftoffRegister dst, LiftoffRegister lhs,
                           LiftoffRegister rhs);
  inline void emit_i64_mul(LiftoffRegister dst, LiftoffRegister lhs,
                           LiftoffRegister rhs);
  inline bool emit_i64_divs(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs, Label* trap_div_by_zero,
                            Label* trap_div_unrepresentable);
  inline bool emit_i64_divu(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs, Label* trap_div_by_zero);
  inline bool emit_i64_rems(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs, Label* trap_rem_by_zero);
  inline bool emit_i64_remu(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs, Label* trap_rem_by_zero);
  inline void emit_i64_and(LiftoffRegister dst, LiftoffRegister lhs,
                           LiftoffRegister rhs);
  inline void emit_i64_andi(LiftoffRegister dst, LiftoffRegister lhs,
                            int32_t imm);
  inline void emit_i64_or(LiftoffRegister dst, LiftoffRegister lhs,
                          LiftoffRegister rhs);
  inline void emit_i64_ori(LiftoffRegister dst, LiftoffRegister lhs,
                           int32_t imm);
  inline void emit_i64_xor(LiftoffRegister dst, LiftoffRegister lhs,
                           LiftoffRegister rhs);
  inline void emit_i64_xori(LiftoffRegister dst, LiftoffRegister lhs,
                            int32_t imm);
  inline void emit_i64_shl(LiftoffRegister dst, LiftoffRegister src,
                           Register amount);
  inline void emit_i64_shli(LiftoffRegister dst, LiftoffRegister src,
                            int32_t amount);
  inline void emit_i64_sar(LiftoffRegister dst, LiftoffRegister src,
                           Register amount);
  inline void emit_i64_sari(LiftoffRegister dst, LiftoffRegister src,
                            int32_t amount);
  inline void emit_i64_shr(LiftoffRegister dst, LiftoffRegister src,
                           Register amount);
  inline void emit_i64_shri(LiftoffRegister dst, LiftoffRegister src,
                            int32_t amount);

  // i64 unops.
  inline void emit_i64_clz(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i64_ctz(LiftoffRegister dst, LiftoffRegister src);
  inline bool emit_i64_popcnt(LiftoffRegister dst, LiftoffRegister src);

  inline void emit_u32_to_uintptr(Register dst, Register src);

  void emit_ptrsize_add(Register dst, Register lhs, Register rhs) {
    if (kSystemPointerSize == 8) {
      emit_i64_add(LiftoffRegister(dst), LiftoffRegister(lhs),
                   LiftoffRegister(rhs));
    } else {
      emit_i32_add(dst, lhs, rhs);
    }
  }
  void emit_ptrsize_sub(Register dst, Register lhs, Register rhs) {
    if (kSystemPointerSize == 8) {
      emit_i64_sub(LiftoffRegister(dst), LiftoffRegister(lhs),
                   LiftoffRegister(rhs));
    } else {
      emit_i32_sub(dst, lhs, rhs);
    }
  }
  void emit_ptrsize_and(Register dst, Register lhs, Register rhs) {
    if (kSystemPointerSize == 8) {
      emit_i64_and(LiftoffRegister(dst), LiftoffRegister(lhs),
                   LiftoffRegister(rhs));
    } else {
      emit_i32_and(dst, lhs, rhs);
    }
  }
  void emit_ptrsize_shri(Register dst, Register src, int amount) {
    if (kSystemPointerSize == 8) {
      emit_i64_shri(LiftoffRegister(dst), LiftoffRegister(src), amount);
    } else {
      emit_i32_shri(dst, src, amount);
    }
  }

  void emit_ptrsize_addi(Register dst, Register lhs, intptr_t imm) {
    if (kSystemPointerSize == 8) {
      emit_i64_addi(LiftoffRegister(dst), LiftoffRegister(lhs), imm);
    } else {
      emit_i32_addi(dst, lhs, static_cast<int32_t>(imm));
    }
  }

  void emit_ptrsize_set_cond(Condition condition, Register dst,
                             LiftoffRegister lhs, LiftoffRegister rhs) {
    if (kSystemPointerSize == 8) {
      emit_i64_set_cond(condition, dst, lhs, rhs);
    } else {
      emit_i32_set_cond(condition, dst, lhs.gp(), rhs.gp());
    }
  }

  void emit_ptrsize_zeroextend_i32(Register dst, Register src) {
    if (kSystemPointerSize == 8) {
      emit_type_conversion(kExprI64UConvertI32, LiftoffRegister(dst),
                           LiftoffRegister(src));
    } else if (dst != src) {
      Move(dst, src, kI32);
    }
  }

  // f32 binops.
  inline void emit_f32_add(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f32_sub(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f32_mul(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f32_div(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f32_min(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f32_max(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f32_copysign(DoubleRegister dst, DoubleRegister lhs,
                                DoubleRegister rhs);

