1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
|
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/baseline/liftoff-compiler.h"
#include "src/base/optional.h"
#include "src/codegen/assembler-inl.h"
// TODO(clemensb): Remove dependences on compiler stuff.
#include "src/codegen/interface-descriptors.h"
#include "src/codegen/macro-assembler-inl.h"
#include "src/compiler/linkage.h"
#include "src/compiler/wasm-compiler.h"
#include "src/logging/counters.h"
#include "src/logging/log.h"
#include "src/objects/smi.h"
#include "src/tracing/trace-event.h"
#include "src/utils/ostreams.h"
#include "src/utils/utils.h"
#include "src/wasm/baseline/liftoff-assembler.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/function-compiler.h"
#include "src/wasm/memory-tracing.h"
#include "src/wasm/object-access.h"
#include "src/wasm/wasm-debug.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
#include "src/wasm/wasm-opcodes.h"
namespace v8 {
namespace internal {
namespace wasm {
constexpr auto kRegister = LiftoffAssembler::VarState::kRegister;
constexpr auto kIntConst = LiftoffAssembler::VarState::kIntConst;
constexpr auto kStack = LiftoffAssembler::VarState::kStack;
namespace {
#define __ asm_.
#define TRACE(...) \
do { \
if (FLAG_trace_liftoff) PrintF("[liftoff] " __VA_ARGS__); \
} while (false)
#define WASM_INSTANCE_OBJECT_FIELD_OFFSET(name) \
ObjectAccess::ToTagged(WasmInstanceObject::k##name##Offset)
template <int expected_size, int actual_size>
struct assert_field_size {
static_assert(expected_size == actual_size,
"field in WasmInstance does not have the expected size");
static constexpr int size = actual_size;
};
#define WASM_INSTANCE_OBJECT_FIELD_SIZE(name) \
FIELD_SIZE(WasmInstanceObject::k##name##Offset)
#define LOAD_INSTANCE_FIELD(dst, name, load_size) \
__ LoadFromInstance(dst, WASM_INSTANCE_OBJECT_FIELD_OFFSET(name), \
assert_field_size<WASM_INSTANCE_OBJECT_FIELD_SIZE(name), \
load_size>::size);
#define LOAD_TAGGED_PTR_INSTANCE_FIELD(dst, name) \
static_assert(WASM_INSTANCE_OBJECT_FIELD_SIZE(name) == kTaggedSize, \
"field in WasmInstance does not have the expected size"); \
__ LoadTaggedPointerFromInstance(dst, \
WASM_INSTANCE_OBJECT_FIELD_OFFSET(name));
#ifdef DEBUG
#define DEBUG_CODE_COMMENT(str) \
do { \
__ RecordComment(str); \
} while (false)
#else
#define DEBUG_CODE_COMMENT(str) ((void)0)
#endif
constexpr LoadType::LoadTypeValue kPointerLoadType =
kSystemPointerSize == 8 ? LoadType::kI64Load : LoadType::kI32Load;
#if V8_TARGET_ARCH_ARM64
// On ARM64, the Assembler keeps track of pointers to Labels to resolve
// branches to distant targets. Moving labels would confuse the Assembler,
// thus store the label on the heap and keep a unique_ptr.
class MovableLabel {
public:
MOVE_ONLY_NO_DEFAULT_CONSTRUCTOR(MovableLabel);
MovableLabel() : label_(new Label()) {}
Label* get() { return label_.get(); }
private:
std::unique_ptr<Label> label_;
};
#else
// On all other platforms, just store the Label directly.
class MovableLabel {
public:
MOVE_ONLY_WITH_DEFAULT_CONSTRUCTORS(MovableLabel);
Label* get() { return &label_; }
private:
Label label_;
};
#endif
compiler::CallDescriptor* GetLoweredCallDescriptor(
Zone* zone, compiler::CallDescriptor* call_desc) {
return kSystemPointerSize == 4
? compiler::GetI32WasmCallDescriptor(zone, call_desc)
: call_desc;
}
constexpr ValueType kSupportedTypesArr[] = {kWasmI32, kWasmI64, kWasmF32,
kWasmF64, kWasmS128};
constexpr Vector<const ValueType> kSupportedTypes =
ArrayVector(kSupportedTypesArr);
constexpr Condition GetCompareCondition(WasmOpcode opcode) {
switch (opcode) {
case kExprI32Eq:
return kEqual;
case kExprI32Ne:
return kUnequal;
case kExprI32LtS:
return kSignedLessThan;
case kExprI32LtU:
return kUnsignedLessThan;
case kExprI32GtS:
return kSignedGreaterThan;
case kExprI32GtU:
return kUnsignedGreaterThan;
case kExprI32LeS:
return kSignedLessEqual;
case kExprI32LeU:
return kUnsignedLessEqual;
case kExprI32GeS:
return kSignedGreaterEqual;
case kExprI32GeU:
return kUnsignedGreaterEqual;
default:
#if V8_HAS_CXX14_CONSTEXPR
UNREACHABLE();
#else
// We need to return something for old compilers here.
return kEqual;
#endif
}
}
// Builds a {DebugSideTable}.
class DebugSideTableBuilder {
public:
class EntryBuilder {
public:
explicit EntryBuilder(
int pc_offset, std::vector<ValueType> stack_types,
std::vector<int> stack_offsets,
std::vector<DebugSideTable::Entry::Constant> constants)
: pc_offset_(pc_offset),
stack_types_(std::move(stack_types)),
stack_offsets_(std::move(stack_offsets)),
constants_(std::move(constants)) {}
DebugSideTable::Entry ToTableEntry() const {
return DebugSideTable::Entry{pc_offset_, std::move(stack_types_),
std::move(stack_offsets_),
std::move(constants_)};
}
int pc_offset() const { return pc_offset_; }
void set_pc_offset(int new_pc_offset) { pc_offset_ = new_pc_offset; }
private:
int pc_offset_;
std::vector<ValueType> stack_types_;
std::vector<int> stack_offsets_;
std::vector<DebugSideTable::Entry::Constant> constants_;
};
// Adds a new entry, and returns a pointer to a builder for modifying that
// entry ({stack_height} includes {num_locals}).
EntryBuilder* NewEntry(int pc_offset, int num_locals, int stack_height,
LiftoffAssembler::VarState* stack_state) {
DCHECK_LE(num_locals, stack_height);
// Record stack types.
int stack_height_without_locals = stack_height - num_locals;
std::vector<ValueType> stack_types(stack_height_without_locals);
for (int i = 0; i < stack_height_without_locals; ++i) {
stack_types[i] = stack_state[num_locals + i].type();
}
// Record stack offsets.
std::vector<int> stack_offsets(stack_height_without_locals);
for (int i = 0; i < stack_height_without_locals; ++i) {
stack_offsets[i] = stack_state[num_locals + i].offset();
}
// Record all constants on the locals and stack.
std::vector<DebugSideTable::Entry::Constant> constants;
for (int idx = 0; idx < stack_height; ++idx) {
auto& slot = stack_state[idx];
if (slot.is_const()) constants.push_back({idx, slot.i32_const()});
}
entries_.emplace_back(pc_offset, std::move(stack_types),
std::move(stack_offsets), std::move(constants));
return &entries_.back();
}
void AddLocalType(ValueType type, int stack_offset) {
local_types_.push_back(type);
local_stack_offsets_.push_back(stack_offset);
}
DebugSideTable GenerateDebugSideTable() {
std::vector<DebugSideTable::Entry> table_entries;
table_entries.reserve(entries_.size());
for (auto& entry : entries_) table_entries.push_back(entry.ToTableEntry());
std::sort(table_entries.begin(), table_entries.end(),
[](DebugSideTable::Entry& a, DebugSideTable::Entry& b) {
return a.pc_offset() < b.pc_offset();
});
return DebugSideTable{std::move(local_types_),
std::move(local_stack_offsets_),
std::move(table_entries)};
}
private:
std::vector<ValueType> local_types_;
std::vector<int> local_stack_offsets_;
std::list<EntryBuilder> entries_;
};
class LiftoffCompiler {
public:
// TODO(clemensb): Make this a template parameter.
static constexpr Decoder::ValidateFlag validate = Decoder::kValidate;
using Value = ValueBase;
struct ElseState {
MovableLabel label;
LiftoffAssembler::CacheState state;
};
struct Control : public ControlBase<Value> {
std::unique_ptr<ElseState> else_state;
LiftoffAssembler::CacheState label_state;
MovableLabel label;
MOVE_ONLY_NO_DEFAULT_CONSTRUCTOR(Control);
template <typename... Args>
explicit Control(Args&&... args) V8_NOEXCEPT
: ControlBase(std::forward<Args>(args)...) {}
};
using FullDecoder = WasmFullDecoder<validate, LiftoffCompiler>;
struct OutOfLineCode {
MovableLabel label;
MovableLabel continuation;
WasmCode::RuntimeStubId stub;
WasmCodePosition position;
LiftoffRegList regs_to_save;
uint32_t pc; // for trap handler.
DebugSideTableBuilder::EntryBuilder* debug_sidetable_entry_builder;
// Named constructors:
static OutOfLineCode Trap(
WasmCode::RuntimeStubId s, WasmCodePosition pos, uint32_t pc,
DebugSideTableBuilder::EntryBuilder* debug_sidetable_entry_builder) {
DCHECK_LT(0, pos);
return {{}, {}, s, pos, {}, pc, debug_sidetable_entry_builder};
}
static OutOfLineCode StackCheck(
WasmCodePosition pos, LiftoffRegList regs,
DebugSideTableBuilder::EntryBuilder* debug_sidetable_entry_builder) {
return {{}, {}, WasmCode::kWasmStackGuard, pos,
regs, 0, debug_sidetable_entry_builder};
}
};
LiftoffCompiler(compiler::CallDescriptor* call_descriptor,
CompilationEnv* env, Zone* compilation_zone,
std::unique_ptr<AssemblerBuffer> buffer,
DebugSideTableBuilder* debug_sidetable_builder,
Vector<int> breakpoints = {})
: asm_(std::move(buffer)),
descriptor_(
GetLoweredCallDescriptor(compilation_zone, call_descriptor)),
env_(env),
debug_sidetable_builder_(debug_sidetable_builder),
compilation_zone_(compilation_zone),
safepoint_table_builder_(compilation_zone_),
next_breakpoint_ptr_(breakpoints.begin()),
next_breakpoint_end_(breakpoints.end()) {}
bool did_bailout() const { return bailout_reason_ != kSuccess; }
LiftoffBailoutReason bailout_reason() const { return bailout_reason_; }
void GetCode(CodeDesc* desc) {
asm_.GetCode(nullptr, desc, &safepoint_table_builder_,
Assembler::kNoHandlerTable);
}
OwnedVector<uint8_t> GetSourcePositionTable() {
return source_position_table_builder_.ToSourcePositionTableVector();
}
OwnedVector<trap_handler::ProtectedInstructionData> GetProtectedInstructions()
const {
return OwnedVector<trap_handler::ProtectedInstructionData>::Of(
protected_instructions_);
}
uint32_t GetTotalFrameSlotCount() const {
return __ GetTotalFrameSlotCount();
}
void unsupported(FullDecoder* decoder, LiftoffBailoutReason reason,
const char* detail) {
DCHECK_NE(kSuccess, reason);
if (did_bailout()) return;
bailout_reason_ = reason;
TRACE("unsupported: %s\n", detail);
decoder->errorf(decoder->pc_offset(), "unsupported liftoff operation: %s",
detail);
UnuseLabels(decoder);
}
bool DidAssemblerBailout(FullDecoder* decoder) {
if (decoder->failed() || !__ did_bailout()) return false;
unsupported(decoder, __ bailout_reason(), __ bailout_detail());
return true;
}
LiftoffBailoutReason BailoutReasonForType(ValueType type) {
switch (type) {
case kWasmS128:
return kSimd;
case kWasmAnyRef:
case kWasmFuncRef:
case kWasmNullRef:
return kAnyRef;
case kWasmExnRef:
return kExceptionHandling;
case kWasmBottom:
return kMultiValue;
default:
return kOtherReason;
}
}
bool CheckSupportedType(FullDecoder* decoder,
Vector<const ValueType> supported_types,
ValueType type, const char* context) {
// Check supported types.
for (ValueType supported : supported_types) {
if (type == supported) return true;
}
LiftoffBailoutReason bailout_reason = BailoutReasonForType(type);
EmbeddedVector<char, 128> buffer;
SNPrintF(buffer, "%s %s", ValueTypes::TypeName(type), context);
unsupported(decoder, bailout_reason, buffer.begin());
return false;
}
int GetSafepointTableOffset() const {
return safepoint_table_builder_.GetCodeOffset();
}
void UnuseLabels(FullDecoder* decoder) {
#ifdef DEBUG
auto Unuse = [](Label* label) {
label->Unuse();
label->UnuseNear();
};
// Unuse all labels now, otherwise their destructor will fire a DCHECK error
// if they where referenced before.
uint32_t control_depth = decoder ? decoder->control_depth() : 0;
for (uint32_t i = 0; i < control_depth; ++i) {
Control* c = decoder->control_at(i);
Unuse(c->label.get());
if (c->else_state) Unuse(c->else_state->label.get());
}
for (auto& ool : out_of_line_code_) Unuse(ool.label.get());
#endif
}
void StartFunction(FullDecoder* decoder) {
if (FLAG_trace_liftoff && !FLAG_trace_wasm_decoder) {
StdoutStream{} << "hint: add --trace-wasm-decoder to also see the wasm "
"instructions being decoded\n";
}
int num_locals = decoder->num_locals();
__ set_num_locals(num_locals);
for (int i = 0; i < num_locals; ++i) {
ValueType type = decoder->GetLocalType(i);
__ set_local_type(i, type);
}
}
// Returns the number of inputs processed (1 or 2).
uint32_t ProcessParameter(ValueType type, uint32_t input_idx) {
const int num_lowered_params = 1 + needs_gp_reg_pair(type);
ValueType lowered_type = needs_gp_reg_pair(type) ? kWasmI32 : type;
RegClass rc = reg_class_for(lowered_type);
// Initialize to anything, will be set in the loop and used afterwards.
