summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/baseline/liftoff-register.h
blob: 8818b1078d88f4f5bd127ceb6b3feaa25ee6d5a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_WASM_BASELINE_LIFTOFF_REGISTER_H_
#define V8_WASM_BASELINE_LIFTOFF_REGISTER_H_

#include <iosfwd>
#include <memory>

#include "src/base/bits.h"
#include "src/wasm/baseline/liftoff-assembler-defs.h"
#include "src/wasm/wasm-opcodes.h"

namespace v8 {
namespace internal {
namespace wasm {

static constexpr bool kNeedI64RegPair = kSystemPointerSize == 4;
static constexpr bool kNeedS128RegPair = kFPAliasing == AliasingKind::kCombine;

enum RegClass : uint8_t {
  kGpReg,
  kFpReg,
  kGpRegPair = kFpReg + 1 + (kNeedS128RegPair && !kNeedI64RegPair),
  kFpRegPair = kFpReg + 1 + kNeedI64RegPair,
  kNoReg = kFpRegPair + kNeedS128RegPair,
  // +------------------+-------------------------------+
  // |                  |        kNeedI64RegPair        |
  // +------------------+---------------+---------------+
  // | kNeedS128RegPair |     true      |    false      |
  // +------------------+---------------+---------------+
  // |             true | 0,1,2,3,4 (a) | 0,1,3,2,3     |
  // |            false | 0,1,2,3,3 (b) | 0,1,2,2,2 (c) |
  // +------------------+---------------+---------------+
  // (a) arm
  // (b) ia32
  // (c) x64, arm64
};

static_assert(kNeedI64RegPair == (kGpRegPair != kNoReg),
              "kGpRegPair equals kNoReg if unused");
static_assert(kNeedS128RegPair == (kFpRegPair != kNoReg),
              "kFpRegPair equals kNoReg if unused");

enum RegPairHalf : uint8_t { kLowWord = 0, kHighWord = 1 };

static inline constexpr bool needs_gp_reg_pair(ValueKind kind) {
  return kNeedI64RegPair && kind == kI64;
}

static inline constexpr bool needs_fp_reg_pair(ValueKind kind) {
  return kNeedS128RegPair && kind == kS128;
}

static inline constexpr RegClass reg_class_for(ValueKind kind) {
  // Statically generate an array that we use for lookup at runtime.
  constexpr size_t kNumValueKinds = static_cast<size_t>(kBottom);
  constexpr auto kRegClasses =
      base::make_array<kNumValueKinds>([](std::size_t kind) {
        switch (kind) {
          case kF32:
          case kF64:
            return kFpReg;
          case kI8:
          case kI16:
          case kI32:
            return kGpReg;
          case kI64:
            return kNeedI64RegPair ? kGpRegPair : kGpReg;
          case kS128:
            return kNeedS128RegPair ? kFpRegPair : kFpReg;
          case kRef:
          case kRefNull:
          case kRtt:
            return kGpReg;
          case kVoid:
            return kNoReg;  // unsupported kind
        }
        CONSTEXPR_UNREACHABLE();
      });
  V8_ASSUME(kind < kNumValueKinds);
  RegClass rc = kRegClasses[kind];
  V8_ASSUME(rc != kNoReg);
  return rc;
}

