1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
|
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/module-decoder.h"
#include "src/base/functional.h"
#include "src/base/platform/platform.h"
#include "src/flags.h"
#include "src/macro-assembler.h"
#include "src/objects.h"
#include "src/v8.h"
#include "src/wasm/decoder.h"
#include "src/wasm/wasm-limits.h"
namespace v8 {
namespace internal {
namespace wasm {
#if DEBUG
#define TRACE(...) \
do { \
if (FLAG_trace_wasm_decoder) PrintF(__VA_ARGS__); \
} while (false)
#else
#define TRACE(...)
#endif
namespace {
const char* kNameString = "name";
const size_t kNameStringLength = 4;
ValueType TypeOf(const WasmModule* module, const WasmInitExpr& expr) {
switch (expr.kind) {
case WasmInitExpr::kNone:
return kWasmStmt;
case WasmInitExpr::kGlobalIndex:
return expr.val.global_index < module->globals.size()
? module->globals[expr.val.global_index].type
: kWasmStmt;
case WasmInitExpr::kI32Const:
return kWasmI32;
case WasmInitExpr::kI64Const:
return kWasmI64;
case WasmInitExpr::kF32Const:
return kWasmF32;
case WasmInitExpr::kF64Const:
return kWasmF64;
default:
UNREACHABLE();
return kWasmStmt;
}
}
// An iterator over the sections in a WASM binary module.
// Automatically skips all unknown sections.
class WasmSectionIterator {
public:
explicit WasmSectionIterator(Decoder& decoder)
: decoder_(decoder),
section_code_(kUnknownSectionCode),
section_start_(decoder.pc()),
section_end_(decoder.pc()) {
next();
}
inline bool more() const {
return section_code_ != kUnknownSectionCode && decoder_.more();
}
inline WasmSectionCode section_code() const { return section_code_; }
inline const byte* section_start() const { return section_start_; }
inline uint32_t section_length() const {
return static_cast<uint32_t>(section_end_ - section_start_);
}
inline const byte* payload_start() const { return payload_start_; }
inline uint32_t payload_length() const {
return static_cast<uint32_t>(section_end_ - payload_start_);
}
inline const byte* section_end() const { return section_end_; }
// Advances to the next section, checking that decoding the current section
// stopped at {section_end_}.
void advance() {
if (decoder_.pc() != section_end_) {
const char* msg = decoder_.pc() < section_end_ ? "shorter" : "longer";
decoder_.error(decoder_.pc(), decoder_.pc(),
"section was %s than expected size "
"(%u bytes expected, %zu decoded)",
msg, section_length(),
static_cast<size_t>(decoder_.pc() - section_start_));
}
next();
}
private:
Decoder& decoder_;
WasmSectionCode section_code_;
const byte* section_start_;
const byte* payload_start_;
const byte* section_end_;
// Reads the section code/name at the current position and sets up
// the internal fields.
void next() {
while (true) {
if (!decoder_.more()) {
section_code_ = kUnknownSectionCode;
return;
}
uint8_t section_code = decoder_.consume_u8("section code");
// Read and check the section size.
uint32_t section_length = decoder_.consume_u32v("section length");
section_start_ = decoder_.pc();
payload_start_ = section_start_;
if (decoder_.checkAvailable(section_length)) {
// Get the limit of the section within the module.
section_end_ = section_start_ + section_length;
} else {
// The section would extend beyond the end of the module.
section_end_ = section_start_;
}
if (section_code == kUnknownSectionCode) {
// Check for the known "name" section.
uint32_t string_length = decoder_.consume_u32v("section name length");
const byte* section_name_start = decoder_.pc();
decoder_.consume_bytes(string_length, "section name");
if (decoder_.failed() || decoder_.pc() > section_end_) {
TRACE("Section name of length %u couldn't be read\n", string_length);
section_code_ = kUnknownSectionCode;
return;
}
payload_start_ = decoder_.pc();
TRACE(" +%d section name : \"%.*s\"\n",
static_cast<int>(section_name_start - decoder_.start()),
string_length < 20 ? string_length : 20, section_name_start);
if (string_length == kNameStringLength &&
strncmp(reinterpret_cast<const char*>(section_name_start),
kNameString, kNameStringLength) == 0) {
section_code = kNameSectionCode;
} else {
section_code = kUnknownSectionCode;
}
} else if (!IsValidSectionCode(section_code)) {
decoder_.error(decoder_.pc(), decoder_.pc(),
"unknown section code #0x%02x", section_code);
section_code = kUnknownSectionCode;
}
section_code_ = static_cast<WasmSectionCode>(section_code);
TRACE("Section: %s\n", SectionName(section_code_));
if (section_code_ == kUnknownSectionCode &&
section_end_ > decoder_.pc()) {
// skip to the end of the unknown section.