LiftoffRegister reg = kGpCacheRegList.GetFirstRegSet();
LiftoffRegList pinned;
for (int pair_idx = 0; pair_idx < num_lowered_params; ++pair_idx) {
compiler::LinkageLocation param_loc =
descriptor_->GetInputLocation(input_idx + pair_idx);
// Initialize to anything, will be set in both arms of the if.
LiftoffRegister in_reg = kGpCacheRegList.GetFirstRegSet();
if (param_loc.IsRegister()) {
DCHECK(!param_loc.IsAnyRegister());
int reg_code = param_loc.AsRegister();
if (!kSimpleFPAliasing && type == kWasmF32) {
// Liftoff assumes a one-to-one mapping between float registers and
// double registers, and so does not distinguish between f32 and f64
// registers. The f32 register code must therefore be halved in order
// to pass the f64 code to Liftoff.
DCHECK_EQ(0, reg_code % 2);
reg_code /= 2;
} else if (kNeedS128RegPair && type == kWasmS128) {
// Similarly for double registers and SIMD registers, the SIMD code
// needs to be doubled to pass the f64 code to Liftoff.
reg_code *= 2;
}
RegList cache_regs = rc == kGpReg ? kLiftoffAssemblerGpCacheRegs
: kLiftoffAssemblerFpCacheRegs;
if (cache_regs & (1ULL << reg_code)) {
// This is a cache register, just use it.
if (kNeedS128RegPair && rc == kFpRegPair) {
in_reg =
LiftoffRegister::ForFpPair(DoubleRegister::from_code(reg_code));
} else {
in_reg = LiftoffRegister::from_code(rc, reg_code);
}
} else {
// Move to a cache register (spill one if necessary).
// Note that we cannot create a {LiftoffRegister} for reg_code, since
// {LiftoffRegister} can only store cache regs.
in_reg = __ GetUnusedRegister(rc, pinned);
if (rc == kGpReg) {
__ Move(in_reg.gp(), Register::from_code(reg_code), lowered_type);
} else if (kNeedS128RegPair && rc == kFpRegPair) {
__ Move(in_reg.low_fp(), DoubleRegister::from_code(reg_code),
lowered_type);
} else {
DCHECK_EQ(kFpReg, rc);
__ Move(in_reg.fp(), DoubleRegister::from_code(reg_code),
lowered_type);
}
}
} else if (param_loc.IsCallerFrameSlot()) {
in_reg = __ GetUnusedRegister(rc, pinned);
__ LoadCallerFrameSlot(in_reg, -param_loc.AsCallerFrameSlot(),
lowered_type);
}
reg = pair_idx == 0 ? in_reg
: LiftoffRegister::ForPair(reg.gp(), in_reg.gp());
pinned.set(reg);
}
__ PushRegister(type, reg);
return num_lowered_params;
}
void StackCheck(WasmCodePosition position) {
if (!FLAG_wasm_stack_checks || !env_->runtime_exception_support) return;
out_of_line_code_.push_back(
OutOfLineCode::StackCheck(position, __ cache_state()->used_registers,
RegisterDebugSideTableEntry()));
OutOfLineCode& ool = out_of_line_code_.back();
Register limit_address = __ GetUnusedRegister(kGpReg).gp();
LOAD_INSTANCE_FIELD(limit_address, StackLimitAddress, kSystemPointerSize);
__ StackCheck(ool.label.get(), limit_address);
__ bind(ool.continuation.get());
}
bool SpillLocalsInitially(FullDecoder* decoder, uint32_t num_params) {
int actual_locals = __ num_locals() - num_params;
DCHECK_LE(0, actual_locals);
constexpr int kNumCacheRegisters = NumRegs(kLiftoffAssemblerGpCacheRegs);
// If we have many locals, we put them on the stack initially. This avoids
// having to spill them on merge points. Use of these initial values should
// be rare anyway.
if (actual_locals > kNumCacheRegisters / 2) return true;
// If there are locals which are not i32 or i64, we also spill all locals,
// because other types cannot be initialized to constants.
for (uint32_t param_idx = num_params; param_idx < __ num_locals();
++param_idx) {
ValueType type = decoder->GetLocalType(param_idx);
if (type != kWasmI32 && type != kWasmI64) return true;
}
return false;
}
void StartFunctionBody(FullDecoder* decoder, Control* block) {
for (uint32_t i = 0; i < __ num_locals(); ++i) {
if (!CheckSupportedType(decoder, kSupportedTypes, __ local_type(i),
"param"))
return;
}
// Input 0 is the call target, the instance is at 1.
constexpr int kInstanceParameterIndex = 1;
// Store the instance parameter to a special stack slot.
compiler::LinkageLocation instance_loc =
descriptor_->GetInputLocation(kInstanceParameterIndex);
DCHECK(instance_loc.IsRegister());
DCHECK(!instance_loc.IsAnyRegister());
Register instance_reg = Register::from_code(instance_loc.AsRegister());
DCHECK_EQ(kWasmInstanceRegister, instance_reg);
// Parameter 0 is the instance parameter.
uint32_t num_params =
static_cast<uint32_t>(decoder->sig_->parameter_count());
__ EnterFrame(StackFrame::WASM_COMPILED);
__ set_has_frame(true);
pc_offset_stack_frame_construction_ = __ PrepareStackFrame();
// {PrepareStackFrame} is the first platform-specific assembler method.
// If this failed, we can bail out immediately, avoiding runtime overhead
// and potential failures because of other unimplemented methods.
// A platform implementing {PrepareStackFrame} must ensure that we can
// finish compilation without errors even if we hit unimplemented
// LiftoffAssembler methods.
if (DidAssemblerBailout(decoder)) return;
// Process parameters.
__ SpillInstance(instance_reg);
// Input 0 is the code target, 1 is the instance. First parameter at 2.
uint32_t input_idx = kInstanceParameterIndex + 1;
for (uint32_t param_idx = 0; param_idx < num_params; ++param_idx) {
input_idx += ProcessParameter(__ local_type(param_idx), input_idx);
}
int params_size = __ TopSpillOffset();
DCHECK_EQ(input_idx, descriptor_->InputCount());
// Initialize locals beyond parameters.
if (SpillLocalsInitially(decoder, num_params)) {
for (uint32_t param_idx = num_params; param_idx < __ num_locals();
++param_idx) {
ValueType type = decoder->GetLocalType(param_idx);
__ PushStack(type);
}
int spill_size = __ TopSpillOffset() - params_size;
__ FillStackSlotsWithZero(params_size, spill_size);
} else {
for (uint32_t param_idx = num_params; param_idx < __ num_locals();
++param_idx) {
ValueType type = decoder->GetLocalType(param_idx);
__ PushConstant(type, int32_t{0});
}
}
DCHECK_EQ(__ num_locals(), __ cache_state()->stack_height());
// Register local types and stack offsets for the debug side table.
if (V8_UNLIKELY(debug_sidetable_builder_)) {
for (uint32_t i = 0; i < __ num_locals(); ++i) {
debug_sidetable_builder_->AddLocalType(
__ local_type(i), __ cache_state()->stack_state[i].offset());
}
}
// The function-prologue stack check is associated with position 0, which
// is never a position of any instruction in the function.
StackCheck(0);
}
void GenerateOutOfLineCode(OutOfLineCode* ool) {
__ bind(ool->label.get());
const bool is_stack_check = ool->stub == WasmCode::kWasmStackGuard;
const bool is_mem_out_of_bounds =
ool->stub == WasmCode::kThrowWasmTrapMemOutOfBounds;
if (is_mem_out_of_bounds && env_->use_trap_handler) {
uint32_t pc = static_cast<uint32_t>(__ pc_offset());
DCHECK_EQ(pc, __ pc_offset());
protected_instructions_.emplace_back(
trap_handler::ProtectedInstructionData{ool->pc, pc});
}
if (!env_->runtime_exception_support) {
// We cannot test calls to the runtime in cctest/test-run-wasm.
// Therefore we emit a call to C here instead of a call to the runtime.
// In this mode, we never generate stack checks.
DCHECK(!is_stack_check);
__ CallTrapCallbackForTesting();
__ LeaveFrame(StackFrame::WASM_COMPILED);
__ DropStackSlotsAndRet(
static_cast<uint32_t>(descriptor_->StackParameterCount()));
return;
}
if (!ool->regs_to_save.is_empty()) __ PushRegisters(ool->regs_to_save);
source_position_table_builder_.AddPosition(
__ pc_offset(), SourcePosition(ool->position), false);
__ CallRuntimeStub(ool->stub);
DCHECK_EQ(!debug_sidetable_builder_, !ool->debug_sidetable_entry_builder);
if (V8_UNLIKELY(ool->debug_sidetable_entry_builder)) {
ool->debug_sidetable_entry_builder->set_pc_offset(__ pc_offset());
}
safepoint_table_builder_.DefineSafepoint(&asm_, Safepoint::kNoLazyDeopt);
DCHECK_EQ(ool->continuation.get()->is_bound(), is_stack_check);
if (!ool->regs_to_save.is_empty()) __ PopRegisters(ool->regs_to_save);
if (is_stack_check) {
__ emit_jump(ool->continuation.get());
} else {
__ AssertUnreachable(AbortReason::kUnexpectedReturnFromWasmTrap);
}
}
void FinishFunction(FullDecoder* decoder) {
// All breakpoints (if any) must be emitted by now.
DCHECK_NULL(next_breakpoint_ptr_);
if (DidAssemblerBailout(decoder)) return;
for (OutOfLineCode& ool : out_of_line_code_) {
GenerateOutOfLineCode(&ool);
}
__ PatchPrepareStackFrame(pc_offset_stack_frame_construction_,
__ GetTotalFrameSize());
__ FinishCode();
safepoint_table_builder_.Emit(&asm_, __ GetTotalFrameSlotCount());
__ MaybeEmitOutOfLineConstantPool();
// The previous calls may have also generated a bailout.
DidAssemblerBailout(decoder);
}
void OnFirstError(FullDecoder* decoder) {
if (!did_bailout()) bailout_reason_ = kDecodeError;
UnuseLabels(decoder);
asm_.AbortCompilation();
}
void NextInstruction(FullDecoder* decoder, WasmOpcode opcode) {
if (V8_UNLIKELY(next_breakpoint_ptr_) &&
*next_breakpoint_ptr_ == decoder->position()) {
++next_breakpoint_ptr_;
if (next_breakpoint_ptr_ == next_breakpoint_end_) {
next_breakpoint_ptr_ = next_breakpoint_end_ = nullptr;
}
EmitBreakpoint();
}
TraceCacheState(decoder);
SLOW_DCHECK(__ ValidateCacheState());
DEBUG_CODE_COMMENT(WasmOpcodes::OpcodeName(opcode));
}
void EmitBreakpoint() {
DEBUG_CODE_COMMENT("breakpoint");
// TODO(clemensb): Actually emit a breakpoint.
}
void Block(FullDecoder* decoder, Control* block) {}
void Loop(FullDecoder* decoder, Control* loop) {
if (loop->start_merge.arity > 0 || loop->end_merge.arity > 1) {
return unsupported(decoder, kMultiValue, "multi-value loop");
}
// Before entering a loop, spill all locals to the stack, in order to free
// the cache registers, and to avoid unnecessarily reloading stack values
// into registers at branches.
// TODO(clemensb): Come up with a better strategy here, involving
// pre-analysis of the function.
__ SpillLocals();
// Loop labels bind at the beginning of the block.
__ bind(loop->label.get());
// Save the current cache state for the merge when jumping to this loop.
loop->label_state.Split(*__ cache_state());
// Execute a stack check in the loop header.
StackCheck(decoder->position());
}
void Try(FullDecoder* decoder, Control* block) {
unsupported(decoder, kExceptionHandling, "try");
}
void Catch(FullDecoder* decoder, Control* block, Value* exception) {
unsupported(decoder, kExceptionHandling, "catch");
}
void If(FullDecoder* decoder, const Value& cond, Control* if_block) {
DCHECK_EQ(if_block, decoder->control_at(0));
DCHECK(if_block->is_if());
if (if_block->start_merge.arity > 0 || if_block->end_merge.arity > 1) {
return unsupported(decoder, kMultiValue, "multi-value if");
}
// Allocate the else state.
if_block->else_state = std::make_unique<ElseState>();
// Test the condition, jump to else if zero.
Register value = __ PopToRegister().gp();
__ emit_cond_jump(kEqual, if_block->else_state->label.get(), kWasmI32,
value);
// Store the state (after popping the value) for executing the else branch.
if_block->else_state->state.Split(*__ cache_state());
}
void FallThruTo(FullDecoder* decoder, Control* c) {
if (c->end_merge.reached) {
__ MergeFullStackWith(c->label_state, *__ cache_state());
} else {
c->label_state.Split(*__ cache_state());
}
TraceCacheState(decoder);
}
void FinishOneArmedIf(FullDecoder* decoder, Control* c) {
DCHECK(c->is_onearmed_if());
if (c->end_merge.reached) {
// Someone already merged to the end of the if. Merge both arms into that.
if (c->reachable()) {
// Merge the if state into the end state.
__ MergeFullStackWith(c->label_state, *__ cache_state());
__ emit_jump(c->label.get());
}
// Merge the else state into the end state.
__ bind(c->else_state->label.get());
__ MergeFullStackWith(c->label_state, c->else_state->state);
__ cache_state()->Steal(c->label_state);
} else if (c->reachable()) {
// No merge yet at the end of the if, but we need to create a merge for
// the both arms of this if. Thus init the merge point from the else
// state, then merge the if state into that.