// Description of LiftoffRegister code encoding.
// This example uses the ARM architecture, which as of writing has:
// - 9 GP registers, requiring 4 bits
// - 13 FP regitsters, requiring 5 bits
// - kNeedI64RegPair is true
// - kNeedS128RegPair is true
// - thus, kBitsPerRegPair is 2 + 2 * 4 = 10
// - storage_t is uint16_t
// The table below illustrates how each RegClass is encoded, with brackets
// surrounding the bits which encode the register number.
//
// +----------------+------------------+
// | RegClass       | Example          |
// +----------------+------------------+
// | kGpReg (1)     | [00 0000   0000] |
// | kFpReg (2)     | [00 0000   1001] |
// | kGpRegPair (3) | 01 [0000] [0001] |
// | kFpRegPair (4) | 10  000[0  0010] |
// +----------------+------------------+
//
// gp and fp registers are encoded in the same index space, which means that
// code has to check for kGpRegPair and kFpRegPair before it can treat the code
// as a register code.
// (1) [0 .. kMaxGpRegCode] encodes gp registers
// (2) [kMaxGpRegCode + 1 .. kMaxGpRegCode + kMaxFpRegCode] encodes fp
// registers, so in this example, 1001 is really fp register 0.
// (3) The second top bit is set for kGpRegPair, and the two gp registers are
// stuffed side by side in code. Note that this is not the second top bit of
// storage_t, since storage_t is larger than the number of meaningful bits we
// need for the encoding.
// (4) The top bit is set for kFpRegPair, and the fp register is stuffed into
// the bottom part of the code. Unlike (2), this is the fp register code itself
// (not sharing index space with gp), so in this example, it is fp register 2.

// Maximum code of a gp cache register.
static constexpr int kMaxGpRegCode = kLiftoffAssemblerGpCacheRegs.last().code();
// Maximum code of an fp cache register.
static constexpr int kMaxFpRegCode = kLiftoffAssemblerFpCacheRegs.last().code();
static constexpr int kAfterMaxLiftoffGpRegCode = kMaxGpRegCode + 1;
static constexpr int kAfterMaxLiftoffFpRegCode =
    kAfterMaxLiftoffGpRegCode + kMaxFpRegCode + 1;
static constexpr int kAfterMaxLiftoffRegCode = kAfterMaxLiftoffFpRegCode;
static constexpr int kBitsPerLiftoffRegCode =
    32 - base::bits::CountLeadingZeros<uint32_t>(kAfterMaxLiftoffRegCode - 1);
static constexpr int kBitsPerGpRegCode =
    32 - base::bits::CountLeadingZeros<uint32_t>(kMaxGpRegCode);
static constexpr int kBitsPerFpRegCode =
    32 - base::bits::CountLeadingZeros<uint32_t>(kMaxFpRegCode);
// GpRegPair requires 1 extra bit, S128RegPair also needs an extra bit.
static constexpr int kBitsPerRegPair =
    (kNeedS128RegPair ? 2 : 1) + 2 * kBitsPerGpRegCode;

static_assert(2 * kBitsPerGpRegCode >= kBitsPerFpRegCode,
              "encoding for gp pair and fp pair collides");

class LiftoffRegister {
  static constexpr int needed_bits =
      std::max(kNeedI64RegPair || kNeedS128RegPair ? kBitsPerRegPair : 0,
               kBitsPerLiftoffRegCode);
  using storage_t = std::conditional<
      needed_bits <= 8, uint8_t,
      std::conditional<needed_bits <= 16, uint16_t, uint32_t>::type>::type;

  static_assert(8 * sizeof(storage_t) >= needed_bits,
                "chosen type is big enough");
  // Check for smallest required data type being chosen.
  // Special case for uint8_t as there are no smaller types.
  static_assert((8 * sizeof(storage_t) < 2 * needed_bits) ||
                    (sizeof(storage_t) == sizeof(uint8_t)),
                "chosen type is small enough");

 public:
  constexpr explicit LiftoffRegister(Register reg)
      : LiftoffRegister(reg.code()) {
    DCHECK(kLiftoffAssemblerGpCacheRegs.has(reg));
    DCHECK_EQ(reg, gp());
  }
  constexpr explicit LiftoffRegister(DoubleRegister reg)
      : LiftoffRegister(kAfterMaxLiftoffGpRegCode + reg.code()) {
    DCHECK(kLiftoffAssemblerFpCacheRegs.has(reg));
    DCHECK_EQ(reg, fp());
  }