uint32_t remaining =
static_cast<uint32_t>(section_end_ - decoder_.pc());
decoder_.consume_bytes(remaining, "section payload");
// fall through and continue to the next section.
} else {
return;
}
}
}
};
// The main logic for decoding the bytes of a module.
class ModuleDecoder : public Decoder {
public:
ModuleDecoder(Zone* zone, const byte* module_start, const byte* module_end,
ModuleOrigin origin)
: Decoder(module_start, module_end), module_zone(zone), origin_(origin) {
result_.start = start_;
if (end_ < start_) {
error(start_, "end is less than start");
end_ = start_;
}
}
virtual void onFirstError() {
pc_ = end_; // On error, terminate section decoding loop.
}
void DumpModule(const ModuleResult& result) {
std::string path;
if (FLAG_dump_wasm_module_path) {
path = FLAG_dump_wasm_module_path;
if (path.size() &&
!base::OS::isDirectorySeparator(path[path.size() - 1])) {
path += base::OS::DirectorySeparator();
}
}
// File are named `HASH.{ok,failed}.wasm`.
size_t hash = base::hash_range(start_, end_);
char buf[32] = {'\0'};
#if V8_OS_WIN && _MSC_VER < 1900
#define snprintf sprintf_s
#endif
snprintf(buf, sizeof(buf) - 1, "%016zx.%s.wasm", hash,
result.ok() ? "ok" : "failed");
std::string name(buf);
if (FILE* wasm_file = base::OS::FOpen((path + name).c_str(), "wb")) {
fwrite(start_, end_ - start_, 1, wasm_file);
fclose(wasm_file);
}
}
// Decodes an entire module.
ModuleResult DecodeModule(bool verify_functions = true) {
pc_ = start_;
WasmModule* module = new WasmModule(module_zone);
module->min_mem_pages = 0;
module->max_mem_pages = 0;
module->mem_export = false;
module->origin = origin_;
const byte* pos = pc_;
uint32_t magic_word = consume_u32("wasm magic");
#define BYTES(x) (x & 0xff), (x >> 8) & 0xff, (x >> 16) & 0xff, (x >> 24) & 0xff
if (magic_word != kWasmMagic) {
error(pos, pos,
"expected magic word %02x %02x %02x %02x, "
"found %02x %02x %02x %02x",
BYTES(kWasmMagic), BYTES(magic_word));
}
pos = pc_;
{
uint32_t magic_version = consume_u32("wasm version");
if (magic_version != kWasmVersion) {
error(pos, pos,
"expected version %02x %02x %02x %02x, "
"found %02x %02x %02x %02x",
BYTES(kWasmVersion), BYTES(magic_version));
}
}
WasmSectionIterator section_iter(*this);
// ===== Type section ====================================================
if (section_iter.section_code() == kTypeSectionCode) {
uint32_t signatures_count = consume_count("types count", kV8MaxWasmTypes);
module->signatures.reserve(signatures_count);
for (uint32_t i = 0; ok() && i < signatures_count; ++i) {
TRACE("DecodeSignature[%d] module+%d\n", i,
static_cast<int>(pc_ - start_));
FunctionSig* s = consume_sig();
module->signatures.push_back(s);
}
section_iter.advance();
}
// ===== Import section ==================================================
if (section_iter.section_code() == kImportSectionCode) {
uint32_t import_table_count =
consume_count("imports count", kV8MaxWasmImports);
module->import_table.reserve(import_table_count);
for (uint32_t i = 0; ok() && i < import_table_count; ++i) {
TRACE("DecodeImportTable[%d] module+%d\n", i,
static_cast<int>(pc_ - start_));
module->import_table.push_back({
0, // module_name_length
0, // module_name_offset
0, // field_name_offset
0, // field_name_length
kExternalFunction, // kind
0 // index
});
WasmImport* import = &module->import_table.back();
const byte* pos = pc_;
import->module_name_offset =
consume_string(&import->module_name_length, true);
import->field_name_offset =
consume_string(&import->field_name_length, true);
import->kind = static_cast<WasmExternalKind>(consume_u8("import kind"));
switch (import->kind) {
case kExternalFunction: {
// ===== Imported function =======================================
import->index = static_cast<uint32_t>(module->functions.size());
module->num_imported_functions++;
module->functions.push_back({nullptr, // sig
import->index, // func_index
0, // sig_index
0, // name_offset
0, // name_length
0, // code_start_offset
0, // code_end_offset
true, // imported
false}); // exported