DCHECK_EQ(0, c->end_merge.arity);
c->label_state.InitMerge(c->else_state->state, __ num_locals(), 0,
c->stack_depth);
__ MergeFullStackWith(c->label_state, *__ cache_state());
__ emit_jump(c->label.get());
// Merge the else state into the end state.
__ bind(c->else_state->label.get());
__ MergeFullStackWith(c->label_state, c->else_state->state);
__ cache_state()->Steal(c->label_state);
} else {
// No merge needed, just continue with the else state.
__ bind(c->else_state->label.get());
__ cache_state()->Steal(c->else_state->state);
}
}
void PopControl(FullDecoder* decoder, Control* c) {
if (c->is_loop()) return; // A loop just falls through.
if (c->is_onearmed_if()) {
// Special handling for one-armed ifs.
FinishOneArmedIf(decoder, c);
} else if (c->end_merge.reached) {
// There is a merge already. Merge our state into that, then continue with
// that state.
if (c->reachable()) {
__ MergeFullStackWith(c->label_state, *__ cache_state());
}
__ cache_state()->Steal(c->label_state);
} else {
// No merge, just continue with our current state.
}
if (!c->label.get()->is_bound()) __ bind(c->label.get());
}
void EndControl(FullDecoder* decoder, Control* c) {}
enum CCallReturn : bool { kHasReturn = true, kNoReturn = false };
void GenerateCCall(const LiftoffRegister* result_regs, FunctionSig* sig,
ValueType out_argument_type,
const LiftoffRegister* arg_regs,
ExternalReference ext_ref) {
// Before making a call, spill all cache registers.
__ SpillAllRegisters();
// Store arguments on our stack, then align the stack for calling to C.
int param_bytes = 0;
for (ValueType param_type : sig->parameters()) {
param_bytes += ValueTypes::MemSize(param_type);
}
int out_arg_bytes = out_argument_type == kWasmStmt
? 0
: ValueTypes::MemSize(out_argument_type);
int stack_bytes = std::max(param_bytes, out_arg_bytes);
__ CallC(sig, arg_regs, result_regs, out_argument_type, stack_bytes,
ext_ref);
}
template <ValueType src_type, ValueType result_type, class EmitFn>
void EmitUnOp(EmitFn fn) {
constexpr RegClass src_rc = reg_class_for(src_type);
constexpr RegClass result_rc = reg_class_for(result_type);
LiftoffRegister src = __ PopToRegister();
LiftoffRegister dst = src_rc == result_rc
? __ GetUnusedRegister(result_rc, {src})
: __ GetUnusedRegister(result_rc);
fn(dst, src);
__ PushRegister(result_type, dst);
}
template <ValueType type>
void EmitFloatUnOpWithCFallback(
bool (LiftoffAssembler::*emit_fn)(DoubleRegister, DoubleRegister),
ExternalReference (*fallback_fn)()) {
auto emit_with_c_fallback = [=](LiftoffRegister dst, LiftoffRegister src) {
if ((asm_.*emit_fn)(dst.fp(), src.fp())) return;
ExternalReference ext_ref = fallback_fn();
ValueType sig_reps[] = {type};
FunctionSig sig(0, 1, sig_reps);
GenerateCCall(&dst, &sig, type, &src, ext_ref);
};
EmitUnOp<type, type>(emit_with_c_fallback);
}
enum TypeConversionTrapping : bool { kCanTrap = true, kNoTrap = false };
template <ValueType dst_type, ValueType src_type,
TypeConversionTrapping can_trap>
void EmitTypeConversion(WasmOpcode opcode, ExternalReference (*fallback_fn)(),
WasmCodePosition trap_position) {
static constexpr RegClass src_rc = reg_class_for(src_type);
static constexpr RegClass dst_rc = reg_class_for(dst_type);
LiftoffRegister src = __ PopToRegister();
LiftoffRegister dst = src_rc == dst_rc ? __ GetUnusedRegister(dst_rc, {src})
: __ GetUnusedRegister(dst_rc);
DCHECK_EQ(!!can_trap, trap_position > 0);
Label* trap = can_trap ? AddOutOfLineTrap(
trap_position,
WasmCode::kThrowWasmTrapFloatUnrepresentable)
: nullptr;
if (!__ emit_type_conversion(opcode, dst, src, trap)) {
DCHECK_NOT_NULL(fallback_fn);
ExternalReference ext_ref = fallback_fn();
if (can_trap) {
// External references for potentially trapping conversions return int.
ValueType sig_reps[] = {kWasmI32, src_type};
FunctionSig sig(1, 1, sig_reps);
LiftoffRegister ret_reg =
__ GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(dst));
LiftoffRegister dst_regs[] = {ret_reg, dst};
GenerateCCall(dst_regs, &sig, dst_type, &src, ext_ref);
__ emit_cond_jump(kEqual, trap, kWasmI32, ret_reg.gp());
} else {
ValueType sig_reps[] = {src_type};
FunctionSig sig(0, 1, sig_reps);
GenerateCCall(&dst, &sig, dst_type, &src, ext_ref);
}
}
__ PushRegister(dst_type, dst);
}
void UnOp(FullDecoder* decoder, WasmOpcode opcode, const Value& value,
Value* result) {
#define CASE_I32_UNOP(opcode, fn) \
case kExpr##opcode: \
EmitUnOp<kWasmI32, kWasmI32>( \
[=](LiftoffRegister dst, LiftoffRegister src) { \
__ emit_##fn(dst.gp(), src.gp()); \
}); \
break;
#define CASE_I64_UNOP(opcode, fn) \
case kExpr##opcode: \
EmitUnOp<kWasmI64, kWasmI64>( \
[=](LiftoffRegister dst, LiftoffRegister src) { \
__ emit_##fn(dst, src); \
}); \
break;
#define CASE_FLOAT_UNOP(opcode, type, fn) \
case kExpr##opcode: \
EmitUnOp<kWasm##type, kWasm##type>( \
[=](LiftoffRegister dst, LiftoffRegister src) { \
__ emit_##fn(dst.fp(), src.fp()); \
}); \
break;
#define CASE_FLOAT_UNOP_WITH_CFALLBACK(opcode, type, fn) \
case kExpr##opcode: \
EmitFloatUnOpWithCFallback<kWasm##type>(&LiftoffAssembler::emit_##fn, \
&ExternalReference::wasm_##fn); \
break;
#define CASE_TYPE_CONVERSION(opcode, dst_type, src_type, ext_ref, can_trap) \
case kExpr##opcode: \
EmitTypeConversion<kWasm##dst_type, kWasm##src_type, can_trap>( \
kExpr##opcode, ext_ref, can_trap ? decoder->position() : 0); \
break;
switch (opcode) {
CASE_I32_UNOP(I32Clz, i32_clz)
CASE_I32_UNOP(I32Ctz, i32_ctz)
CASE_FLOAT_UNOP(F32Abs, F32, f32_abs)
CASE_FLOAT_UNOP(F32Neg, F32, f32_neg)
CASE_FLOAT_UNOP_WITH_CFALLBACK(F32Ceil, F32, f32_ceil)
CASE_FLOAT_UNOP_WITH_CFALLBACK(F32Floor, F32, f32_floor)
CASE_FLOAT_UNOP_WITH_CFALLBACK(F32Trunc, F32, f32_trunc)
CASE_FLOAT_UNOP_WITH_CFALLBACK(F32NearestInt, F32, f32_nearest_int)
CASE_FLOAT_UNOP(F32Sqrt, F32, f32_sqrt)
CASE_FLOAT_UNOP(F64Abs, F64, f64_abs)
CASE_FLOAT_UNOP(F64Neg, F64, f64_neg)
CASE_FLOAT_UNOP_WITH_CFALLBACK(F64Ceil, F64, f64_ceil)
CASE_FLOAT_UNOP_WITH_CFALLBACK(F64Floor, F64, f64_floor)
CASE_FLOAT_UNOP_WITH_CFALLBACK(F64Trunc, F64, f64_trunc)
CASE_FLOAT_UNOP_WITH_CFALLBACK(F64NearestInt, F64, f64_nearest_int)
CASE_FLOAT_UNOP(F64Sqrt, F64, f64_sqrt)
CASE_TYPE_CONVERSION(I32ConvertI64, I32, I64, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(I32SConvertF32, I32, F32, nullptr, kCanTrap)
CASE_TYPE_CONVERSION(I32UConvertF32, I32, F32, nullptr, kCanTrap)
CASE_TYPE_CONVERSION(I32SConvertF64, I32, F64, nullptr, kCanTrap)
CASE_TYPE_CONVERSION(I32UConvertF64, I32, F64, nullptr, kCanTrap)
CASE_TYPE_CONVERSION(I32ReinterpretF32, I32, F32, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(I64SConvertI32, I64, I32, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(I64UConvertI32, I64, I32, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(I64SConvertF32, I64, F32,
&ExternalReference::wasm_float32_to_int64, kCanTrap)
CASE_TYPE_CONVERSION(I64UConvertF32, I64, F32,
&ExternalReference::wasm_float32_to_uint64, kCanTrap)
CASE_TYPE_CONVERSION(I64SConvertF64, I64, F64,
&ExternalReference::wasm_float64_to_int64, kCanTrap)
CASE_TYPE_CONVERSION(I64UConvertF64, I64, F64,
&ExternalReference::wasm_float64_to_uint64, kCanTrap)
CASE_TYPE_CONVERSION(I64ReinterpretF64, I64, F64, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(F32SConvertI32, F32, I32, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(F32UConvertI32, F32, I32, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(F32SConvertI64, F32, I64,
&ExternalReference::wasm_int64_to_float32, kNoTrap)
CASE_TYPE_CONVERSION(F32UConvertI64, F32, I64,
&ExternalReference::wasm_uint64_to_float32, kNoTrap)
CASE_TYPE_CONVERSION(F32ConvertF64, F32, F64, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(F32ReinterpretI32, F32, I32, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(F64SConvertI32, F64, I32, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(F64UConvertI32, F64, I32, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(F64SConvertI64, F64, I64,
&ExternalReference::wasm_int64_to_float64, kNoTrap)
CASE_TYPE_CONVERSION(F64UConvertI64, F64, I64,
&ExternalReference::wasm_uint64_to_float64, kNoTrap)
CASE_TYPE_CONVERSION(F64ConvertF32, F64, F32, nullptr, kNoTrap)
CASE_TYPE_CONVERSION(F64ReinterpretI64, F64, I64, nullptr, kNoTrap)
CASE_I32_UNOP(I32SExtendI8, i32_signextend_i8)
CASE_I32_UNOP(I32SExtendI16, i32_signextend_i16)
CASE_I64_UNOP(I64SExtendI8, i64_signextend_i8)
CASE_I64_UNOP(I64SExtendI16, i64_signextend_i16)
CASE_I64_UNOP(I64SExtendI32, i64_signextend_i32)
CASE_I64_UNOP(I64Clz, i64_clz)
CASE_I64_UNOP(I64Ctz, i64_ctz)
case kExprI32Eqz:
DCHECK(decoder->lookahead(0, kExprI32Eqz));
if (decoder->lookahead(1, kExprBrIf)) {
DCHECK(!has_outstanding_op());
outstanding_op_ = kExprI32Eqz;
break;
}
EmitUnOp<kWasmI32, kWasmI32>(
[=](LiftoffRegister dst, LiftoffRegister src) {
__ emit_i32_eqz(dst.gp(), src.gp());
});
break;
case kExprI64Eqz:
EmitUnOp<kWasmI64, kWasmI32>(
[=](LiftoffRegister dst, LiftoffRegister src) {
__ emit_i64_eqz(dst.gp(), src);
});
break;
case kExprI32Popcnt:
EmitUnOp<kWasmI32, kWasmI32>(
[=](LiftoffRegister dst, LiftoffRegister src) {
if (__ emit_i32_popcnt(dst.gp(), src.gp())) return;
ValueType sig_i_i_reps[] = {kWasmI32, kWasmI32};
FunctionSig sig_i_i(1, 1, sig_i_i_reps);
GenerateCCall(&dst, &sig_i_i, kWasmStmt, &src,
ExternalReference::wasm_word32_popcnt());
});
break;
case kExprI64Popcnt:
EmitUnOp<kWasmI64, kWasmI64>(
[=](LiftoffRegister dst, LiftoffRegister src) {
if (__ emit_i64_popcnt(dst, src)) return;
// The c function returns i32. We will zero-extend later.
ValueType sig_i_l_reps[] = {kWasmI32, kWasmI64};
FunctionSig sig_i_l(1, 1, sig_i_l_reps);
LiftoffRegister c_call_dst = kNeedI64RegPair ? dst.low() : dst;
GenerateCCall(&c_call_dst, &sig_i_l, kWasmStmt, &src,
ExternalReference::wasm_word64_popcnt());
// Now zero-extend the result to i64.