  // f32 unops.
  inline void emit_f32_abs(DoubleRegister dst, DoubleRegister src);
  inline void emit_f32_neg(DoubleRegister dst, DoubleRegister src);
  inline bool emit_f32_ceil(DoubleRegister dst, DoubleRegister src);
  inline bool emit_f32_floor(DoubleRegister dst, DoubleRegister src);
  inline bool emit_f32_trunc(DoubleRegister dst, DoubleRegister src);
  inline bool emit_f32_nearest_int(DoubleRegister dst, DoubleRegister src);
  inline void emit_f32_sqrt(DoubleRegister dst, DoubleRegister src);

  // f64 binops.
  inline void emit_f64_add(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f64_sub(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f64_mul(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f64_div(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f64_min(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f64_max(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f64_copysign(DoubleRegister dst, DoubleRegister lhs,
                                DoubleRegister rhs);

  // f64 unops.
  inline void emit_f64_abs(DoubleRegister dst, DoubleRegister src);
  inline void emit_f64_neg(DoubleRegister dst, DoubleRegister src);
  inline bool emit_f64_ceil(DoubleRegister dst, DoubleRegister src);
  inline bool emit_f64_floor(DoubleRegister dst, DoubleRegister src);
  inline bool emit_f64_trunc(DoubleRegister dst, DoubleRegister src);
  inline bool emit_f64_nearest_int(DoubleRegister dst, DoubleRegister src);
  inline void emit_f64_sqrt(DoubleRegister dst, DoubleRegister src);

  inline bool emit_type_conversion(WasmOpcode opcode, LiftoffRegister dst,
                                   LiftoffRegister src, Label* trap = nullptr);

  inline void emit_i32_signextend_i8(Register dst, Register src);
  inline void emit_i32_signextend_i16(Register dst, Register src);
  inline void emit_i64_signextend_i8(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i64_signextend_i16(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i64_signextend_i32(LiftoffRegister dst, LiftoffRegister src);

  inline void emit_jump(Label*);
  inline void emit_jump(Register);

  inline void emit_cond_jump(Condition, Label*, ValueKind value, Register lhs,
                             Register rhs, const FreezeCacheState& frozen);
  inline void emit_i32_cond_jumpi(Condition, Label*, Register lhs, int imm,
                                  const FreezeCacheState& frozen);
  inline void emit_i32_subi_jump_negative(Register value, int subtrahend,
                                          Label* result_negative,
                                          const FreezeCacheState& frozen);
  // Set {dst} to 1 if condition holds, 0 otherwise.
  inline void emit_i32_eqz(Register dst, Register src);
  inline void emit_i32_set_cond(Condition, Register dst, Register lhs,
                                Register rhs);
  inline void emit_i64_eqz(Register dst, LiftoffRegister src);
  inline void emit_i64_set_cond(Condition condition, Register dst,
                                LiftoffRegister lhs, LiftoffRegister rhs);
  inline void emit_f32_set_cond(Condition condition, Register dst,
                                DoubleRegister lhs, DoubleRegister rhs);
  inline void emit_f64_set_cond(Condition condition, Register dst,
                                DoubleRegister lhs, DoubleRegister rhs);

  // Optional select support: Returns false if generic code (via branches)
  // should be emitted instead.
  inline bool emit_select(LiftoffRegister dst, Register condition,
                          LiftoffRegister true_value,
                          LiftoffRegister false_value, ValueKind kind);

  enum SmiCheckMode { kJumpOnSmi, kJumpOnNotSmi };
  inline void emit_smi_check(Register obj, Label* target, SmiCheckMode mode,
                             const FreezeCacheState& frozen);