WasmFunction* function = &module->functions.back();
function->sig_index = consume_sig_index(module, &function->sig);
break;
}
case kExternalTable: {
// ===== Imported table ==========================================
if (!AddTable(module)) break;
import->index =
static_cast<uint32_t>(module->function_tables.size());
module->function_tables.push_back({0, 0, false,
std::vector<int32_t>(), true,
false, SignatureMap()});
expect_u8("element type", kWasmAnyFunctionTypeForm);
WasmIndirectFunctionTable* table = &module->function_tables.back();
consume_resizable_limits("element count", "elements",
kV8MaxWasmTableSize, &table->min_size,
&table->has_max, kV8MaxWasmTableSize,
&table->max_size);
break;
}
case kExternalMemory: {
// ===== Imported memory =========================================
if (!AddMemory(module)) break;
consume_resizable_limits(
"memory", "pages", kV8MaxWasmMemoryPages,
&module->min_mem_pages, &module->has_max_mem,
kSpecMaxWasmMemoryPages, &module->max_mem_pages);
break;
}
case kExternalGlobal: {
// ===== Imported global =========================================
import->index = static_cast<uint32_t>(module->globals.size());
module->globals.push_back(
{kWasmStmt, false, WasmInitExpr(), 0, true, false});
WasmGlobal* global = &module->globals.back();
global->type = consume_value_type();
global->mutability = consume_mutability();
if (global->mutability) {
error("mutable globals cannot be imported");
}
break;
}
default:
error(pos, pos, "unknown import kind 0x%02x", import->kind);
break;
}
}
section_iter.advance();
}
// ===== Function section ================================================
if (section_iter.section_code() == kFunctionSectionCode) {
uint32_t functions_count =
consume_count("functions count", kV8MaxWasmFunctions);
module->functions.reserve(functions_count);
module->num_declared_functions = functions_count;
for (uint32_t i = 0; ok() && i < functions_count; ++i) {
uint32_t func_index = static_cast<uint32_t>(module->functions.size());
module->functions.push_back({nullptr, // sig
func_index, // func_index
0, // sig_index
0, // name_offset
0, // name_length
0, // code_start_offset
0, // code_end_offset
false, // imported
false}); // exported
WasmFunction* function = &module->functions.back();
function->sig_index = consume_sig_index(module, &function->sig);
}
section_iter.advance();
}
// ===== Table section ===================================================
if (section_iter.section_code() == kTableSectionCode) {
uint32_t table_count = consume_count("table count", kV8MaxWasmTables);
for (uint32_t i = 0; ok() && i < table_count; i++) {
if (!AddTable(module)) break;
module->function_tables.push_back({0, 0, false, std::vector<int32_t>(),
false, false, SignatureMap()});
WasmIndirectFunctionTable* table = &module->function_tables.back();
expect_u8("table type", kWasmAnyFunctionTypeForm);
consume_resizable_limits(
"table elements", "elements", kV8MaxWasmTableSize, &table->min_size,
&table->has_max, kV8MaxWasmTableSize, &table->max_size);
}
section_iter.advance();
}
// ===== Memory section ==================================================
if (section_iter.section_code() == kMemorySectionCode) {
uint32_t memory_count = consume_count("memory count", kV8MaxWasmMemories);
for (uint32_t i = 0; ok() && i < memory_count; i++) {
if (!AddMemory(module)) break;
consume_resizable_limits("memory", "pages", kV8MaxWasmMemoryPages,
&module->min_mem_pages, &module->has_max_mem,
kSpecMaxWasmMemoryPages,
&module->max_mem_pages);
}
section_iter.advance();
}
// ===== Global section ==================================================
if (section_iter.section_code() == kGlobalSectionCode) {
uint32_t globals_count =
consume_count("globals count", kV8MaxWasmGlobals);
uint32_t imported_globals = static_cast<uint32_t>(module->globals.size());
module->globals.reserve(imported_globals + globals_count);
for (uint32_t i = 0; ok() && i < globals_count; ++i) {
TRACE("DecodeGlobal[%d] module+%d\n", i,
static_cast<int>(pc_ - start_));
// Add an uninitialized global and pass a pointer to it.