  static LiftoffRegister from_liftoff_code(int code) {
    LiftoffRegister reg{static_cast<storage_t>(code)};
    // Check that the code is correct by round-tripping through the
    // reg-class-specific constructor.
    DCHECK(
        (reg.is_gp() && code == LiftoffRegister{reg.gp()}.liftoff_code()) ||
        (reg.is_fp() && code == LiftoffRegister{reg.fp()}.liftoff_code()) ||
        (reg.is_gp_pair() &&
         code == ForPair(reg.low_gp(), reg.high_gp()).liftoff_code()) ||
        (reg.is_fp_pair() && code == ForFpPair(reg.low_fp()).liftoff_code()));
    return reg;
  }

  static LiftoffRegister from_code(RegClass rc, int code) {
    switch (rc) {
      case kGpReg:
        return LiftoffRegister(Register::from_code(code));
      case kFpReg:
        return LiftoffRegister(DoubleRegister::from_code(code));
      default:
        UNREACHABLE();
    }
  }

  // Shifts the register code depending on the type before converting to a
  // LiftoffRegister.
  static LiftoffRegister from_external_code(RegClass rc, ValueKind kind,
                                            int code) {
    if (kFPAliasing == AliasingKind::kCombine && kind == kF32) {
      // Liftoff assumes a one-to-one mapping between float registers and
      // double registers, and so does not distinguish between f32 and f64
      // registers. The f32 register code must therefore be halved in order
      // to pass the f64 code to Liftoff.
      DCHECK_EQ(0, code % 2);
      return LiftoffRegister::from_code(rc, code >> 1);
    }
    if (kNeedS128RegPair && kind == kS128) {
      // Similarly for double registers and SIMD registers, the SIMD code
      // needs to be doubled to pass the f64 code to Liftoff.
      return LiftoffRegister::ForFpPair(DoubleRegister::from_code(code << 1));
    }
    return LiftoffRegister::from_code(rc, code);
  }

  static LiftoffRegister ForPair(Register low, Register high) {
    DCHECK(kNeedI64RegPair);
    DCHECK_NE(low, high);
    storage_t combined_code = low.code() | (high.code() << kBitsPerGpRegCode) |
                              (1 << (2 * kBitsPerGpRegCode));
    return LiftoffRegister(combined_code);
  }

  static LiftoffRegister ForFpPair(DoubleRegister low) {
    DCHECK(kNeedS128RegPair);
    DCHECK_EQ(0, low.code() % 2);
    storage_t combined_code = low.code() | 2 << (2 * kBitsPerGpRegCode);
    return LiftoffRegister(combined_code);
  }

  constexpr bool is_pair() const {
    return (kNeedI64RegPair || kNeedS128RegPair) &&
           (code_ & (3 << (2 * kBitsPerGpRegCode)));
  }

  constexpr bool is_gp_pair() const {
    return kNeedI64RegPair && (code_ & (1 << (2 * kBitsPerGpRegCode))) != 0;
  }
  constexpr bool is_fp_pair() const {
    return kNeedS128RegPair && (code_ & (2 << (2 * kBitsPerGpRegCode))) != 0;
  }
  constexpr bool is_gp() const { return code_ < kAfterMaxLiftoffGpRegCode; }
  constexpr bool is_fp() const {
    return code_ >= kAfterMaxLiftoffGpRegCode &&
           code_ < kAfterMaxLiftoffFpRegCode;
  }

  LiftoffRegister low() const {
    // Common case for most archs where only gp pair supported.
    if (!kNeedS128RegPair) return LiftoffRegister(low_gp());
    return is_gp_pair() ? LiftoffRegister(low_gp()) : LiftoffRegister(low_fp());
  }

  LiftoffRegister high() const {
    // Common case for most archs where only gp pair supported.
    if (!kNeedS128RegPair) return LiftoffRegister(high_gp());
    return is_gp_pair() ? LiftoffRegister(high_gp())
                        : LiftoffRegister(high_fp());
  }