  inline void LoadTransform(LiftoffRegister dst, Register src_addr,
                            Register offset_reg, uintptr_t offset_imm,
                            LoadType type, LoadTransformationKind transform,
                            uint32_t* protected_load_pc);
  inline void LoadLane(LiftoffRegister dst, LiftoffRegister src, Register addr,
                       Register offset_reg, uintptr_t offset_imm, LoadType type,
                       uint8_t lane, uint32_t* protected_load_pc,
                       bool i64_offset);
  inline void StoreLane(Register dst, Register offset, uintptr_t offset_imm,
                        LiftoffRegister src, StoreType type, uint8_t lane,
                        uint32_t* protected_store_pc, bool i64_offset);
  inline void emit_i8x16_shuffle(LiftoffRegister dst, LiftoffRegister lhs,
                                 LiftoffRegister rhs, const uint8_t shuffle[16],
                                 bool is_swizzle);
  inline void emit_i8x16_swizzle(LiftoffRegister dst, LiftoffRegister lhs,
                                 LiftoffRegister rhs);
  inline void emit_i8x16_relaxed_swizzle(LiftoffRegister dst,
                                         LiftoffRegister lhs,
                                         LiftoffRegister rhs);
  inline void emit_i32x4_relaxed_trunc_f32x4_s(LiftoffRegister dst,
                                               LiftoffRegister src);
  inline void emit_i32x4_relaxed_trunc_f32x4_u(LiftoffRegister dst,
                                               LiftoffRegister src);
  inline void emit_i32x4_relaxed_trunc_f64x2_s_zero(LiftoffRegister dst,
                                                    LiftoffRegister src);
  inline void emit_i32x4_relaxed_trunc_f64x2_u_zero(LiftoffRegister dst,
                                                    LiftoffRegister src);
  inline void emit_s128_relaxed_laneselect(LiftoffRegister dst,
                                           LiftoffRegister src1,
                                           LiftoffRegister src2,
                                           LiftoffRegister mask);
  inline void emit_i8x16_popcnt(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i8x16_splat(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i16x8_splat(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i32x4_splat(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i64x2_splat(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_f32x4_splat(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_f64x2_splat(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i8x16_eq(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_i8x16_ne(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_i8x16_gt_s(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i8x16_gt_u(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i8x16_ge_s(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i8x16_ge_u(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i16x8_eq(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_i16x8_ne(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_i16x8_gt_s(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i16x8_gt_u(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i16x8_ge_s(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i16x8_ge_u(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i32x4_eq(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_i32x4_ne(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_i32x4_gt_s(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i32x4_gt_u(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i32x4_ge_s(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i32x4_ge_u(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i64x2_eq(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_i64x2_ne(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_i64x2_gt_s(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_i64x2_ge_s(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_f32x4_eq(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_f32x4_ne(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_f32x4_lt(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_f32x4_le(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_f64x2_eq(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_f64x2_ne(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_f64x2_lt(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_f64x2_le(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_s128_const(LiftoffRegister dst, const uint8_t imms[16]);
  inline void emit_s128_not(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_s128_and(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_s128_or(LiftoffRegister dst, LiftoffRegister lhs,
                           LiftoffRegister rhs);
  inline void emit_s128_xor(LiftoffRegister dst, LiftoffRegister lhs,
                            LiftoffRegister rhs);
  inline void emit_s128_select(LiftoffRegister dst, LiftoffRegister src1,
                               LiftoffRegister src2, LiftoffRegister mask);
  inline void emit_i8x16_neg(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_v128_anytrue(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i8x16_alltrue(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i8x16_bitmask(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i8x16_shl(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i8x16_shli(LiftoffRegister dst, LiftoffRegister lhs,
                              int32_t rhs);
  inline void emit_i8x16_shr_s(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i8x16_shri_s(LiftoffRegister dst, LiftoffRegister lhs,
                                int32_t rhs);
  inline void emit_i8x16_shr_u(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i8x16_shri_u(LiftoffRegister dst, LiftoffRegister lhs,
                                int32_t rhs);
  inline void emit_i8x16_add(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i8x16_add_sat_s(LiftoffRegister dst, LiftoffRegister lhs,
                                   LiftoffRegister rhs);
  inline void emit_i8x16_add_sat_u(LiftoffRegister dst, LiftoffRegister lhs,
                                   LiftoffRegister rhs);
  inline void emit_i8x16_sub(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i8x16_sub_sat_s(LiftoffRegister dst, LiftoffRegister lhs,
                                   LiftoffRegister rhs);
  inline void emit_i8x16_sub_sat_u(LiftoffRegister dst, LiftoffRegister lhs,
                                   LiftoffRegister rhs);
  inline void emit_i8x16_min_s(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i8x16_min_u(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i8x16_max_s(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i8x16_max_u(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i16x8_neg(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i16x8_alltrue(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i16x8_bitmask(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i16x8_shl(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i16x8_shli(LiftoffRegister dst, LiftoffRegister lhs,
                              int32_t rhs);
  inline void emit_i16x8_shr_s(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i16x8_shri_s(LiftoffRegister dst, LiftoffRegister lhs,
                                int32_t rhs);
  inline void emit_i16x8_shr_u(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i16x8_shri_u(LiftoffRegister dst, LiftoffRegister lhs,
                                int32_t rhs);
  inline void emit_i16x8_add(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i16x8_add_sat_s(LiftoffRegister dst, LiftoffRegister lhs,
                                   LiftoffRegister rhs);
  inline void emit_i16x8_add_sat_u(LiftoffRegister dst, LiftoffRegister lhs,
                                   LiftoffRegister rhs);
  inline void emit_i16x8_sub(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i16x8_sub_sat_s(LiftoffRegister dst, LiftoffRegister lhs,