module->globals.push_back(
{kWasmStmt, false, WasmInitExpr(), 0, false, false});
WasmGlobal* global = &module->globals.back();
DecodeGlobalInModule(module, i + imported_globals, global);
}
section_iter.advance();
}
// ===== Export section ==================================================
if (section_iter.section_code() == kExportSectionCode) {
uint32_t export_table_count =
consume_count("exports count", kV8MaxWasmImports);
module->export_table.reserve(export_table_count);
for (uint32_t i = 0; ok() && i < export_table_count; ++i) {
TRACE("DecodeExportTable[%d] module+%d\n", i,
static_cast<int>(pc_ - start_));
module->export_table.push_back({
0, // name_length
0, // name_offset
kExternalFunction, // kind
0 // index
});
WasmExport* exp = &module->export_table.back();
exp->name_offset = consume_string(&exp->name_length, true);
const byte* pos = pc();
exp->kind = static_cast<WasmExternalKind>(consume_u8("export kind"));
switch (exp->kind) {
case kExternalFunction: {
WasmFunction* func = nullptr;
exp->index = consume_func_index(module, &func);
module->num_exported_functions++;
if (func) func->exported = true;
break;
}
case kExternalTable: {
WasmIndirectFunctionTable* table = nullptr;
exp->index = consume_table_index(module, &table);
if (table) table->exported = true;
break;
}
case kExternalMemory: {
uint32_t index = consume_u32v("memory index");
// TODO(titzer): This should become more regular
// once we support multiple memories.
if (!module->has_memory || index != 0) {
error("invalid memory index != 0");
}
module->mem_export = true;
break;
}
case kExternalGlobal: {
WasmGlobal* global = nullptr;
exp->index = consume_global_index(module, &global);
if (global) {
if (global->mutability) {
error("mutable globals cannot be exported");
}
global->exported = true;
}
break;
}
default:
error(pos, pos, "invalid export kind 0x%02x", exp->kind);
break;
}
}
// Check for duplicate exports (except for asm.js).
if (ok() && origin_ != kAsmJsOrigin && module->export_table.size() > 1) {
std::vector<WasmExport> sorted_exports(module->export_table);
const byte* base = start_;
auto cmp_less = [base](const WasmExport& a, const WasmExport& b) {
// Return true if a < b.
if (a.name_length != b.name_length) {
return a.name_length < b.name_length;
}
return memcmp(base + a.name_offset, base + b.name_offset,
a.name_length) < 0;
};
std::stable_sort(sorted_exports.begin(), sorted_exports.end(),
cmp_less);
auto it = sorted_exports.begin();
WasmExport* last = &*it++;
for (auto end = sorted_exports.end(); it != end; last = &*it++) {
DCHECK(!cmp_less(*it, *last)); // Vector must be sorted.