__ emit_type_conversion(kExprI64UConvertI32, dst, c_call_dst,
nullptr);
});
break;
case kExprI32SConvertSatF32:
case kExprI32UConvertSatF32:
case kExprI32SConvertSatF64:
case kExprI32UConvertSatF64:
case kExprI64SConvertSatF32:
case kExprI64UConvertSatF32:
case kExprI64SConvertSatF64:
case kExprI64UConvertSatF64:
return unsupported(decoder, kNonTrappingFloatToInt,
WasmOpcodes::OpcodeName(opcode));
default:
UNREACHABLE();
}
#undef CASE_I32_UNOP
#undef CASE_I64_UNOP
#undef CASE_FLOAT_UNOP
#undef CASE_FLOAT_UNOP_WITH_CFALLBACK
#undef CASE_TYPE_CONVERSION
}
template <ValueType src_type, ValueType result_type, typename EmitFn,
typename EmitFnImm>
void EmitBinOpImm(EmitFn fn, EmitFnImm fnImm) {
static constexpr RegClass src_rc = reg_class_for(src_type);
static constexpr RegClass result_rc = reg_class_for(result_type);
LiftoffAssembler::VarState rhs_slot = __ cache_state()->stack_state.back();
// Check if the RHS is an immediate.
if (rhs_slot.is_const()) {
__ cache_state()->stack_state.pop_back();
int32_t imm = rhs_slot.i32_const();
LiftoffRegister lhs = __ PopToRegister();
LiftoffRegister dst = src_rc == result_rc
? __ GetUnusedRegister(result_rc, {lhs})
: __ GetUnusedRegister(result_rc);
fnImm(dst, lhs, imm);
__ PushRegister(result_type, dst);
} else {
// The RHS was not an immediate.
LiftoffRegister rhs = __ PopToRegister();
LiftoffRegister lhs = __ PopToRegister(LiftoffRegList::ForRegs(rhs));
LiftoffRegister dst = src_rc == result_rc
? __ GetUnusedRegister(result_rc, {lhs, rhs})
: __ GetUnusedRegister(result_rc);
fn(dst, lhs, rhs);
__ PushRegister(result_type, dst);
}
}
template <ValueType src_type, ValueType result_type, typename EmitFn>
void EmitBinOp(EmitFn fn) {
static constexpr RegClass src_rc = reg_class_for(src_type);
static constexpr RegClass result_rc = reg_class_for(result_type);
LiftoffRegister rhs = __ PopToRegister();
LiftoffRegister lhs = __ PopToRegister(LiftoffRegList::ForRegs(rhs));
LiftoffRegister dst = src_rc == result_rc
? __ GetUnusedRegister(result_rc, {lhs, rhs})
: __ GetUnusedRegister(result_rc);
fn(dst, lhs, rhs);
__ PushRegister(result_type, dst);
}
void EmitDivOrRem64CCall(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs, ExternalReference ext_ref,
Label* trap_by_zero,
Label* trap_unrepresentable = nullptr) {
// Cannot emit native instructions, build C call.
LiftoffRegister ret =
__ GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(dst));
LiftoffRegister tmp =
__ GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(dst, ret));
LiftoffRegister arg_regs[] = {lhs, rhs};
LiftoffRegister result_regs[] = {ret, dst};
ValueType sig_types[] = {kWasmI32, kWasmI64, kWasmI64};
// <i64, i64> -> i32 (with i64 output argument)
FunctionSig sig(1, 2, sig_types);
GenerateCCall(result_regs, &sig, kWasmI64, arg_regs, ext_ref);
__ LoadConstant(tmp, WasmValue(int32_t{0}));
__ emit_cond_jump(kEqual, trap_by_zero, kWasmI32, ret.gp(), tmp.gp());
if (trap_unrepresentable) {
__ LoadConstant(tmp, WasmValue(int32_t{-1}));
__ emit_cond_jump(kEqual, trap_unrepresentable, kWasmI32, ret.gp(),
tmp.gp());
}
}
void BinOp(FullDecoder* decoder, WasmOpcode opcode, const Value& lhs,
const Value& rhs, Value* result) {
#define CASE_I32_BINOP(opcode, fn) \
case kExpr##opcode: \
return EmitBinOp<kWasmI32, kWasmI32>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_##fn(dst.gp(), lhs.gp(), rhs.gp()); \
});
#define CASE_I32_BINOPI(opcode, fn) \
case kExpr##opcode: \
return EmitBinOpImm<kWasmI32, kWasmI32>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_##fn(dst.gp(), lhs.gp(), rhs.gp()); \
}, \
[=](LiftoffRegister dst, LiftoffRegister lhs, int32_t imm) { \
__ emit_##fn(dst.gp(), lhs.gp(), imm); \
});
#define CASE_I64_BINOP(opcode, fn) \
case kExpr##opcode: \
return EmitBinOp<kWasmI64, kWasmI64>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_##fn(dst, lhs, rhs); \
});
#define CASE_I64_BINOPI(opcode, fn) \
case kExpr##opcode: \
return EmitBinOpImm<kWasmI64, kWasmI64>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_##fn(dst, lhs, rhs); \
}, \
[=](LiftoffRegister dst, LiftoffRegister lhs, int32_t imm) { \
__ emit_##fn(dst, lhs, imm); \
});
#define CASE_FLOAT_BINOP(opcode, type, fn) \
case kExpr##opcode: \
return EmitBinOp<kWasm##type, kWasm##type>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_##fn(dst.fp(), lhs.fp(), rhs.fp()); \
});
#define CASE_I32_CMPOP(opcode) \
case kExpr##opcode: \
DCHECK(decoder->lookahead(0, kExpr##opcode)); \
if (decoder->lookahead(1, kExprBrIf)) { \
DCHECK(!has_outstanding_op()); \
outstanding_op_ = kExpr##opcode; \
break; \
} \
return EmitBinOp<kWasmI32, kWasmI32>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
constexpr Condition cond = GetCompareCondition(kExpr##opcode); \
__ emit_i32_set_cond(cond, dst.gp(), lhs.gp(), rhs.gp()); \
});
#define CASE_I64_CMPOP(opcode, cond) \
case kExpr##opcode: \
return EmitBinOp<kWasmI64, kWasmI32>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_i64_set_cond(cond, dst.gp(), lhs, rhs); \
});
#define CASE_F32_CMPOP(opcode, cond) \
case kExpr##opcode: \
return EmitBinOp<kWasmF32, kWasmI32>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_f32_set_cond(cond, dst.gp(), lhs.fp(), rhs.fp()); \
});
#define CASE_F64_CMPOP(opcode, cond) \
case kExpr##opcode: \
return EmitBinOp<kWasmF64, kWasmI32>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_f64_set_cond(cond, dst.gp(), lhs.fp(), rhs.fp()); \
});
#define CASE_I64_SHIFTOP(opcode, fn) \
case kExpr##opcode: \
return EmitBinOpImm<kWasmI64, kWasmI64>( \
[=](LiftoffRegister dst, LiftoffRegister src, \
LiftoffRegister amount) { \
__ emit_##fn(dst, src, \
amount.is_gp_pair() ? amount.low_gp() : amount.gp()); \
}, \
[=](LiftoffRegister dst, LiftoffRegister src, int32_t amount) { \
__ emit_##fn(dst, src, amount); \
});
#define CASE_CCALL_BINOP(opcode, type, ext_ref_fn) \
case kExpr##opcode: \
return EmitBinOp<kWasm##type, kWasm##type>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
LiftoffRegister args[] = {lhs, rhs}; \
auto ext_ref = ExternalReference::ext_ref_fn(); \
ValueType sig_reps[] = {kWasm##type, kWasm##type, kWasm##type}; \
const bool out_via_stack = kWasm##type == kWasmI64; \
FunctionSig sig(out_via_stack ? 0 : 1, 2, sig_reps); \
ValueType out_arg_type = out_via_stack ? kWasmI64 : kWasmStmt; \
GenerateCCall(&dst, &sig, out_arg_type, args, ext_ref); \
});
switch (opcode) {
CASE_I32_BINOPI(I32Add, i32_add)
CASE_I32_BINOP(I32Sub, i32_sub)
CASE_I32_BINOP(I32Mul, i32_mul)
CASE_I32_BINOPI(I32And, i32_and)
CASE_I32_BINOPI(I32Ior, i32_or)
CASE_I32_BINOPI(I32Xor, i32_xor)
CASE_I64_BINOPI(I64And, i64_and)
CASE_I64_BINOPI(I64Ior, i64_or)
CASE_I64_BINOPI(I64Xor, i64_xor)
CASE_I32_CMPOP(I32Eq)
CASE_I32_CMPOP(I32Ne)
CASE_I32_CMPOP(I32LtS)
CASE_I32_CMPOP(I32LtU)
CASE_I32_CMPOP(I32GtS)
CASE_I32_CMPOP(I32GtU)
CASE_I32_CMPOP(I32LeS)
CASE_I32_CMPOP(I32LeU)
CASE_I32_CMPOP(I32GeS)
CASE_I32_CMPOP(I32GeU)
CASE_I64_BINOPI(I64Add, i64_add)
CASE_I64_BINOP(I64Sub, i64_sub)
CASE_I64_BINOP(I64Mul, i64_mul)
CASE_I64_CMPOP(I64Eq, kEqual)
CASE_I64_CMPOP(I64Ne, kUnequal)
CASE_I64_CMPOP(I64LtS, kSignedLessThan)
CASE_I64_CMPOP(I64LtU, kUnsignedLessThan)
CASE_I64_CMPOP(I64GtS, kSignedGreaterThan)
CASE_I64_CMPOP(I64GtU, kUnsignedGreaterThan)
CASE_I64_CMPOP(I64LeS, kSignedLessEqual)
CASE_I64_CMPOP(I64LeU, kUnsignedLessEqual)
CASE_I64_CMPOP(I64GeS, kSignedGreaterEqual)
CASE_I64_CMPOP(I64GeU, kUnsignedGreaterEqual)
CASE_F32_CMPOP(F32Eq, kEqual)
CASE_F32_CMPOP(F32Ne, kUnequal)
CASE_F32_CMPOP(F32Lt, kUnsignedLessThan)
CASE_F32_CMPOP(F32Gt, kUnsignedGreaterThan)
CASE_F32_CMPOP(F32Le, kUnsignedLessEqual)
CASE_F32_CMPOP(F32Ge, kUnsignedGreaterEqual)
CASE_F64_CMPOP(F64Eq, kEqual)
CASE_F64_CMPOP(F64Ne, kUnequal)
CASE_F64_CMPOP(F64Lt, kUnsignedLessThan)
CASE_F64_CMPOP(F64Gt, kUnsignedGreaterThan)
CASE_F64_CMPOP(F64Le, kUnsignedLessEqual)
CASE_F64_CMPOP(F64Ge, kUnsignedGreaterEqual)
CASE_I32_BINOPI(I32Shl, i32_shl)
CASE_I32_BINOPI(I32ShrS, i32_sar)
CASE_I32_BINOPI(I32ShrU, i32_shr)
CASE_CCALL_BINOP(I32Rol, I32, wasm_word32_rol)
CASE_CCALL_BINOP(I32Ror, I32, wasm_word32_ror)
CASE_I64_SHIFTOP(I64Shl, i64_shl)
CASE_I64_SHIFTOP(I64ShrS, i64_sar)
CASE_I64_SHIFTOP(I64ShrU, i64_shr)
CASE_CCALL_BINOP(I64Rol, I64, wasm_word64_rol)
CASE_CCALL_BINOP(I64Ror, I64, wasm_word64_ror)
CASE_FLOAT_BINOP(F32Add, F32, f32_add)
CASE_FLOAT_BINOP(F32Sub, F32, f32_sub)
CASE_FLOAT_BINOP(F32Mul, F32, f32_mul)
CASE_FLOAT_BINOP(F32Div, F32, f32_div)
CASE_FLOAT_BINOP(F32Min, F32, f32_min)
CASE_FLOAT_BINOP(F32Max, F32, f32_max)
CASE_FLOAT_BINOP(F32CopySign, F32, f32_copysign)
CASE_FLOAT_BINOP(F64Add, F64, f64_add)
CASE_FLOAT_BINOP(F64Sub, F64, f64_sub)
CASE_FLOAT_BINOP(F64Mul, F64, f64_mul)
CASE_FLOAT_BINOP(F64Div, F64, f64_div)
CASE_FLOAT_BINOP(F64Min, F64, f64_min)
CASE_FLOAT_BINOP(F64Max, F64, f64_max)
CASE_FLOAT_BINOP(F64CopySign, F64, f64_copysign)
case kExprI32DivS:
EmitBinOp<kWasmI32, kWasmI32>([this, decoder](LiftoffRegister dst,
LiftoffRegister lhs,
LiftoffRegister rhs) {
WasmCodePosition position = decoder->position();
AddOutOfLineTrap(position, WasmCode::kThrowWasmTrapDivByZero);
// Adding the second trap might invalidate the pointer returned for
// the first one, thus get both pointers afterwards.
AddOutOfLineTrap(position,
WasmCode::kThrowWasmTrapDivUnrepresentable);
Label* div_by_zero = out_of_line_code_.end()[-2].label.get();
Label* div_unrepresentable = out_of_line_code_.end()[-1].label.get();
__ emit_i32_divs(dst.gp(), lhs.gp(), rhs.gp(), div_by_zero,
div_unrepresentable);
});
break;
case kExprI32DivU:
EmitBinOp<kWasmI32, kWasmI32>([this, decoder](LiftoffRegister dst,
LiftoffRegister lhs,
LiftoffRegister rhs) {
Label* div_by_zero = AddOutOfLineTrap(
decoder->position(), WasmCode::kThrowWasmTrapDivByZero);
__ emit_i32_divu(dst.gp(), lhs.gp(), rhs.gp(), div_by_zero);
});
break;
case kExprI32RemS:
EmitBinOp<kWasmI32, kWasmI32>([this, decoder](LiftoffRegister dst,
LiftoffRegister lhs,
LiftoffRegister rhs) {
Label* rem_by_zero = AddOutOfLineTrap(
decoder->position(), WasmCode::kThrowWasmTrapRemByZero);
__ emit_i32_rems(dst.gp(), lhs.gp(), rhs.gp(), rem_by_zero);
});
break;
case kExprI32RemU:
EmitBinOp<kWasmI32, kWasmI32>([this, decoder](LiftoffRegister dst,
LiftoffRegister lhs,
LiftoffRegister rhs) {
Label* rem_by_zero = AddOutOfLineTrap(
decoder->position(), WasmCode::kThrowWasmTrapRemByZero);
__ emit_i32_remu(dst.gp(), lhs.gp(), rhs.gp(), rem_by_zero);
});
break;
case kExprI64DivS:
EmitBinOp<kWasmI64, kWasmI64>([this, decoder](LiftoffRegister dst,
LiftoffRegister lhs,
LiftoffRegister rhs) {
WasmCodePosition position = decoder->position();
AddOutOfLineTrap(position, WasmCode::kThrowWasmTrapDivByZero);
// Adding the second trap might invalidate the pointer returned for
// the first one, thus get both pointers afterwards.