                                   LiftoffRegister rhs);
  inline void emit_i16x8_sub_sat_u(LiftoffRegister dst, LiftoffRegister lhs,
                                   LiftoffRegister rhs);
  inline void emit_i16x8_mul(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i16x8_min_s(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i16x8_min_u(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i16x8_max_s(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i16x8_max_u(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i16x8_extadd_pairwise_i8x16_s(LiftoffRegister dst,
                                                 LiftoffRegister src);
  inline void emit_i16x8_extadd_pairwise_i8x16_u(LiftoffRegister dst,
                                                 LiftoffRegister src);
  inline void emit_i16x8_extmul_low_i8x16_s(LiftoffRegister dst,
                                            LiftoffRegister src1,
                                            LiftoffRegister src2);
  inline void emit_i16x8_extmul_low_i8x16_u(LiftoffRegister dst,
                                            LiftoffRegister src1,
                                            LiftoffRegister src2);
  inline void emit_i16x8_extmul_high_i8x16_s(LiftoffRegister dst,
                                             LiftoffRegister src1,
                                             LiftoffRegister src2);
  inline void emit_i16x8_extmul_high_i8x16_u(LiftoffRegister dst,
                                             LiftoffRegister src1,
                                             LiftoffRegister src2);
  inline void emit_i16x8_q15mulr_sat_s(LiftoffRegister dst,
                                       LiftoffRegister src1,
                                       LiftoffRegister src2);
  inline void emit_i16x8_relaxed_q15mulr_s(LiftoffRegister dst,
                                           LiftoffRegister src1,
                                           LiftoffRegister src2);
  inline void emit_i16x8_dot_i8x16_i7x16_s(LiftoffRegister dst,
                                           LiftoffRegister src1,
                                           LiftoffRegister src2);
  inline void emit_i32x4_dot_i8x16_i7x16_add_s(LiftoffRegister dst,
                                               LiftoffRegister src1,
                                               LiftoffRegister src2,
                                               LiftoffRegister acc);
  inline void emit_i32x4_neg(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i32x4_alltrue(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i32x4_bitmask(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i32x4_shl(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i32x4_shli(LiftoffRegister dst, LiftoffRegister lhs,
                              int32_t rhs);
  inline void emit_i32x4_shr_s(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i32x4_shri_s(LiftoffRegister dst, LiftoffRegister lhs,
                                int32_t rhs);
  inline void emit_i32x4_shr_u(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i32x4_shri_u(LiftoffRegister dst, LiftoffRegister lhs,
                                int32_t rhs);
  inline void emit_i32x4_add(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i32x4_sub(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i32x4_mul(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i32x4_min_s(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i32x4_min_u(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i32x4_max_s(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i32x4_max_u(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i32x4_dot_i16x8_s(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs);
  inline void emit_i32x4_extadd_pairwise_i16x8_s(LiftoffRegister dst,
                                                 LiftoffRegister src);
  inline void emit_i32x4_extadd_pairwise_i16x8_u(LiftoffRegister dst,
                                                 LiftoffRegister src);
  inline void emit_i32x4_extmul_low_i16x8_s(LiftoffRegister dst,
                                            LiftoffRegister src1,
                                            LiftoffRegister src2);
  inline void emit_i32x4_extmul_low_i16x8_u(LiftoffRegister dst,
                                            LiftoffRegister src1,
                                            LiftoffRegister src2);
  inline void emit_i32x4_extmul_high_i16x8_s(LiftoffRegister dst,
                                             LiftoffRegister src1,
                                             LiftoffRegister src2);
  inline void emit_i32x4_extmul_high_i16x8_u(LiftoffRegister dst,
                                             LiftoffRegister src1,
                                             LiftoffRegister src2);
  inline void emit_i64x2_neg(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i64x2_alltrue(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i64x2_shl(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i64x2_shli(LiftoffRegister dst, LiftoffRegister lhs,
                              int32_t rhs);
  inline void emit_i64x2_shr_s(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i64x2_shri_s(LiftoffRegister dst, LiftoffRegister lhs,
                                int32_t rhs);
  inline void emit_i64x2_shr_u(LiftoffRegister dst, LiftoffRegister lhs,
                               LiftoffRegister rhs);
  inline void emit_i64x2_shri_u(LiftoffRegister dst, LiftoffRegister lhs,
                                int32_t rhs);
  inline void emit_i64x2_add(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i64x2_sub(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i64x2_mul(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_i64x2_extmul_low_i32x4_s(LiftoffRegister dst,
                                            LiftoffRegister src1,
                                            LiftoffRegister src2);
  inline void emit_i64x2_extmul_low_i32x4_u(LiftoffRegister dst,
                                            LiftoffRegister src1,
                                            LiftoffRegister src2);
  inline void emit_i64x2_extmul_high_i32x4_s(LiftoffRegister dst,
                                             LiftoffRegister src1,
                                             LiftoffRegister src2);
  inline void emit_i64x2_extmul_high_i32x4_u(LiftoffRegister dst,
                                             LiftoffRegister src1,
                                             LiftoffRegister src2);
  inline void emit_i64x2_bitmask(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i64x2_sconvert_i32x4_low(LiftoffRegister dst,
                                            LiftoffRegister src);
  inline void emit_i64x2_sconvert_i32x4_high(LiftoffRegister dst,
                                             LiftoffRegister src);
  inline void emit_i64x2_uconvert_i32x4_low(LiftoffRegister dst,
                                            LiftoffRegister src);
  inline void emit_i64x2_uconvert_i32x4_high(LiftoffRegister dst,
                                             LiftoffRegister src);
  inline void emit_f32x4_abs(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_f32x4_neg(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_f32x4_sqrt(LiftoffRegister dst, LiftoffRegister src);
  inline bool emit_f32x4_ceil(LiftoffRegister dst, LiftoffRegister src);
  inline bool emit_f32x4_floor(LiftoffRegister dst, LiftoffRegister src);
  inline bool emit_f32x4_trunc(LiftoffRegister dst, LiftoffRegister src);
  inline bool emit_f32x4_nearest_int(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_f32x4_add(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f32x4_sub(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f32x4_mul(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f32x4_div(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f32x4_min(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f32x4_max(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f32x4_pmin(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_f32x4_pmax(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_f32x4_relaxed_min(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs);