  Register low_gp() const {
    DCHECK(is_gp_pair());
    static constexpr storage_t kCodeMask = (1 << kBitsPerGpRegCode) - 1;
    return Register::from_code(code_ & kCodeMask);
  }

  Register high_gp() const {
    DCHECK(is_gp_pair());
    static constexpr storage_t kCodeMask = (1 << kBitsPerGpRegCode) - 1;
    return Register::from_code((code_ >> kBitsPerGpRegCode) & kCodeMask);
  }

  DoubleRegister low_fp() const {
    DCHECK(is_fp_pair());
    static constexpr storage_t kCodeMask = (1 << kBitsPerFpRegCode) - 1;
    return DoubleRegister::from_code(code_ & kCodeMask);
  }

  DoubleRegister high_fp() const {
    DCHECK(is_fp_pair());
    static constexpr storage_t kCodeMask = (1 << kBitsPerFpRegCode) - 1;
    return DoubleRegister::from_code((code_ & kCodeMask) + 1);
  }

  constexpr Register gp() const {
    DCHECK(is_gp());
    return Register::from_code(code_);
  }

  constexpr DoubleRegister fp() const {
    DCHECK(is_fp());
    return DoubleRegister::from_code(code_ - kAfterMaxLiftoffGpRegCode);
  }

  constexpr int liftoff_code() const {
    static_assert(sizeof(int) >= sizeof(storage_t));
    return static_cast<int>(code_);
  }

  constexpr RegClass reg_class() const {
    return is_fp_pair() ? kFpRegPair
                        : is_gp_pair() ? kGpRegPair : is_gp() ? kGpReg : kFpReg;
  }

  bool operator==(const LiftoffRegister other) const {
    DCHECK_EQ(is_gp_pair(), other.is_gp_pair());
    DCHECK_EQ(is_fp_pair(), other.is_fp_pair());
    return code_ == other.code_;
  }
  bool operator!=(const LiftoffRegister other) const {
    DCHECK_EQ(is_gp_pair(), other.is_gp_pair());
    DCHECK_EQ(is_fp_pair(), other.is_fp_pair());
    return code_ != other.code_;
  }
  bool overlaps(const LiftoffRegister other) const {
    if (is_pair()) return low().overlaps(other) || high().overlaps(other);
    if (other.is_pair()) return *this == other.low() || *this == other.high();
    return *this == other;
  }

 private:
  explicit constexpr LiftoffRegister(storage_t code) : code_(code) {}

  storage_t code_;
};
ASSERT_TRIVIALLY_COPYABLE(LiftoffRegister);

inline std::ostream& operator<<(std::ostream& os, LiftoffRegister reg) {
  if (reg.is_gp_pair()) {
    return os << "<" << reg.low_gp() << "+" << reg.high_gp() << ">";
  } else if (reg.is_fp_pair()) {
    return os << "<" << reg.low_fp() << "+" << reg.high_fp() << ">";
  } else if (reg.is_gp()) {
    return os << reg.gp();
  } else {
    return os << reg.fp();
  }
}

class LiftoffRegList {
 public:
  class Iterator;

  static constexpr bool use_u16 = kAfterMaxLiftoffRegCode <= 16;
  static constexpr bool use_u32 = !use_u16 && kAfterMaxLiftoffRegCode <= 32;
  using storage_t = std::conditional<
      use_u16, uint16_t,
      std::conditional<use_u32, uint32_t, uint64_t>::type>::type;

  static constexpr storage_t kGpMask =
      storage_t{kLiftoffAssemblerGpCacheRegs.bits()};
  static constexpr storage_t kFpMask =
      storage_t{kLiftoffAssemblerFpCacheRegs.bits()}
      << kAfterMaxLiftoffGpRegCode;
  // Sets all even numbered fp registers.
  static constexpr uint64_t kEvenFpSetMask = uint64_t{0x5555555555555555}
                                             << kAfterMaxLiftoffGpRegCode;
  static constexpr uint64_t kOddFpSetMask = uint64_t{0xAAAAAAAAAAAAAAAA}
                                            << kAfterMaxLiftoffGpRegCode;

  constexpr LiftoffRegList() = default;