AddOutOfLineTrap(position,
WasmCode::kThrowWasmTrapDivUnrepresentable);
Label* div_by_zero = out_of_line_code_.end()[-2].label.get();
Label* div_unrepresentable = out_of_line_code_.end()[-1].label.get();
if (!__ emit_i64_divs(dst, lhs, rhs, div_by_zero,
div_unrepresentable)) {
ExternalReference ext_ref = ExternalReference::wasm_int64_div();
EmitDivOrRem64CCall(dst, lhs, rhs, ext_ref, div_by_zero,
div_unrepresentable);
}
});
break;
case kExprI64DivU:
EmitBinOp<kWasmI64, kWasmI64>([this, decoder](LiftoffRegister dst,
LiftoffRegister lhs,
LiftoffRegister rhs) {
Label* div_by_zero = AddOutOfLineTrap(
decoder->position(), WasmCode::kThrowWasmTrapDivByZero);
if (!__ emit_i64_divu(dst, lhs, rhs, div_by_zero)) {
ExternalReference ext_ref = ExternalReference::wasm_uint64_div();
EmitDivOrRem64CCall(dst, lhs, rhs, ext_ref, div_by_zero);
}
});
break;
case kExprI64RemS:
EmitBinOp<kWasmI64, kWasmI64>([this, decoder](LiftoffRegister dst,
LiftoffRegister lhs,
LiftoffRegister rhs) {
Label* rem_by_zero = AddOutOfLineTrap(
decoder->position(), WasmCode::kThrowWasmTrapRemByZero);
if (!__ emit_i64_rems(dst, lhs, rhs, rem_by_zero)) {
ExternalReference ext_ref = ExternalReference::wasm_int64_mod();
EmitDivOrRem64CCall(dst, lhs, rhs, ext_ref, rem_by_zero);
}
});
break;
case kExprI64RemU:
EmitBinOp<kWasmI64, kWasmI64>([this, decoder](LiftoffRegister dst,
LiftoffRegister lhs,
LiftoffRegister rhs) {
Label* rem_by_zero = AddOutOfLineTrap(
decoder->position(), WasmCode::kThrowWasmTrapRemByZero);
if (!__ emit_i64_remu(dst, lhs, rhs, rem_by_zero)) {
ExternalReference ext_ref = ExternalReference::wasm_uint64_mod();
EmitDivOrRem64CCall(dst, lhs, rhs, ext_ref, rem_by_zero);
}
});
break;
default:
UNREACHABLE();
}
#undef CASE_I32_BINOP
#undef CASE_I32_BINOPI
#undef CASE_I64_BINOP
#undef CASE_I64_BINOPI
#undef CASE_FLOAT_BINOP
#undef CASE_I32_CMPOP
#undef CASE_I64_CMPOP
#undef CASE_F32_CMPOP
#undef CASE_F64_CMPOP
#undef CASE_I64_SHIFTOP
#undef CASE_CCALL_BINOP
}
void I32Const(FullDecoder* decoder, Value* result, int32_t value) {
__ PushConstant(kWasmI32, value);
}
void I64Const(FullDecoder* decoder, Value* result, int64_t value) {
// The {VarState} stores constant values as int32_t, thus we only store
// 64-bit constants in this field if it fits in an int32_t. Larger values
// cannot be used as immediate value anyway, so we can also just put them in
// a register immediately.
int32_t value_i32 = static_cast<int32_t>(value);
if (value_i32 == value) {
__ PushConstant(kWasmI64, value_i32);
} else {
LiftoffRegister reg = __ GetUnusedRegister(reg_class_for(kWasmI64));
__ LoadConstant(reg, WasmValue(value));
__ PushRegister(kWasmI64, reg);
}
}
void F32Const(FullDecoder* decoder, Value* result, float value) {
LiftoffRegister reg = __ GetUnusedRegister(kFpReg);
__ LoadConstant(reg, WasmValue(value));
__ PushRegister(kWasmF32, reg);
}
void F64Const(FullDecoder* decoder, Value* result, double value) {
LiftoffRegister reg = __ GetUnusedRegister(kFpReg);
__ LoadConstant(reg, WasmValue(value));
__ PushRegister(kWasmF64, reg);
}
void RefNull(FullDecoder* decoder, Value* result) {
unsupported(decoder, kAnyRef, "ref_null");
}
void RefFunc(FullDecoder* decoder, uint32_t function_index, Value* result) {
unsupported(decoder, kAnyRef, "func");
}
void Drop(FullDecoder* decoder, const Value& value) {
auto& slot = __ cache_state()->stack_state.back();
// If the dropped slot contains a register, decrement it's use count.
if (slot.is_reg()) __ cache_state()->dec_used(slot.reg());
__ cache_state()->stack_state.pop_back();
}
void ReturnImpl(FullDecoder* decoder) {
size_t num_returns = decoder->sig_->return_count();
if (num_returns > 1) {
return unsupported(decoder, kMultiValue, "multi-return");
}
if (num_returns > 0) __ MoveToReturnRegisters(decoder->sig_);
__ LeaveFrame(StackFrame::WASM_COMPILED);
__ DropStackSlotsAndRet(
static_cast<uint32_t>(descriptor_->StackParameterCount()));
}
void DoReturn(FullDecoder* decoder, Vector<Value> /*values*/) {
ReturnImpl(decoder);
}
void LocalGet(FullDecoder* decoder, Value* result,
const LocalIndexImmediate<validate>& imm) {
auto& slot = __ cache_state()->stack_state[imm.index];
DCHECK_EQ(slot.type(), imm.type);
switch (slot.loc()) {
case kRegister:
__ PushRegister(slot.type(), slot.reg());
break;
case kIntConst:
__ PushConstant(imm.type, slot.i32_const());
break;
case kStack: {
auto rc = reg_class_for(imm.type);
LiftoffRegister reg = __ GetUnusedRegister(rc);
__ Fill(reg, slot.offset(), imm.type);
__ PushRegister(slot.type(), reg);
break;
}
}
}
void LocalSetFromStackSlot(LiftoffAssembler::VarState* dst_slot,
uint32_t local_index) {
auto& state = *__ cache_state();
auto& src_slot = state.stack_state.back();
ValueType type = dst_slot->type();
if (dst_slot->is_reg()) {
LiftoffRegister slot_reg = dst_slot->reg();
if (state.get_use_count(slot_reg) == 1) {
__ Fill(dst_slot->reg(), src_slot.offset(), type);
return;
}
state.dec_used(slot_reg);
dst_slot->MakeStack();
}
DCHECK_EQ(type, __ local_type(local_index));
RegClass rc = reg_class_for(type);
LiftoffRegister dst_reg = __ GetUnusedRegister(rc);
__ Fill(dst_reg, src_slot.offset(), type);
*dst_slot = LiftoffAssembler::VarState(type, dst_reg, dst_slot->offset());
__ cache_state()->inc_used(dst_reg);
}
void LocalSet(uint32_t local_index, bool is_tee) {
auto& state = *__ cache_state();
auto& source_slot = state.stack_state.back();
auto& target_slot = state.stack_state[local_index];
switch (source_slot.loc()) {
case kRegister:
if (target_slot.is_reg()) state.dec_used(target_slot.reg());
target_slot.Copy(source_slot);
if (is_tee) state.inc_used(target_slot.reg());
break;
case kIntConst:
if (target_slot.is_reg()) state.dec_used(target_slot.reg());
target_slot.Copy(source_slot);
break;
case kStack:
LocalSetFromStackSlot(&target_slot, local_index);
break;
}
if (!is_tee) __ cache_state()->stack_state.pop_back();
}
void LocalSet(FullDecoder* decoder, const Value& value,
const LocalIndexImmediate<validate>& imm) {
LocalSet(imm.index, false);
}
void LocalTee(FullDecoder* decoder, const Value& value, Value* result,
const LocalIndexImmediate<validate>& imm) {
LocalSet(imm.index, true);
}
Register GetGlobalBaseAndOffset(const WasmGlobal* global,
LiftoffRegList* pinned, uint32_t* offset) {
Register addr = pinned->set(__ GetUnusedRegister(kGpReg)).gp();
if (global->mutability && global->imported) {
LOAD_INSTANCE_FIELD(addr, ImportedMutableGlobals, kSystemPointerSize);
__ Load(LiftoffRegister(addr), addr, no_reg,
global->index * sizeof(Address), kPointerLoadType, *pinned);
*offset = 0;
} else {
LOAD_INSTANCE_FIELD(addr, GlobalsStart, kSystemPointerSize);
*offset = global->offset;
}
return addr;
}
void GlobalGet(FullDecoder* decoder, Value* result,
const GlobalIndexImmediate<validate>& imm) {
const auto* global = &env_->module->globals[imm.index];
if (!CheckSupportedType(decoder, kSupportedTypes, global->type, "global"))
return;
LiftoffRegList pinned;
uint32_t offset = 0;
Register addr = GetGlobalBaseAndOffset(global, &pinned, &offset);
LiftoffRegister value =
pinned.set(__ GetUnusedRegister(reg_class_for(global->type), pinned));
LoadType type = LoadType::ForValueType(global->type);
__ Load(value, addr, no_reg, offset, type, pinned, nullptr, true);
__ PushRegister(global->type, value);
}
void GlobalSet(FullDecoder* decoder, const Value& value,
const GlobalIndexImmediate<validate>& imm) {
auto* global = &env_->module->globals[imm.index];
if (!CheckSupportedType(decoder, kSupportedTypes, global->type, "global"))
return;
LiftoffRegList pinned;
uint32_t offset = 0;
Register addr = GetGlobalBaseAndOffset(global, &pinned, &offset);
LiftoffRegister reg = pinned.set(__ PopToRegister(pinned));
StoreType type = StoreType::ForValueType(global->type);
__ Store(addr, no_reg, offset, reg, type, {}, nullptr, true);
}
void TableGet(FullDecoder* decoder, const Value& index, Value* result,
const TableIndexImmediate<validate>& imm) {
unsupported(decoder, kAnyRef, "table_get");
}
void TableSet(FullDecoder* decoder, const Value& index, const Value& value,
const TableIndexImmediate<validate>& imm) {
unsupported(decoder, kAnyRef, "table_set");
}
void Unreachable(FullDecoder* decoder) {
Label* unreachable_label = AddOutOfLineTrap(
decoder->position(), WasmCode::kThrowWasmTrapUnreachable);
__ emit_jump(unreachable_label);
__ AssertUnreachable(AbortReason::kUnexpectedReturnFromWasmTrap);
}
void Select(FullDecoder* decoder, const Value& cond, const Value& fval,
const Value& tval, Value* result) {
LiftoffRegList pinned;
Register condition = pinned.set(__ PopToRegister()).gp();
ValueType type = __ cache_state()->stack_state.end()[-1].type();
DCHECK_EQ(type, __ cache_state()->stack_state.end()[-2].type());
LiftoffRegister false_value = pinned.set(__ PopToRegister(pinned));
LiftoffRegister true_value = __ PopToRegister(pinned);
LiftoffRegister dst =
__ GetUnusedRegister(true_value.reg_class(), {true_value, false_value});
__ PushRegister(type, dst);
// Now emit the actual code to move either {true_value} or {false_value}
// into {dst}.
Label cont;
Label case_false;
__ emit_cond_jump(kEqual, &case_false, kWasmI32, condition);
if (dst != true_value) __ Move(dst, true_value, type);
__ emit_jump(&cont);
__ bind(&case_false);
if (dst != false_value) __ Move(dst, false_value, type);
__ bind(&cont);
}
void BrImpl(Control* target) {
if (!target->br_merge()->reached) {
target->label_state.InitMerge(*__ cache_state(), __ num_locals(),
target->br_merge()->arity,
target->stack_depth);
}
__ MergeStackWith(target->label_state, target->br_merge()->arity);
__ jmp(target->label.get());
}
void Br(FullDecoder* decoder, Control* target) { BrImpl(target); }
void BrOrRet(FullDecoder* decoder, uint32_t depth) {
if (depth == decoder->control_depth() - 1) {
ReturnImpl(decoder);
} else {
BrImpl(decoder->control_at(depth));
}
}
void BrIf(FullDecoder* decoder, const Value& /* cond */, uint32_t depth) {
Label cont_false;
Register value = __ PopToRegister().gp();
if (!has_outstanding_op()) {
// Unary "equal" means "equals zero".
__ emit_cond_jump(kEqual, &cont_false, kWasmI32, value);
} else if (outstanding_op_ == kExprI32Eqz) {
// Unary "unequal" means "not equals zero".
__ emit_cond_jump(kUnequal, &cont_false, kWasmI32, value);
outstanding_op_ = kNoOutstandingOp;
} else {
// Otherwise, it's an i32 compare opcode.
Condition cond = NegateCondition(GetCompareCondition(outstanding_op_));
Register rhs = value;
Register lhs = __ PopToRegister(LiftoffRegList::ForRegs(rhs)).gp();
__ emit_cond_jump(cond, &cont_false, kWasmI32, lhs, rhs);
outstanding_op_ = kNoOutstandingOp;
}
BrOrRet(decoder, depth);
__ bind(&cont_false);
}
// Generate a branch table case, potentially reusing previously generated
// stack transfer code.
void GenerateBrCase(FullDecoder* decoder, uint32_t br_depth,
std::map<uint32_t, MovableLabel>* br_targets) {
MovableLabel& label = (*br_targets)[br_depth];
if (label.get()->is_bound()) {
__ jmp(label.get());
} else {
__ bind(label.get());
BrOrRet(decoder, br_depth);
}
}
// Generate a branch table for input in [min, max).