  inline void emit_f32x4_relaxed_max(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs);
  inline void emit_f64x2_abs(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_f64x2_neg(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_f64x2_sqrt(LiftoffRegister dst, LiftoffRegister src);
  inline bool emit_f64x2_ceil(LiftoffRegister dst, LiftoffRegister src);
  inline bool emit_f64x2_floor(LiftoffRegister dst, LiftoffRegister src);
  inline bool emit_f64x2_trunc(LiftoffRegister dst, LiftoffRegister src);
  inline bool emit_f64x2_nearest_int(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_f64x2_add(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f64x2_sub(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f64x2_mul(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f64x2_div(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f64x2_min(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f64x2_max(LiftoffRegister dst, LiftoffRegister lhs,
                             LiftoffRegister rhs);
  inline void emit_f64x2_pmin(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_f64x2_pmax(LiftoffRegister dst, LiftoffRegister lhs,
                              LiftoffRegister rhs);
  inline void emit_f64x2_relaxed_min(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs);
  inline void emit_f64x2_relaxed_max(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs);
  inline void emit_f64x2_convert_low_i32x4_s(LiftoffRegister dst,
                                             LiftoffRegister src);
  inline void emit_f64x2_convert_low_i32x4_u(LiftoffRegister dst,
                                             LiftoffRegister src);
  inline void emit_i32x4_trunc_sat_f64x2_s_zero(LiftoffRegister dst,
                                                LiftoffRegister src);
  inline void emit_i32x4_trunc_sat_f64x2_u_zero(LiftoffRegister dst,
                                                LiftoffRegister src);
  inline void emit_f32x4_demote_f64x2_zero(LiftoffRegister dst,
                                           LiftoffRegister src);
  inline void emit_f64x2_promote_low_f32x4(LiftoffRegister dst,
                                           LiftoffRegister src);
  inline void emit_i32x4_sconvert_f32x4(LiftoffRegister dst,
                                        LiftoffRegister src);
  inline void emit_i32x4_uconvert_f32x4(LiftoffRegister dst,
                                        LiftoffRegister src);
  inline void emit_f32x4_sconvert_i32x4(LiftoffRegister dst,
                                        LiftoffRegister src);
  inline void emit_f32x4_uconvert_i32x4(LiftoffRegister dst,
                                        LiftoffRegister src);
  inline void emit_i8x16_sconvert_i16x8(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs);
  inline void emit_i8x16_uconvert_i16x8(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs);
  inline void emit_i16x8_sconvert_i32x4(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs);
  inline void emit_i16x8_uconvert_i32x4(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs);
  inline void emit_i16x8_sconvert_i8x16_low(LiftoffRegister dst,
                                            LiftoffRegister src);
  inline void emit_i16x8_sconvert_i8x16_high(LiftoffRegister dst,
                                             LiftoffRegister src);
  inline void emit_i16x8_uconvert_i8x16_low(LiftoffRegister dst,
                                            LiftoffRegister src);
  inline void emit_i16x8_uconvert_i8x16_high(LiftoffRegister dst,
                                             LiftoffRegister src);
  inline void emit_i32x4_sconvert_i16x8_low(LiftoffRegister dst,
                                            LiftoffRegister src);
  inline void emit_i32x4_sconvert_i16x8_high(LiftoffRegister dst,
                                             LiftoffRegister src);
  inline void emit_i32x4_uconvert_i16x8_low(LiftoffRegister dst,
                                            LiftoffRegister src);
  inline void emit_i32x4_uconvert_i16x8_high(LiftoffRegister dst,
                                             LiftoffRegister src);
  inline void emit_s128_and_not(LiftoffRegister dst, LiftoffRegister lhs,
                                LiftoffRegister rhs);
  inline void emit_i8x16_rounding_average_u(LiftoffRegister dst,
                                            LiftoffRegister lhs,
                                            LiftoffRegister rhs);
  inline void emit_i16x8_rounding_average_u(LiftoffRegister dst,
                                            LiftoffRegister lhs,
                                            LiftoffRegister rhs);
  inline void emit_i8x16_abs(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i16x8_abs(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i32x4_abs(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i64x2_abs(LiftoffRegister dst, LiftoffRegister src);
  inline void emit_i8x16_extract_lane_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        uint8_t imm_lane_idx);
  inline void emit_i8x16_extract_lane_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        uint8_t imm_lane_idx);
  inline void emit_i16x8_extract_lane_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        uint8_t imm_lane_idx);
  inline void emit_i16x8_extract_lane_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        uint8_t imm_lane_idx);
  inline void emit_i32x4_extract_lane(LiftoffRegister dst, LiftoffRegister lhs,
                                      uint8_t imm_lane_idx);
  inline void emit_i64x2_extract_lane(LiftoffRegister dst, LiftoffRegister lhs,
                                      uint8_t imm_lane_idx);
  inline void emit_f32x4_extract_lane(LiftoffRegister dst, LiftoffRegister lhs,
                                      uint8_t imm_lane_idx);
  inline void emit_f64x2_extract_lane(LiftoffRegister dst, LiftoffRegister lhs,
                                      uint8_t imm_lane_idx);
  inline void emit_i8x16_replace_lane(LiftoffRegister dst, LiftoffRegister src1,
                                      LiftoffRegister src2,
                                      uint8_t imm_lane_idx);
  inline void emit_i16x8_replace_lane(LiftoffRegister dst, LiftoffRegister src1,
                                      LiftoffRegister src2,
                                      uint8_t imm_lane_idx);
  inline void emit_i32x4_replace_lane(LiftoffRegister dst, LiftoffRegister src1,
                                      LiftoffRegister src2,
                                      uint8_t imm_lane_idx);
  inline void emit_i64x2_replace_lane(LiftoffRegister dst, LiftoffRegister src1,
                                      LiftoffRegister src2,
                                      uint8_t imm_lane_idx);
  inline void emit_f32x4_replace_lane(LiftoffRegister dst, LiftoffRegister src1,
                                      LiftoffRegister src2,
                                      uint8_t imm_lane_idx);
  inline void emit_f64x2_replace_lane(LiftoffRegister dst, LiftoffRegister src1,
                                      LiftoffRegister src2,
                                      uint8_t imm_lane_idx);
  inline void emit_f32x4_qfma(LiftoffRegister dst, LiftoffRegister src1,
                              LiftoffRegister src2, LiftoffRegister src3);
  inline void emit_f32x4_qfms(LiftoffRegister dst, LiftoffRegister src1,
                              LiftoffRegister src2, LiftoffRegister src3);
  inline void emit_f64x2_qfma(LiftoffRegister dst, LiftoffRegister src1,
                              LiftoffRegister src2, LiftoffRegister src3);
  inline void emit_f64x2_qfms(LiftoffRegister dst, LiftoffRegister src1,
                              LiftoffRegister src2, LiftoffRegister src3);