if (!cmp_less(*last, *it)) {
const byte* pc = start_ + it->name_offset;
error(pc, pc,
"Duplicate export name '%.*s' for functions %d and %d",
it->name_length, pc, last->index, it->index);
break;
}
}
}
section_iter.advance();
}
// ===== Start section ===================================================
if (section_iter.section_code() == kStartSectionCode) {
WasmFunction* func;
const byte* pos = pc_;
module->start_function_index = consume_func_index(module, &func);
if (func &&
(func->sig->parameter_count() > 0 || func->sig->return_count() > 0)) {
error(pos,
"invalid start function: non-zero parameter or return count");
}
section_iter.advance();
}
// ===== Elements section ================================================
if (section_iter.section_code() == kElementSectionCode) {
uint32_t element_count =
consume_count("element count", kV8MaxWasmTableSize);
for (uint32_t i = 0; ok() && i < element_count; ++i) {
const byte* pos = pc();
uint32_t table_index = consume_u32v("table index");
if (table_index != 0) {
error(pos, pos, "illegal table index %u != 0", table_index);
}
WasmIndirectFunctionTable* table = nullptr;
if (table_index >= module->function_tables.size()) {
error(pos, pos, "out of bounds table index %u", table_index);
} else {
table = &module->function_tables[table_index];
}
WasmInitExpr offset = consume_init_expr(module, kWasmI32);
uint32_t num_elem =
consume_count("number of elements", kV8MaxWasmTableEntries);
std::vector<uint32_t> vector;
module->table_inits.push_back({table_index, offset, vector});
WasmTableInit* init = &module->table_inits.back();
for (uint32_t j = 0; ok() && j < num_elem; j++) {
WasmFunction* func = nullptr;
uint32_t index = consume_func_index(module, &func);
init->entries.push_back(index);
if (table && index < module->functions.size()) {
// Canonicalize signature indices during decoding.
table->map.FindOrInsert(module->functions[index].sig);
}
}
}
section_iter.advance();
}
// ===== Code section ====================================================
if (section_iter.section_code() == kCodeSectionCode) {
const byte* pos = pc_;
uint32_t functions_count = consume_u32v("functions count");
if (functions_count != module->num_declared_functions) {
error(pos, pos, "function body count %u mismatch (%u expected)",
functions_count, module->num_declared_functions);
}
for (uint32_t i = 0; ok() && i < functions_count; ++i) {
WasmFunction* function =
&module->functions[i + module->num_imported_functions];
uint32_t size = consume_u32v("body size");
function->code_start_offset = pc_offset();
function->code_end_offset = pc_offset() + size;
if (verify_functions) {
ModuleBytesEnv module_env(module, nullptr,
ModuleWireBytes(start_, end_));
VerifyFunctionBody(i + module->num_imported_functions, &module_env,
function);
}
consume_bytes(size, "function body");
}
section_iter.advance();
}
// ===== Data section ====================================================
if (section_iter.section_code() == kDataSectionCode) {
uint32_t data_segments_count =
consume_count("data segments count", kV8MaxWasmDataSegments);
module->data_segments.reserve(data_segments_count);
for (uint32_t i = 0; ok() && i < data_segments_count; ++i) {
if (!module->has_memory) {
error("cannot load data without memory");
break;
}
TRACE("DecodeDataSegment[%d] module+%d\n", i,
static_cast<int>(pc_ - start_));
module->data_segments.push_back({
WasmInitExpr(), // dest_addr
0, // source_offset
0 // source_size
});
WasmDataSegment* segment = &module->data_segments.back();
DecodeDataSegmentInModule(module, segment);
}
section_iter.advance();
}
// ===== Name section ====================================================
if (section_iter.section_code() == kNameSectionCode) {
// TODO(titzer): find a way to report name errors as warnings.
// Use an inner decoder so that errors don't fail the outer decoder.
Decoder inner(start_, pc_, end_);
uint32_t functions_count = inner.consume_u32v("functions count");
for (uint32_t i = 0; inner.ok() && i < functions_count; ++i) {
uint32_t function_name_length = 0;
uint32_t name_offset =
consume_string(inner, &function_name_length, false);
uint32_t func_index = i;
if (inner.ok() && func_index < module->functions.size()) {
module->functions[func_index].name_offset = name_offset;
module->functions[func_index].name_length = function_name_length;
}
uint32_t local_names_count = inner.consume_u32v("local names count");
for (uint32_t j = 0; ok() && j < local_names_count; j++) {
uint32_t length = inner.consume_u32v("string length");
inner.consume_bytes(length, "string");
}
}
// Skip the whole names section in the outer decoder.
consume_bytes(section_iter.payload_length(), nullptr);
section_iter.advance();
}
// ===== Remaining sections ==============================================
if (section_iter.more() && ok()) {
error(pc(), pc(), "unexpected section: %s",
SectionName(section_iter.section_code()));
}
if (ok()) {
CalculateGlobalOffsets(module);
}
const WasmModule* finished_module = module;
ModuleResult result = toResult(finished_module);
if (verify_functions && result.ok()) {
result.MoveFrom(result_); // Copy error code and location.