// TODO(wasm): Generate a real branch table (like TF TableSwitch).
void GenerateBrTable(FullDecoder* decoder, LiftoffRegister tmp,
LiftoffRegister value, uint32_t min, uint32_t max,
BranchTableIterator<validate>* table_iterator,
std::map<uint32_t, MovableLabel>* br_targets) {
DCHECK_LT(min, max);
// Check base case.
if (max == min + 1) {
DCHECK_EQ(min, table_iterator->cur_index());
GenerateBrCase(decoder, table_iterator->next(), br_targets);
return;
}
uint32_t split = min + (max - min) / 2;
Label upper_half;
__ LoadConstant(tmp, WasmValue(split));
__ emit_cond_jump(kUnsignedGreaterEqual, &upper_half, kWasmI32, value.gp(),
tmp.gp());
// Emit br table for lower half:
GenerateBrTable(decoder, tmp, value, min, split, table_iterator,
br_targets);
__ bind(&upper_half);
// table_iterator will trigger a DCHECK if we don't stop decoding now.
if (did_bailout()) return;
// Emit br table for upper half:
GenerateBrTable(decoder, tmp, value, split, max, table_iterator,
br_targets);
}
void BrTable(FullDecoder* decoder, const BranchTableImmediate<validate>& imm,
const Value& key) {
LiftoffRegList pinned;
LiftoffRegister value = pinned.set(__ PopToRegister());
BranchTableIterator<validate> table_iterator(decoder, imm);
std::map<uint32_t, MovableLabel> br_targets;
if (imm.table_count > 0) {
LiftoffRegister tmp = __ GetUnusedRegister(kGpReg, pinned);
__ LoadConstant(tmp, WasmValue(uint32_t{imm.table_count}));
Label case_default;
__ emit_cond_jump(kUnsignedGreaterEqual, &case_default, kWasmI32,
value.gp(), tmp.gp());
GenerateBrTable(decoder, tmp, value, 0, imm.table_count, &table_iterator,
&br_targets);
__ bind(&case_default);
// table_iterator will trigger a DCHECK if we don't stop decoding now.
if (did_bailout()) return;
}
// Generate the default case.
GenerateBrCase(decoder, table_iterator.next(), &br_targets);
DCHECK(!table_iterator.has_next());
}
void Else(FullDecoder* decoder, Control* c) {
if (c->reachable()) {
if (!c->end_merge.reached) {
c->label_state.InitMerge(*__ cache_state(), __ num_locals(),
c->end_merge.arity, c->stack_depth);
}
__ MergeFullStackWith(c->label_state, *__ cache_state());
__ emit_jump(c->label.get());
}
__ bind(c->else_state->label.get());
__ cache_state()->Steal(c->else_state->state);
}
Label* AddOutOfLineTrap(WasmCodePosition position,
WasmCode::RuntimeStubId stub, uint32_t pc = 0) {
DCHECK(FLAG_wasm_bounds_checks);
// The pc is needed for memory OOB trap with trap handler enabled. Other
// callers should not even compute it.
DCHECK_EQ(pc != 0, stub == WasmCode::kThrowWasmTrapMemOutOfBounds &&
env_->use_trap_handler);
out_of_line_code_.push_back(
OutOfLineCode::Trap(stub, position, pc, RegisterDebugSideTableEntry()));
return out_of_line_code_.back().label.get();
}
enum ForceCheck : bool { kDoForceCheck = true, kDontForceCheck = false };
// Returns true if the memory access is statically known to be out of bounds
// (a jump to the trap was generated then); return false otherwise.
bool BoundsCheckMem(FullDecoder* decoder, uint32_t access_size,
uint32_t offset, Register index, LiftoffRegList pinned,
ForceCheck force_check) {
const bool statically_oob =
!base::IsInBounds(offset, access_size, env_->max_memory_size);
if (!force_check && !statically_oob &&
(!FLAG_wasm_bounds_checks || env_->use_trap_handler)) {
return false;
}
// TODO(wasm): This adds protected instruction information for the jump
// instruction we are about to generate. It would be better to just not add
// protected instruction info when the pc is 0.
Label* trap_label = AddOutOfLineTrap(
decoder->position(), WasmCode::kThrowWasmTrapMemOutOfBounds,
env_->use_trap_handler ? __ pc_offset() : 0);
if (statically_oob) {
__ emit_jump(trap_label);
Control* current_block = decoder->control_at(0);
if (current_block->reachable()) {
current_block->reachability = kSpecOnlyReachable;
}
return true;
}
uint64_t end_offset = uint64_t{offset} + access_size - 1u;
// If the end offset is larger than the smallest memory, dynamically check
// the end offset against the actual memory size, which is not known at
// compile time. Otherwise, only one check is required (see below).
LiftoffRegister end_offset_reg =
pinned.set(__ GetUnusedRegister(kGpReg, pinned));
Register mem_size = __ GetUnusedRegister(kGpReg, pinned).gp();
LOAD_INSTANCE_FIELD(mem_size, MemorySize, kSystemPointerSize);
if (kSystemPointerSize == 8) {
__ LoadConstant(end_offset_reg, WasmValue(end_offset));
} else {
__ LoadConstant(end_offset_reg,
WasmValue(static_cast<uint32_t>(end_offset)));
}
if (end_offset >= env_->min_memory_size) {
__ emit_cond_jump(kUnsignedGreaterEqual, trap_label,
LiftoffAssembler::kWasmIntPtr, end_offset_reg.gp(),
mem_size);
}
// Just reuse the end_offset register for computing the effective size.
LiftoffRegister effective_size_reg = end_offset_reg;
__ emit_ptrsize_sub(effective_size_reg.gp(), mem_size, end_offset_reg.gp());
__ emit_u32_to_intptr(index, index);
__ emit_cond_jump(kUnsignedGreaterEqual, trap_label,
LiftoffAssembler::kWasmIntPtr, index,
effective_size_reg.gp());
return false;
}
void AlignmentCheckMem(FullDecoder* decoder, uint32_t access_size,
uint32_t offset, Register index,
LiftoffRegList pinned) {
Label* trap_label = AddOutOfLineTrap(
decoder->position(), WasmCode::kThrowWasmTrapUnalignedAccess, 0);
Register address = __ GetUnusedRegister(kGpReg, pinned).gp();
const uint32_t align_mask = access_size - 1;
if ((offset & align_mask) == 0) {
// If {offset} is aligned, we can produce faster code.
// TODO(ahaas): On Intel, the "test" instruction implicitly computes the
// AND of two operands. We could introduce a new variant of
// {emit_cond_jump} to use the "test" instruction without the "and" here.
// Then we can also avoid using the temp register here.
__ emit_i32_and(address, index, align_mask);
__ emit_cond_jump(kUnequal, trap_label, kWasmI32, address);
return;
}
__ emit_i32_add(address, index, offset);
__ emit_i32_and(address, address, align_mask);
__ emit_cond_jump(kUnequal, trap_label, kWasmI32, address);
}
void TraceMemoryOperation(bool is_store, MachineRepresentation rep,
Register index, uint32_t offset,
WasmCodePosition position) {
// Before making the runtime call, spill all cache registers.
__ SpillAllRegisters();
LiftoffRegList pinned = LiftoffRegList::ForRegs(index);
// Get one register for computing the address (offset + index).
LiftoffRegister address = pinned.set(__ GetUnusedRegister(kGpReg, pinned));
// Compute offset+index in address.
__ LoadConstant(address, WasmValue(offset));
__ emit_i32_add(address.gp(), address.gp(), index);
// Get a register to hold the stack slot for MemoryTracingInfo.
LiftoffRegister info = pinned.set(__ GetUnusedRegister(kGpReg, pinned));
// Allocate stack slot for MemoryTracingInfo.
__ AllocateStackSlot(info.gp(), sizeof(MemoryTracingInfo));
// Now store all information into the MemoryTracingInfo struct.
__ Store(info.gp(), no_reg, offsetof(MemoryTracingInfo, address), address,
StoreType::kI32Store, pinned);
__ LoadConstant(address, WasmValue(is_store ? 1 : 0));
__ Store(info.gp(), no_reg, offsetof(MemoryTracingInfo, is_store), address,
StoreType::kI32Store8, pinned);
__ LoadConstant(address, WasmValue(static_cast<int>(rep)));
__ Store(info.gp(), no_reg, offsetof(MemoryTracingInfo, mem_rep), address,
StoreType::kI32Store8, pinned);
WasmTraceMemoryDescriptor descriptor;
DCHECK_EQ(0, descriptor.GetStackParameterCount());
DCHECK_EQ(1, descriptor.GetRegisterParameterCount());
Register param_reg = descriptor.GetRegisterParameter(0);
if (info.gp() != param_reg) {
__ Move(param_reg, info.gp(), LiftoffAssembler::kWasmIntPtr);
}
source_position_table_builder_.AddPosition(__ pc_offset(),
SourcePosition(position), false);
__ CallRuntimeStub(WasmCode::kWasmTraceMemory);
safepoint_table_builder_.DefineSafepoint(&asm_, Safepoint::kNoLazyDeopt);
__ DeallocateStackSlot(sizeof(MemoryTracingInfo));
}
Register AddMemoryMasking(Register index, uint32_t* offset,
LiftoffRegList* pinned) {
if (!FLAG_untrusted_code_mitigations || env_->use_trap_handler) {
return index;
}
DEBUG_CODE_COMMENT("Mask memory index");
// Make sure that we can overwrite {index}.
if (__ cache_state()->is_used(LiftoffRegister(index))) {
Register old_index = index;
pinned->clear(LiftoffRegister(old_index));
index = pinned->set(__ GetUnusedRegister(kGpReg, *pinned)).gp();
if (index != old_index) __ Move(index, old_index, kWasmI32);
}
Register tmp = __ GetUnusedRegister(kGpReg, *pinned).gp();
__ emit_ptrsize_add(index, index, *offset);
LOAD_INSTANCE_FIELD(tmp, MemoryMask, kSystemPointerSize);
__ emit_ptrsize_and(index, index, tmp);
*offset = 0;
return index;
}
void LoadMem(FullDecoder* decoder, LoadType type,
const MemoryAccessImmediate<validate>& imm,
const Value& index_val, Value* result) {
ValueType value_type = type.value_type();
if (!CheckSupportedType(decoder, kSupportedTypes, value_type, "load"))
return;
LiftoffRegList pinned;
Register index = pinned.set(__ PopToRegister()).gp();
if (BoundsCheckMem(decoder, type.size(), imm.offset, index, pinned,
kDontForceCheck)) {
return;
}
uint32_t offset = imm.offset;
index = AddMemoryMasking(index, &offset, &pinned);
DEBUG_CODE_COMMENT("Load from memory");
Register addr = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
LOAD_INSTANCE_FIELD(addr, MemoryStart, kSystemPointerSize);
RegClass rc = reg_class_for(value_type);
LiftoffRegister value = pinned.set(__ GetUnusedRegister(rc, pinned));
uint32_t protected_load_pc = 0;
__ Load(value, addr, index, offset, type, pinned, &protected_load_pc, true);
if (env_->use_trap_handler) {
AddOutOfLineTrap(decoder->position(),
WasmCode::kThrowWasmTrapMemOutOfBounds,
protected_load_pc);
}
__ PushRegister(value_type, value);
if (FLAG_trace_wasm_memory) {
TraceMemoryOperation(false, type.mem_type().representation(), index,
offset, decoder->position());
}
}
void LoadTransform(FullDecoder* decoder, LoadType type,
LoadTransformationKind transform,
const MemoryAccessImmediate<validate>& imm,
const Value& index_val, Value* result) {
unsupported(decoder, kSimd, "simd");
}
void StoreMem(FullDecoder* decoder, StoreType type,
const MemoryAccessImmediate<validate>& imm,
const Value& index_val, const Value& value_val) {
ValueType value_type = type.value_type();
if (!CheckSupportedType(decoder, kSupportedTypes, value_type, "store"))
return;
LiftoffRegList pinned;
LiftoffRegister value = pinned.set(__ PopToRegister());
Register index = pinned.set(__ PopToRegister(pinned)).gp();
if (BoundsCheckMem(decoder, type.size(), imm.offset, index, pinned,
kDontForceCheck)) {
return;
}
uint32_t offset = imm.offset;
index = AddMemoryMasking(index, &offset, &pinned);
DEBUG_CODE_COMMENT("Store to memory");
Register addr = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
LOAD_INSTANCE_FIELD(addr, MemoryStart, kSystemPointerSize);
uint32_t protected_store_pc = 0;
LiftoffRegList outer_pinned;
if (FLAG_trace_wasm_memory) outer_pinned.set(index);
__ Store(addr, index, offset, value, type, outer_pinned,
&protected_store_pc, true);
if (env_->use_trap_handler) {
AddOutOfLineTrap(decoder->position(),
WasmCode::kThrowWasmTrapMemOutOfBounds,
protected_store_pc);
}
if (FLAG_trace_wasm_memory) {
TraceMemoryOperation(true, type.mem_rep(), index, offset,
decoder->position());
}
}
void CurrentMemoryPages(FullDecoder* decoder, Value* result) {
Register mem_size = __ GetUnusedRegister(kGpReg).gp();
LOAD_INSTANCE_FIELD(mem_size, MemorySize, kSystemPointerSize);
__ emit_ptrsize_shr(mem_size, mem_size, kWasmPageSizeLog2);
__ PushRegister(kWasmI32, LiftoffRegister(mem_size));
}
void MemoryGrow(FullDecoder* decoder, const Value& value, Value* result_val) {
// Pop the input, then spill all cache registers to make the runtime call.