  inline void StackCheck(Label* ool_code, Register limit_address);

  inline void CallTrapCallbackForTesting();

  inline void AssertUnreachable(AbortReason reason);

  inline void PushRegisters(LiftoffRegList);
  inline void PopRegisters(LiftoffRegList);

  inline void RecordSpillsInSafepoint(
      SafepointTableBuilder::Safepoint& safepoint, LiftoffRegList all_spills,
      LiftoffRegList ref_spills, int spill_offset);

  inline void DropStackSlotsAndRet(uint32_t num_stack_slots);

  // Execute a C call. Arguments are pushed to the stack and a pointer to this
  // region is passed to the C function. If {out_argument_kind != kVoid},
  // this is the return value of the C function, stored in {rets[0]}. Further
  // outputs (specified in {sig->returns()}) are read from the buffer and stored
  // in the remaining {rets} registers.
  inline void CallC(const ValueKindSig* sig, const LiftoffRegister* args,
                    const LiftoffRegister* rets, ValueKind out_argument_kind,
                    int stack_bytes, ExternalReference ext_ref);

  inline void CallNativeWasmCode(Address addr);
  inline void TailCallNativeWasmCode(Address addr);
  // Indirect call: If {target == no_reg}, then pop the target from the stack.
  inline void CallIndirect(const ValueKindSig* sig,
                           compiler::CallDescriptor* call_descriptor,
                           Register target);
  inline void TailCallIndirect(Register target);
  inline void CallRuntimeStub(WasmCode::RuntimeStubId sid);

  // Reserve space in the current frame, store address to space in {addr}.
  inline void AllocateStackSlot(Register addr, uint32_t size);
  inline void DeallocateStackSlot(uint32_t size);

  // Instrumentation for shadow-stack-compatible OSR on x64.
  inline void MaybeOSR();

  // Set the i32 at address dst to a non-zero value if src is a NaN.
  inline void emit_set_if_nan(Register dst, DoubleRegister src, ValueKind kind);

  // Set the i32 at address dst to a non-zero value if src contains a NaN.
  inline void emit_s128_set_if_nan(Register dst, LiftoffRegister src,
                                   Register tmp_gp, LiftoffRegister tmp_s128,
                                   ValueKind lane_kind);

  ////////////////////////////////////
  // End of platform-specific part. //
  ////////////////////////////////////

  uint32_t num_locals() const { return num_locals_; }
  void set_num_locals(uint32_t num_locals);

  int GetTotalFrameSlotCountForGC() const;

  int GetTotalFrameSize() const { return max_used_spill_offset_; }

  ValueKind local_kind(uint32_t index) {
    DCHECK_GT(num_locals_, index);
    ValueKind* locals =
        num_locals_ <= kInlineLocalKinds ? local_kinds_ : more_local_kinds_;
    return locals[index];
  }

  void set_local_kind(uint32_t index, ValueKind kind) {
    ValueKind* locals =
        num_locals_ <= kInlineLocalKinds ? local_kinds_ : more_local_kinds_;
    locals[index] = kind;
  }

  CacheState* cache_state() { return &cache_state_; }
  const CacheState* cache_state() const { return &cache_state_; }

  bool did_bailout() { return bailout_reason_ != kSuccess; }
  LiftoffBailoutReason bailout_reason() const { return bailout_reason_; }
  const char* bailout_detail() const { return bailout_detail_; }

  void bailout(LiftoffBailoutReason reason, const char* detail) {
    DCHECK_NE(kSuccess, reason);
    if (bailout_reason_ != kSuccess) return;
    AbortCompilation();
    bailout_reason_ = reason;
    bailout_detail_ = detail;
  }

 private:
  LiftoffRegister LoadI64HalfIntoRegister(VarState slot, RegPairHalf half);