  // Allow to construct LiftoffRegList from a number of
  // {Register|DoubleRegister|LiftoffRegister}.
  template <
      typename... Regs,
      typename = std::enable_if_t<std::conjunction_v<std::disjunction<
          std::is_same<Register, Regs>, std::is_same<DoubleRegister, Regs>,
          std::is_same<LiftoffRegister, Regs>>...>>>
  constexpr explicit LiftoffRegList(Regs... regs) {
    (..., set(regs));
  }

  constexpr Register set(Register reg) {
    return set(LiftoffRegister(reg)).gp();
  }
  constexpr DoubleRegister set(DoubleRegister reg) {
    return set(LiftoffRegister(reg)).fp();
  }

  constexpr LiftoffRegister set(LiftoffRegister reg) {
    if (reg.is_pair()) {
      regs_ |= storage_t{1} << reg.low().liftoff_code();
      regs_ |= storage_t{1} << reg.high().liftoff_code();
    } else {
      regs_ |= storage_t{1} << reg.liftoff_code();
    }
    return reg;
  }

  constexpr LiftoffRegister clear(LiftoffRegister reg) {
    if (reg.is_pair()) {
      regs_ &= ~(storage_t{1} << reg.low().liftoff_code());
      regs_ &= ~(storage_t{1} << reg.high().liftoff_code());
    } else {
      regs_ &= ~(storage_t{1} << reg.liftoff_code());
    }
    return reg;
  }
  constexpr Register clear(Register reg) {
    return clear(LiftoffRegister{reg}).gp();
  }
  constexpr DoubleRegister clear(DoubleRegister reg) {
    return clear(LiftoffRegister{reg}).fp();
  }

  bool has(LiftoffRegister reg) const {
    if (reg.is_pair()) {
      DCHECK_EQ(has(reg.low()), has(reg.high()));
      reg = reg.low();
    }
    return (regs_ & (storage_t{1} << reg.liftoff_code())) != 0;
  }
  bool has(Register reg) const { return has(LiftoffRegister{reg}); }
  bool has(DoubleRegister reg) const { return has(LiftoffRegister{reg}); }

  constexpr bool is_empty() const { return regs_ == 0; }

  constexpr unsigned GetNumRegsSet() const {
    return base::bits::CountPopulation(regs_);
  }

  constexpr LiftoffRegList operator&(const LiftoffRegList other) const {
    return LiftoffRegList(regs_ & other.regs_);
  }

  constexpr LiftoffRegList operator|(const LiftoffRegList other) const {
    return LiftoffRegList(regs_ | other.regs_);
  }

  constexpr LiftoffRegList GetAdjacentFpRegsSet() const {
    // And regs_ with a right shifted version of itself, so reg[i] is set only
    // if reg[i+1] is set. We only care about the even fp registers.
    storage_t available = (regs_ >> 1) & regs_ & kEvenFpSetMask;
    return LiftoffRegList(available);
  }

  constexpr bool HasAdjacentFpRegsSet() const {
    return !GetAdjacentFpRegsSet().is_empty();
  }

  // Returns a list where if any part of an adjacent pair of FP regs was set,
  // both are set in the result. For example, [1, 4] is turned into [0, 1, 4, 5]
  // because (0, 1) and (4, 5) are adjacent pairs.
  constexpr LiftoffRegList SpreadSetBitsToAdjacentFpRegs() const {
    storage_t odd_regs = regs_ & kOddFpSetMask;
    storage_t even_regs = regs_ & kEvenFpSetMask;
    return FromBits(regs_ | ((odd_regs >> 1) & kFpMask) |
                    ((even_regs << 1) & kFpMask));
  }

  constexpr bool operator==(const LiftoffRegList other) const {
    return regs_ == other.regs_;
  }
  constexpr bool operator!=(const LiftoffRegList other) const {
    return regs_ != other.regs_;
  }