LiftoffRegList pinned;
LiftoffRegister input = pinned.set(__ PopToRegister());
__ SpillAllRegisters();
constexpr Register kGpReturnReg = kGpReturnRegisters[0];
static_assert(kLiftoffAssemblerGpCacheRegs & kGpReturnReg.bit(),
"first return register is a cache register (needs more "
"complex code here otherwise)");
LiftoffRegister result = pinned.set(LiftoffRegister(kGpReturnReg));
WasmMemoryGrowDescriptor descriptor;
DCHECK_EQ(0, descriptor.GetStackParameterCount());
DCHECK_EQ(1, descriptor.GetRegisterParameterCount());
DCHECK_EQ(ValueTypes::MachineTypeFor(kWasmI32),
descriptor.GetParameterType(0));
Register param_reg = descriptor.GetRegisterParameter(0);
if (input.gp() != param_reg) __ Move(param_reg, input.gp(), kWasmI32);
__ CallRuntimeStub(WasmCode::kWasmMemoryGrow);
RegisterDebugSideTableEntry();
safepoint_table_builder_.DefineSafepoint(&asm_, Safepoint::kNoLazyDeopt);
if (kReturnRegister0 != result.gp()) {
__ Move(result.gp(), kReturnRegister0, kWasmI32);
}
__ PushRegister(kWasmI32, result);
}
DebugSideTableBuilder::EntryBuilder* RegisterDebugSideTableEntry() {
if (V8_LIKELY(!debug_sidetable_builder_)) return nullptr;
int stack_height = static_cast<int>(__ cache_state()->stack_height());
return debug_sidetable_builder_->NewEntry(
__ pc_offset(), __ num_locals(), stack_height,
__ cache_state()->stack_state.begin());
}
void CallDirect(FullDecoder* decoder,
const CallFunctionImmediate<validate>& imm,
const Value args[], Value returns[]) {
if (imm.sig->return_count() > 1) {
return unsupported(decoder, kMultiValue, "multi-return");
}
if (imm.sig->return_count() == 1 &&
!CheckSupportedType(decoder, kSupportedTypes, imm.sig->GetReturn(0),
"return")) {
return;
}
auto call_descriptor =
compiler::GetWasmCallDescriptor(compilation_zone_, imm.sig);
call_descriptor =
GetLoweredCallDescriptor(compilation_zone_, call_descriptor);
if (imm.index < env_->module->num_imported_functions) {
// A direct call to an imported function.
LiftoffRegList pinned;
Register tmp = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
Register target = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
Register imported_targets = tmp;
LOAD_INSTANCE_FIELD(imported_targets, ImportedFunctionTargets,
kSystemPointerSize);
__ Load(LiftoffRegister(target), imported_targets, no_reg,
imm.index * sizeof(Address), kPointerLoadType, pinned);
Register imported_function_refs = tmp;
LOAD_TAGGED_PTR_INSTANCE_FIELD(imported_function_refs,
ImportedFunctionRefs);
Register imported_function_ref = tmp;
__ LoadTaggedPointer(
imported_function_ref, imported_function_refs, no_reg,
ObjectAccess::ElementOffsetInTaggedFixedArray(imm.index), pinned);
Register* explicit_instance = &imported_function_ref;
__ PrepareCall(imm.sig, call_descriptor, &target, explicit_instance);
source_position_table_builder_.AddPosition(
__ pc_offset(), SourcePosition(decoder->position()), false);
__ CallIndirect(imm.sig, call_descriptor, target);
} else {
// A direct call within this module just gets the current instance.
__ PrepareCall(imm.sig, call_descriptor);
source_position_table_builder_.AddPosition(
__ pc_offset(), SourcePosition(decoder->position()), false);
// Just encode the function index. This will be patched at instantiation.
Address addr = static_cast<Address>(imm.index);
__ CallNativeWasmCode(addr);
}
RegisterDebugSideTableEntry();
safepoint_table_builder_.DefineSafepoint(&asm_, Safepoint::kNoLazyDeopt);
__ FinishCall(imm.sig, call_descriptor);
}
void CallIndirect(FullDecoder* decoder, const Value& index_val,
const CallIndirectImmediate<validate>& imm,
const Value args[], Value returns[]) {
if (imm.sig->return_count() > 1) {
return unsupported(decoder, kMultiValue, "multi-return");
}
if (imm.table_index != 0) {
return unsupported(decoder, kAnyRef, "table index != 0");
}
if (imm.sig->return_count() == 1 &&
!CheckSupportedType(decoder, kSupportedTypes, imm.sig->GetReturn(0),
"return")) {
return;
}
// Pop the index.
Register index = __ PopToRegister().gp();
// If that register is still being used after popping, we move it to another
// register, because we want to modify that register.
if (__ cache_state()->is_used(LiftoffRegister(index))) {
Register new_index =
__ GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(index)).gp();
__ Move(new_index, index, kWasmI32);
index = new_index;
}
LiftoffRegList pinned = LiftoffRegList::ForRegs(index);
// Get three temporary registers.
Register table = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
Register tmp_const = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
Register scratch = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
// Bounds check against the table size.
Label* invalid_func_label = AddOutOfLineTrap(
decoder->position(), WasmCode::kThrowWasmTrapFuncInvalid);
uint32_t canonical_sig_num = env_->module->signature_ids[imm.sig_index];
DCHECK_GE(canonical_sig_num, 0);
DCHECK_GE(kMaxInt, canonical_sig_num);
// Compare against table size stored in
// {instance->indirect_function_table_size}.
LOAD_INSTANCE_FIELD(tmp_const, IndirectFunctionTableSize, kUInt32Size);
__ emit_cond_jump(kUnsignedGreaterEqual, invalid_func_label, kWasmI32,
index, tmp_const);
// Mask the index to prevent SSCA.
if (FLAG_untrusted_code_mitigations) {
DEBUG_CODE_COMMENT("Mask indirect call index");
// mask = ((index - size) & ~index) >> 31
// Reuse allocated registers; note: size is still stored in {tmp_const}.
Register diff = table;
Register neg_index = tmp_const;
Register mask = scratch;
// 1) diff = index - size
__ emit_i32_sub(diff, index, tmp_const);
// 2) neg_index = ~index
__ LoadConstant(LiftoffRegister(neg_index), WasmValue(int32_t{-1}));
__ emit_i32_xor(neg_index, neg_index, index);
// 3) mask = diff & neg_index
__ emit_i32_and(mask, diff, neg_index);
// 4) mask = mask >> 31
__ emit_i32_sar(mask, mask, 31);
// Apply mask.
__ emit_i32_and(index, index, mask);
}
DEBUG_CODE_COMMENT("Check indirect call signature");
// Load the signature from {instance->ift_sig_ids[key]}
LOAD_INSTANCE_FIELD(table, IndirectFunctionTableSigIds, kSystemPointerSize);
// Shift {index} by 2 (multiply by 4) to represent kInt32Size items.
STATIC_ASSERT((1 << 2) == kInt32Size);
__ emit_i32_shl(index, index, 2);
__ Load(LiftoffRegister(scratch), table, index, 0, LoadType::kI32Load,
pinned);
// Compare against expected signature.
__ LoadConstant(LiftoffRegister(tmp_const), WasmValue(canonical_sig_num));
Label* sig_mismatch_label = AddOutOfLineTrap(
decoder->position(), WasmCode::kThrowWasmTrapFuncSigMismatch);
__ emit_cond_jump(kUnequal, sig_mismatch_label,
LiftoffAssembler::kWasmIntPtr, scratch, tmp_const);
// At this point {index} has already been multiplied by 4.
DEBUG_CODE_COMMENT("Execute indirect call");
if (kTaggedSize != kInt32Size) {
DCHECK_EQ(kTaggedSize, kInt32Size * 2);
// Multiply {index} by another 2 to represent kTaggedSize items.
__ emit_i32_add(index, index, index);
}
// At this point {index} has already been multiplied by kTaggedSize.
// Load the instance from {instance->ift_instances[key]}
LOAD_TAGGED_PTR_INSTANCE_FIELD(table, IndirectFunctionTableRefs);
__ LoadTaggedPointer(tmp_const, table, index,
ObjectAccess::ElementOffsetInTaggedFixedArray(0),
pinned);
if (kTaggedSize != kSystemPointerSize) {
DCHECK_EQ(kSystemPointerSize, kTaggedSize * 2);
// Multiply {index} by another 2 to represent kSystemPointerSize items.
__ emit_i32_add(index, index, index);
}
// At this point {index} has already been multiplied by kSystemPointerSize.
Register* explicit_instance = &tmp_const;
// Load the target from {instance->ift_targets[key]}
LOAD_INSTANCE_FIELD(table, IndirectFunctionTableTargets,
kSystemPointerSize);
__ Load(LiftoffRegister(scratch), table, index, 0, kPointerLoadType,
pinned);
source_position_table_builder_.AddPosition(
__ pc_offset(), SourcePosition(decoder->position()), false);
auto call_descriptor =
compiler::GetWasmCallDescriptor(compilation_zone_, imm.sig);
call_descriptor =
GetLoweredCallDescriptor(compilation_zone_, call_descriptor);
Register target = scratch;
__ PrepareCall(imm.sig, call_descriptor, &target, explicit_instance);
__ CallIndirect(imm.sig, call_descriptor, target);
RegisterDebugSideTableEntry();
safepoint_table_builder_.DefineSafepoint(&asm_, Safepoint::kNoLazyDeopt);
__ FinishCall(imm.sig, call_descriptor);
}
void ReturnCall(FullDecoder* decoder,
const CallFunctionImmediate<validate>& imm,
const Value args[]) {
unsupported(decoder, kTailCall, "return_call");
}
void ReturnCallIndirect(FullDecoder* decoder, const Value& index_val,
const CallIndirectImmediate<validate>& imm,
const Value args[]) {
unsupported(decoder, kTailCall, "return_call_indirect");
}
void SimdOp(FullDecoder* decoder, WasmOpcode opcode, Vector<Value> args,
Value* result) {
switch (opcode) {
case wasm::kExprF32x4Splat:
EmitUnOp<kWasmF32, kWasmS128>(
[=](LiftoffRegister dst, LiftoffRegister src) {
__ emit_f32x4_splat(dst, src);
});
break;
default:
unsupported(decoder, kSimd, "simd");
}
}
void SimdLaneOp(FullDecoder* decoder, WasmOpcode opcode,
const SimdLaneImmediate<validate>& imm,
const Vector<Value> inputs, Value* result) {
unsupported(decoder, kSimd, "simd");
}
void Simd8x16ShuffleOp(FullDecoder* decoder,
const Simd8x16ShuffleImmediate<validate>& imm,
const Value& input0, const Value& input1,
Value* result) {
unsupported(decoder, kSimd, "simd");
}
void Throw(FullDecoder* decoder, const ExceptionIndexImmediate<validate>&,
const Vector<Value>& args) {
unsupported(decoder, kExceptionHandling, "throw");
}
void Rethrow(FullDecoder* decoder, const Value& exception) {
unsupported(decoder, kExceptionHandling, "rethrow");
}
void BrOnException(FullDecoder* decoder, const Value& exception,
const ExceptionIndexImmediate<validate>& imm,
uint32_t depth, Vector<Value> values) {
unsupported(decoder, kExceptionHandling, "br_on_exn");
}
void AtomicStoreMem(FullDecoder* decoder, StoreType type,
const MemoryAccessImmediate<validate>& imm) {
LiftoffRegList pinned;
LiftoffRegister value = pinned.set(__ PopToRegister());
Register index = pinned.set(__ PopToRegister(pinned)).gp();
if (BoundsCheckMem(decoder, type.size(), imm.offset, index, pinned,
kDoForceCheck)) {
return;
}
AlignmentCheckMem(decoder, type.size(), imm.offset, index, pinned);
uint32_t offset = imm.offset;
index = AddMemoryMasking(index, &offset, &pinned);
DEBUG_CODE_COMMENT("Atomic store to memory");
Register addr = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
LOAD_INSTANCE_FIELD(addr, MemoryStart, kSystemPointerSize);
LiftoffRegList outer_pinned;
if (FLAG_trace_wasm_memory) outer_pinned.set(index);
__ AtomicStore(addr, index, offset, value, type, outer_pinned);
if (FLAG_trace_wasm_memory) {
TraceMemoryOperation(true, type.mem_rep(), index, offset,
decoder->position());
}
}
void AtomicLoadMem(FullDecoder* decoder, LoadType type,
const MemoryAccessImmediate<validate>& imm) {
ValueType value_type = type.value_type();
LiftoffRegList pinned;
Register index = pinned.set(__ PopToRegister()).gp();
if (BoundsCheckMem(decoder, type.size(), imm.offset, index, pinned,
kDoForceCheck)) {
return;
}
AlignmentCheckMem(decoder, type.size(), imm.offset, index, pinned);
uint32_t offset = imm.offset;
index = AddMemoryMasking(index, &offset, &pinned);
DEBUG_CODE_COMMENT("Atomic load from memory");
Register addr = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
LOAD_INSTANCE_FIELD(addr, MemoryStart, kSystemPointerSize);
RegClass rc = reg_class_for(value_type);
LiftoffRegister value = pinned.set(__ GetUnusedRegister(rc, pinned));
__ AtomicLoad(value, addr, index, offset, type, pinned);
__ PushRegister(value_type, value);
if (FLAG_trace_wasm_memory) {
TraceMemoryOperation(false, type.mem_type().representation(), index,
offset, decoder->position());
}
}
void AtomicBinop(FullDecoder* decoder, StoreType type,
const MemoryAccessImmediate<validate>& imm,
void (LiftoffAssembler::*emit_fn)(Register, Register,
uint32_t, LiftoffRegister,
StoreType)) {
ValueType result_type = type.value_type();
LiftoffRegList pinned;
LiftoffRegister value = pinned.set(__ PopToRegister());
// We have to reuse the value register as the result register so that we
// don't run out of registers on ia32. For this we use the value register
// as the result register if it has no other uses. Otherwise we allocate
// a new register and let go of the value register to get spilled.