  // Spill one of the candidate registers.
  V8_NOINLINE V8_PRESERVE_MOST LiftoffRegister
  SpillOneRegister(LiftoffRegList candidates);
  // Spill one or two fp registers to get a pair of adjacent fp registers.
  LiftoffRegister SpillAdjacentFpRegisters(LiftoffRegList pinned);

  uint32_t num_locals_ = 0;
  static constexpr uint32_t kInlineLocalKinds = 16;
  union {
    ValueKind local_kinds_[kInlineLocalKinds];
    ValueKind* more_local_kinds_;
  };
  static_assert(sizeof(ValueKind) == 1,
                "Reconsider this inlining if ValueKind gets bigger");
  CacheState cache_state_;
  // The maximum spill offset for slots in the value stack.
  int max_used_spill_offset_ = StaticStackFrameSize();
  // The amount of memory needed for register spills in OOL code.
  int ool_spill_space_size_ = 0;
  LiftoffBailoutReason bailout_reason_ = kSuccess;
  const char* bailout_detail_ = nullptr;
};

std::ostream& operator<<(std::ostream& os, LiftoffAssembler::VarState);

#if DEBUG
inline FreezeCacheState::FreezeCacheState(LiftoffAssembler& assm)
    : assm_(assm) {
  assm.SetCacheStateFrozen();
}
inline FreezeCacheState::~FreezeCacheState() { assm_.UnfreezeCacheState(); }
#endif

// =======================================================================
// Partially platform-independent implementations of the platform-dependent
// part.

#ifdef V8_TARGET_ARCH_32_BIT

namespace liftoff {
template <void (LiftoffAssembler::*op)(Register, Register, Register)>
void EmitI64IndependentHalfOperation(LiftoffAssembler* assm,
                                     LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  // If {dst.low_gp()} does not overlap with {lhs.high_gp()} or {rhs.high_gp()},
  // just first compute the lower half, then the upper half.
  if (dst.low() != lhs.high() && dst.low() != rhs.high()) {
    (assm->*op)(dst.low_gp(), lhs.low_gp(), rhs.low_gp());
    (assm->*op)(dst.high_gp(), lhs.high_gp(), rhs.high_gp());
    return;
  }
  // If {dst.high_gp()} does not overlap with {lhs.low_gp()} or {rhs.low_gp()},
  // we can compute this the other way around.
  if (dst.high() != lhs.low() && dst.high() != rhs.low()) {
    (assm->*op)(dst.high_gp(), lhs.high_gp(), rhs.high_gp());
    (assm->*op)(dst.low_gp(), lhs.low_gp(), rhs.low_gp());
    return;
  }
  // Otherwise, we need a temporary register.
  Register tmp = assm->GetUnusedRegister(kGpReg, LiftoffRegList{lhs, rhs}).gp();
  (assm->*op)(tmp, lhs.low_gp(), rhs.low_gp());
  (assm->*op)(dst.high_gp(), lhs.high_gp(), rhs.high_gp());
  assm->Move(dst.low_gp(), tmp, kI32);
}

template <void (LiftoffAssembler::*op)(Register, Register, int32_t)>
void EmitI64IndependentHalfOperationImm(LiftoffAssembler* assm,
                                        LiftoffRegister dst,
                                        LiftoffRegister lhs, int64_t imm) {
  int32_t low_word = static_cast<int32_t>(imm);
  int32_t high_word = static_cast<int32_t>(imm >> 32);
  // If {dst.low_gp()} does not overlap with {lhs.high_gp()},
  // just first compute the lower half, then the upper half.
  if (dst.low() != lhs.high()) {
    (assm->*op)(dst.low_gp(), lhs.low_gp(), low_word);
    (assm->*op)(dst.high_gp(), lhs.high_gp(), high_word);
    return;
  }
  // If {dst.high_gp()} does not overlap with {lhs.low_gp()},
  // we can compute this the other way around.
  if (dst.high() != lhs.low()) {
    (assm->*op)(dst.high_gp(), lhs.high_gp(), high_word);
    (assm->*op)(dst.low_gp(), lhs.low_gp(), low_word);
    return;
  }
  // Otherwise, we need a temporary register.
  Register tmp = assm->GetUnusedRegister(kGpReg, LiftoffRegList{lhs}).gp();
  (assm->*op)(tmp, lhs.low_gp(), low_word);
  (assm->*op)(dst.high_gp(), lhs.high_gp(), high_word);
  assm->Move(dst.low_gp(), tmp, kI32);
}
}  // namespace liftoff

void LiftoffAssembler::emit_i64_and(LiftoffRegister dst, LiftoffRegister lhs,
                                    LiftoffRegister rhs) {
  liftoff::EmitI64IndependentHalfOperation<&LiftoffAssembler::emit_i32_and>(
      this, dst, lhs, rhs);
}

void LiftoffAssembler::emit_i64_andi(LiftoffRegister dst, LiftoffRegister lhs,
                                     int32_t imm) {
  liftoff::EmitI64IndependentHalfOperationImm<&LiftoffAssembler::emit_i32_andi>(
      this, dst, lhs, imm);
}