  LiftoffRegister GetFirstRegSet() const {
    V8_ASSUME(regs_ != 0);
    int first_code = base::bits::CountTrailingZeros(regs_);
    return LiftoffRegister::from_liftoff_code(first_code);
  }

  LiftoffRegister GetLastRegSet() const {
    V8_ASSUME(regs_ != 0);
    int last_code =
        8 * sizeof(regs_) - 1 - base::bits::CountLeadingZeros(regs_);
    return LiftoffRegister::from_liftoff_code(last_code);
  }

  LiftoffRegList MaskOut(const LiftoffRegList mask) const {
    // Masking out is guaranteed to return a correct reg list, hence no checks
    // needed.
    return FromBits(regs_ & ~mask.regs_);
  }

  RegList GetGpList() { return RegList::FromBits(regs_ & kGpMask); }
  DoubleRegList GetFpList() {
    return DoubleRegList::FromBits((regs_ & kFpMask) >>
                                   kAfterMaxLiftoffGpRegCode);
  }

  inline Iterator begin() const;
  inline Iterator end() const;

  static constexpr LiftoffRegList FromBits(storage_t bits) {
    DCHECK_EQ(bits, bits & (kGpMask | kFpMask));
    return LiftoffRegList(bits);
  }

  template <storage_t bits>
  static constexpr LiftoffRegList FromBits() {
    static_assert(bits == (bits & (kGpMask | kFpMask)), "illegal reg list");
    return LiftoffRegList{bits};
  }

#if DEBUG
  void Print() const;
#endif

 private:
  // Unchecked constructor. Only use for valid bits.
  explicit constexpr LiftoffRegList(storage_t bits) : regs_(bits) {}

  storage_t regs_ = 0;
};
ASSERT_TRIVIALLY_COPYABLE(LiftoffRegList);

static constexpr LiftoffRegList kGpCacheRegList =
    LiftoffRegList::FromBits<LiftoffRegList::kGpMask>();
static constexpr LiftoffRegList kFpCacheRegList =
    LiftoffRegList::FromBits<LiftoffRegList::kFpMask>();

class LiftoffRegList::Iterator {
 public:
  LiftoffRegister operator*() { return remaining_.GetFirstRegSet(); }
  Iterator& operator++() {
    remaining_.clear(remaining_.GetFirstRegSet());
    return *this;
  }
  bool operator==(Iterator other) { return remaining_ == other.remaining_; }
  bool operator!=(Iterator other) { return remaining_ != other.remaining_; }

 private:
  explicit Iterator(LiftoffRegList remaining) : remaining_(remaining) {}
  friend class LiftoffRegList;

  LiftoffRegList remaining_;
};

LiftoffRegList::Iterator LiftoffRegList::begin() const {
  return Iterator{*this};
}
LiftoffRegList::Iterator LiftoffRegList::end() const {
  return Iterator{LiftoffRegList{}};
}

static constexpr LiftoffRegList GetCacheRegList(RegClass rc) {
  V8_ASSUME(rc == kFpReg || rc == kGpReg);
  static_assert(kGpReg == 0 && kFpReg == 1);
  constexpr LiftoffRegList kRegLists[2]{kGpCacheRegList, kFpCacheRegList};
  return kRegLists[rc];
}

inline std::ostream& operator<<(std::ostream& os, LiftoffRegList reglist) {
  os << "{";
  for (bool first = true; !reglist.is_empty(); first = false) {
    LiftoffRegister reg = reglist.GetFirstRegSet();
    reglist.clear(reg);
    os << (first ? "" : ", ") << reg;
  }
  return os << "}";
}

}  // namespace wasm
}  // namespace internal
}  // namespace v8

#endif  // V8_WASM_BASELINE_LIFTOFF_REGISTER_H_