LiftoffRegister result = value;
if (__ cache_state()->is_used(value)) {
result = pinned.set(__ GetUnusedRegister(value.reg_class(), pinned));
__ Move(result, value, result_type);
pinned.clear(value);
}
Register index = pinned.set(__ PopToRegister(pinned)).gp();
if (BoundsCheckMem(decoder, type.size(), imm.offset, index, pinned,
kDoForceCheck)) {
return;
}
AlignmentCheckMem(decoder, type.size(), imm.offset, index, pinned);
uint32_t offset = imm.offset;
index = AddMemoryMasking(index, &offset, &pinned);
Register addr = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
LOAD_INSTANCE_FIELD(addr, MemoryStart, kSystemPointerSize);
(asm_.*emit_fn)(addr, index, offset, result, type);
__ PushRegister(result_type, result);
}
#define ATOMIC_STORE_LIST(V) \
V(I32AtomicStore, kI32Store) \
V(I64AtomicStore, kI64Store) \
V(I32AtomicStore8U, kI32Store8) \
V(I32AtomicStore16U, kI32Store16) \
V(I64AtomicStore8U, kI64Store8) \
V(I64AtomicStore16U, kI64Store16) \
V(I64AtomicStore32U, kI64Store32)
#define ATOMIC_LOAD_LIST(V) \
V(I32AtomicLoad, kI32Load) \
V(I64AtomicLoad, kI64Load) \
V(I32AtomicLoad8U, kI32Load8U) \
V(I32AtomicLoad16U, kI32Load16U) \
V(I64AtomicLoad8U, kI64Load8U) \
V(I64AtomicLoad16U, kI64Load16U) \
V(I64AtomicLoad32U, kI64Load32U)
#define ATOMIC_BINOP_INSTRUCTION_LIST(V) \
V(Add, I32AtomicAdd, kI32Store) \
V(Add, I64AtomicAdd, kI64Store) \
V(Add, I32AtomicAdd8U, kI32Store8) \
V(Add, I32AtomicAdd16U, kI32Store16) \
V(Add, I64AtomicAdd8U, kI64Store8) \
V(Add, I64AtomicAdd16U, kI64Store16) \
V(Add, I64AtomicAdd32U, kI64Store32) \
V(Sub, I32AtomicSub, kI32Store) \
V(Sub, I64AtomicSub, kI64Store) \
V(Sub, I32AtomicSub8U, kI32Store8) \
V(Sub, I32AtomicSub16U, kI32Store16) \
V(Sub, I64AtomicSub8U, kI64Store8) \
V(Sub, I64AtomicSub16U, kI64Store16) \
V(Sub, I64AtomicSub32U, kI64Store32) \
V(And, I32AtomicAnd, kI32Store) \
V(And, I64AtomicAnd, kI64Store) \
V(And, I32AtomicAnd8U, kI32Store8) \
V(And, I32AtomicAnd16U, kI32Store16) \
V(And, I64AtomicAnd8U, kI64Store8) \
V(And, I64AtomicAnd16U, kI64Store16) \
V(And, I64AtomicAnd32U, kI64Store32) \
V(Or, I32AtomicOr, kI32Store) \
V(Or, I64AtomicOr, kI64Store) \
V(Or, I32AtomicOr8U, kI32Store8) \
V(Or, I32AtomicOr16U, kI32Store16) \
V(Or, I64AtomicOr8U, kI64Store8) \
V(Or, I64AtomicOr16U, kI64Store16) \
V(Or, I64AtomicOr32U, kI64Store32) \
V(Xor, I32AtomicXor, kI32Store) \
V(Xor, I64AtomicXor, kI64Store) \
V(Xor, I32AtomicXor8U, kI32Store8) \
V(Xor, I32AtomicXor16U, kI32Store16) \
V(Xor, I64AtomicXor8U, kI64Store8) \
V(Xor, I64AtomicXor16U, kI64Store16) \
V(Xor, I64AtomicXor32U, kI64Store32)
void AtomicOp(FullDecoder* decoder, WasmOpcode opcode, Vector<Value> args,
const MemoryAccessImmediate<validate>& imm, Value* result) {
switch (opcode) {
#define ATOMIC_STORE_OP(name, type) \
case wasm::kExpr##name: \
AtomicStoreMem(decoder, StoreType::type, imm); \
break;
ATOMIC_STORE_LIST(ATOMIC_STORE_OP)
#undef ATOMIC_STORE_OP
#define ATOMIC_LOAD_OP(name, type) \
case wasm::kExpr##name: \
AtomicLoadMem(decoder, LoadType::type, imm); \
break;
ATOMIC_LOAD_LIST(ATOMIC_LOAD_OP)
#undef ATOMIC_LOAD_OP
#define ATOMIC_BINOP_OP(op, name, type) \
case wasm::kExpr##name: \
AtomicBinop(decoder, StoreType::type, imm, &LiftoffAssembler::Atomic##op); \
break;
ATOMIC_BINOP_INSTRUCTION_LIST(ATOMIC_BINOP_OP)
#undef ATOMIC_BINOP_OP
default:
unsupported(decoder, kAtomics, "atomicop");
}
}
#undef ATOMIC_STORE_LIST
#undef ATOMIC_LOAD_LIST
#undef ATOMIC_BINOP_INSTRUCTION_LIST
void AtomicFence(FullDecoder* decoder) {
unsupported(decoder, kAtomics, "atomic.fence");
}
void MemoryInit(FullDecoder* decoder,
const MemoryInitImmediate<validate>& imm, const Value& dst,
const Value& src, const Value& size) {
unsupported(decoder, kBulkMemory, "memory.init");
}
void DataDrop(FullDecoder* decoder, const DataDropImmediate<validate>& imm) {
unsupported(decoder, kBulkMemory, "data.drop");
}
void MemoryCopy(FullDecoder* decoder,
const MemoryCopyImmediate<validate>& imm, const Value& dst,
const Value& src, const Value& size) {
unsupported(decoder, kBulkMemory, "memory.copy");
}
void MemoryFill(FullDecoder* decoder,
const MemoryIndexImmediate<validate>& imm, const Value& dst,
const Value& value, const Value& size) {
unsupported(decoder, kBulkMemory, "memory.fill");
}
void TableInit(FullDecoder* decoder, const TableInitImmediate<validate>& imm,
Vector<Value> args) {
unsupported(decoder, kBulkMemory, "table.init");
}
void ElemDrop(FullDecoder* decoder, const ElemDropImmediate<validate>& imm) {
unsupported(decoder, kBulkMemory, "elem.drop");
}
void TableCopy(FullDecoder* decoder, const TableCopyImmediate<validate>& imm,
Vector<Value> args) {
unsupported(decoder, kBulkMemory, "table.copy");
}
void TableGrow(FullDecoder* decoder, const TableIndexImmediate<validate>& imm,
const Value& value, const Value& delta, Value* result) {
unsupported(decoder, kAnyRef, "table.grow");
}
void TableSize(FullDecoder* decoder, const TableIndexImmediate<validate>& imm,
Value* result) {
unsupported(decoder, kAnyRef, "table.size");
}
void TableFill(FullDecoder* decoder, const TableIndexImmediate<validate>& imm,
const Value& start, const Value& value, const Value& count) {
unsupported(decoder, kAnyRef, "table.fill");
}
private:
static constexpr WasmOpcode kNoOutstandingOp = kExprUnreachable;
LiftoffAssembler asm_;
// Used for merging code generation of subsequent operations (via look-ahead).
// Set by the first opcode, reset by the second.
WasmOpcode outstanding_op_ = kNoOutstandingOp;
compiler::CallDescriptor* const descriptor_;
CompilationEnv* const env_;
DebugSideTableBuilder* const debug_sidetable_builder_;
LiftoffBailoutReason bailout_reason_ = kSuccess;
std::vector<OutOfLineCode> out_of_line_code_;
SourcePositionTableBuilder source_position_table_builder_;
std::vector<trap_handler::ProtectedInstructionData> protected_instructions_;
// Zone used to store information during compilation. The result will be
// stored independently, such that this zone can die together with the
// LiftoffCompiler after compilation.
Zone* compilation_zone_;
SafepointTableBuilder safepoint_table_builder_;
// The pc offset of the instructions to reserve the stack frame. Needed to
// patch the actually needed stack size in the end.
uint32_t pc_offset_stack_frame_construction_ = 0;
// For emitting breakpoint, we store a pointer to the position of the next
// breakpoint, and a pointer after the list of breakpoints as end marker.
int* next_breakpoint_ptr_ = nullptr;
int* next_breakpoint_end_ = nullptr;
bool has_outstanding_op() const {
return outstanding_op_ != kNoOutstandingOp;
}
void TraceCacheState(FullDecoder* decoder) const {
if (!FLAG_trace_liftoff) return;
StdoutStream os;
for (int control_depth = decoder->control_depth() - 1; control_depth >= -1;
--control_depth) {
auto* cache_state =
control_depth == -1 ? __ cache_state()
: &decoder->control_at(control_depth)
->label_state;
os << PrintCollection(cache_state->stack_state);
if (control_depth != -1) PrintF("; ");
}
os << "\n";
}
DISALLOW_IMPLICIT_CONSTRUCTORS(LiftoffCompiler);
};
} // namespace
WasmCompilationResult ExecuteLiftoffCompilation(
AccountingAllocator* allocator, CompilationEnv* env,
const FunctionBody& func_body, int func_index, Counters* counters,
WasmFeatures* detected, Vector<int> breakpoints) {
int func_body_size = static_cast<int>(func_body.end - func_body.start);
TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("v8.wasm"),
"ExecuteLiftoffCompilation", "func_index", func_index,
"body_size", func_body_size);
Zone zone(allocator, "LiftoffCompilationZone");
auto call_descriptor = compiler::GetWasmCallDescriptor(&zone, func_body.sig);
base::Optional<TimedHistogramScope> liftoff_compile_time_scope;
if (counters) {
liftoff_compile_time_scope.emplace(counters->liftoff_compile_time());
}
size_t code_size_estimate =
WasmCodeManager::EstimateLiftoffCodeSize(func_body_size);
// Allocate the initial buffer a bit bigger to avoid reallocation during code
// generation.
std::unique_ptr<wasm::WasmInstructionBuffer> instruction_buffer =
wasm::WasmInstructionBuffer::New(128 + code_size_estimate * 4 / 3);
DebugSideTableBuilder* const kNoDebugSideTable = nullptr;
WasmFullDecoder<Decoder::kValidate, LiftoffCompiler> decoder(
&zone, env->module, env->enabled_features, detected, func_body,
call_descriptor, env, &zone, instruction_buffer->CreateView(),
kNoDebugSideTable, breakpoints);
decoder.Decode();
liftoff_compile_time_scope.reset();
LiftoffCompiler* compiler = &decoder.interface();
if (decoder.failed()) compiler->OnFirstError(&decoder);
if (counters) {
// Check that the histogram for the bailout reasons has the correct size.
DCHECK_EQ(0, counters->liftoff_bailout_reasons()->min());
DCHECK_EQ(kNumBailoutReasons - 1,
counters->liftoff_bailout_reasons()->max());
DCHECK_EQ(kNumBailoutReasons,
counters->liftoff_bailout_reasons()->num_buckets());
// Register the bailout reason (can also be {kSuccess}).
counters->liftoff_bailout_reasons()->AddSample(
static_cast<int>(compiler->bailout_reason()));
if (compiler->did_bailout()) {
// Liftoff compilation failed.
counters->liftoff_unsupported_functions()->Increment();
return WasmCompilationResult{};
}
counters->liftoff_compiled_functions()->Increment();
}
WasmCompilationResult result;
compiler->GetCode(&result.code_desc);
result.instr_buffer = instruction_buffer->ReleaseBuffer();
result.source_positions = compiler->GetSourcePositionTable();
result.protected_instructions = compiler->GetProtectedInstructions();
result.frame_slot_count = compiler->GetTotalFrameSlotCount();
result.tagged_parameter_slots = call_descriptor->GetTaggedParameterSlots();
result.result_tier = ExecutionTier::kLiftoff;
DCHECK(result.succeeded());
return result;
}
DebugSideTable GenerateLiftoffDebugSideTable(AccountingAllocator* allocator,
CompilationEnv* env,
const FunctionBody& func_body) {
Zone zone(allocator, "LiftoffDebugSideTableZone");
auto call_descriptor = compiler::GetWasmCallDescriptor(&zone, func_body.sig);
DebugSideTableBuilder debug_sidetable_builder;
WasmFeatures detected;
WasmFullDecoder<Decoder::kValidate, LiftoffCompiler> decoder(
&zone, env->module, env->enabled_features, &detected, func_body,
call_descriptor, env, &zone,
NewAssemblerBuffer(AssemblerBase::kDefaultBufferSize),
&debug_sidetable_builder);
decoder.Decode();
DCHECK(decoder.ok());
DCHECK(!decoder.interface().did_bailout());
return debug_sidetable_builder.GenerateDebugSideTable();
}
#undef __
#undef TRACE
#undef WASM_INSTANCE_OBJECT_FIELD_OFFSET
#undef WASM_INSTANCE_OBJECT_FIELD_SIZE
#undef LOAD_INSTANCE_FIELD
#undef LOAD_TAGGED_PTR_INSTANCE_FIELD
#undef DEBUG_CODE_COMMENT
} // namespace wasm
} // namespace internal
} // namespace v8
|