void LiftoffAssembler::emit_i64_or(LiftoffRegister dst, LiftoffRegister lhs,
                                   LiftoffRegister rhs) {
  liftoff::EmitI64IndependentHalfOperation<&LiftoffAssembler::emit_i32_or>(
      this, dst, lhs, rhs);
}

void LiftoffAssembler::emit_i64_ori(LiftoffRegister dst, LiftoffRegister lhs,
                                    int32_t imm) {
  liftoff::EmitI64IndependentHalfOperationImm<&LiftoffAssembler::emit_i32_ori>(
      this, dst, lhs, imm);
}

void LiftoffAssembler::emit_i64_xor(LiftoffRegister dst, LiftoffRegister lhs,
                                    LiftoffRegister rhs) {
  liftoff::EmitI64IndependentHalfOperation<&LiftoffAssembler::emit_i32_xor>(
      this, dst, lhs, rhs);
}

void LiftoffAssembler::emit_i64_xori(LiftoffRegister dst, LiftoffRegister lhs,
                                     int32_t imm) {
  liftoff::EmitI64IndependentHalfOperationImm<&LiftoffAssembler::emit_i32_xori>(
      this, dst, lhs, imm);
}

void LiftoffAssembler::emit_u32_to_uintptr(Register dst, Register src) {
  // This is a no-op on 32-bit systems.
}

#endif  // V8_TARGET_ARCH_32_BIT

// End of the partially platform-independent implementations of the
// platform-dependent part.
// =======================================================================

class LiftoffStackSlots {
 public:
  explicit LiftoffStackSlots(LiftoffAssembler* wasm_asm) : asm_(wasm_asm) {}
  LiftoffStackSlots(const LiftoffStackSlots&) = delete;
  LiftoffStackSlots& operator=(const LiftoffStackSlots&) = delete;

  void Add(const LiftoffAssembler::VarState& src, uint32_t src_offset,
           RegPairHalf half, int dst_slot) {
    DCHECK_LE(0, dst_slot);
    slots_.emplace_back(src, src_offset, half, dst_slot);
  }

  void Add(const LiftoffAssembler::VarState& src, int dst_slot) {
    DCHECK_LE(0, dst_slot);
    slots_.emplace_back(src, dst_slot);
  }

  void SortInPushOrder() {
    std::sort(slots_.begin(), slots_.end(), [](const Slot& a, const Slot& b) {
      return a.dst_slot_ > b.dst_slot_;
    });
  }

  inline void Construct(int param_slots);

 private:
  // A logical slot, which may occupy multiple stack slots.
  struct Slot {
    Slot(const LiftoffAssembler::VarState& src, uint32_t src_offset,
         RegPairHalf half, int dst_slot)
        : src_(src),
          src_offset_(src_offset),
          half_(half),
          dst_slot_(dst_slot) {}
    Slot(const LiftoffAssembler::VarState& src, int dst_slot)
        : src_(src), half_(kLowWord), dst_slot_(dst_slot) {}

    LiftoffAssembler::VarState src_;
    uint32_t src_offset_ = 0;
    RegPairHalf half_;
    int dst_slot_ = 0;
  };

  // Returns the size in bytes of the given logical slot.
  static int SlotSizeInBytes(const Slot& slot) {
    const ValueKind kind = slot.src_.kind();
    if (kind == kS128) return kSimd128Size;
    if (kind == kF64) return kDoubleSize;
    return kSystemPointerSize;
  }

  base::SmallVector<Slot, 8> slots_;
  LiftoffAssembler* const asm_;
};

#if DEBUG
bool CompatibleStackSlotTypes(ValueKind a, ValueKind b);
#endif

}  // namespace wasm
}  // namespace internal
}  // namespace v8

// Include platform specific implementation.
#if V8_TARGET_ARCH_IA32
#include "src/wasm/baseline/ia32/liftoff-assembler-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "src/wasm/baseline/x64/liftoff-assembler-x64.h"
#elif V8_TARGET_ARCH_ARM64
#include "src/wasm/baseline/arm64/liftoff-assembler-arm64.h"
#elif V8_TARGET_ARCH_ARM
#include "src/wasm/baseline/arm/liftoff-assembler-arm.h"
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#include "src/wasm/baseline/ppc/liftoff-assembler-ppc.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/wasm/baseline/mips64/liftoff-assembler-mips64.h"
#elif V8_TARGET_ARCH_LOONG64
#include "src/wasm/baseline/loong64/liftoff-assembler-loong64.h"
#elif V8_TARGET_ARCH_S390
#include "src/wasm/baseline/s390/liftoff-assembler-s390.h"
#elif V8_TARGET_ARCH_RISCV64
#include "src/wasm/baseline/riscv/liftoff-assembler-riscv64.h"
#elif V8_TARGET_ARCH_RISCV32
#include "src/wasm/baseline/riscv/liftoff-assembler-riscv32.h"
#else
#error Unsupported architecture.
#endif

#endif  // V8_WASM_BASELINE_LIFTOFF_ASSEMBLER_H_