}
if (FLAG_dump_wasm_module) DumpModule(result);
return result;
}
// Decodes a single anonymous function starting at {start_}.
FunctionResult DecodeSingleFunction(ModuleBytesEnv* module_env,
WasmFunction* function) {
pc_ = start_;
function->sig = consume_sig(); // read signature
function->name_offset = 0; // ---- name
function->name_length = 0; // ---- name length
function->code_start_offset = off(pc_); // ---- code start
function->code_end_offset = off(end_); // ---- code end
if (ok()) VerifyFunctionBody(0, module_env, function);
FunctionResult result;
result.MoveFrom(result_); // Copy error code and location.
result.val = function;
return result;
}
// Decodes a single function signature at {start}.
FunctionSig* DecodeFunctionSignature(const byte* start) {
pc_ = start;
FunctionSig* result = consume_sig();
return ok() ? result : nullptr;
}
WasmInitExpr DecodeInitExpr(const byte* start) {
pc_ = start;
return consume_init_expr(nullptr, kWasmStmt);
}
private:
Zone* module_zone;
ModuleResult result_;
ModuleOrigin origin_;
uint32_t off(const byte* ptr) { return static_cast<uint32_t>(ptr - start_); }
bool AddTable(WasmModule* module) {
if (module->function_tables.size() > 0) {
error("At most one table is supported");
return false;
} else {
return true;
}
}
bool AddMemory(WasmModule* module) {
if (module->has_memory) {
error("At most one memory is supported");
return false;
} else {
module->has_memory = true;
return true;
}
}
// Decodes a single global entry inside a module starting at {pc_}.
void DecodeGlobalInModule(WasmModule* module, uint32_t index,
WasmGlobal* global) {
global->type = consume_value_type();
global->mutability = consume_mutability();
const byte* pos = pc();
global->init = consume_init_expr(module, kWasmStmt);
switch (global->init.kind) {
case WasmInitExpr::kGlobalIndex: {
uint32_t other_index = global->init.val.global_index;
if (other_index >= index) {
error(pos, pos,
"invalid global index in init expression, "
"index %u, other_index %u",
index, other_index);
} else if (module->globals[other_index].type != global->type) {
error(pos, pos,
"type mismatch in global initialization "
"(from global #%u), expected %s, got %s",
other_index, WasmOpcodes::TypeName(global->type),
WasmOpcodes::TypeName(module->globals[other_index].type));
}
break;
}
default:
if (global->type != TypeOf(module, global->init)) {
error(pos, pos,
"type error in global initialization, expected %s, got %s",
WasmOpcodes::TypeName(global->type),
WasmOpcodes::TypeName(TypeOf(module, global->init)));
}
}
}
bool IsWithinLimit(uint32_t limit, uint32_t offset, uint32_t size) {
if (offset > limit) return false;
if ((offset + size) < offset) return false; // overflow
return (offset + size) <= limit;
}
// Decodes a single data segment entry inside a module starting at {pc_}.
void DecodeDataSegmentInModule(WasmModule* module, WasmDataSegment* segment) {
const byte* start = pc_;
expect_u8("linear memory index", 0);
segment->dest_addr = consume_init_expr(module, kWasmI32);
segment->source_size = consume_u32v("source size");
segment->source_offset = static_cast<uint32_t>(pc_ - start_);
// Validate the data is in the module.
uint32_t module_limit = static_cast<uint32_t>(end_ - start_);
if (!IsWithinLimit(module_limit, segment->source_offset,
segment->source_size)) {
error(start, "segment out of bounds of module");
}
consume_bytes(segment->source_size, "segment data");
}
// Calculate individual global offsets and total size of globals table.
void CalculateGlobalOffsets(WasmModule* module) {
uint32_t offset = 0;
if (module->globals.size() == 0) {
module->globals_size = 0;
return;
}
for (WasmGlobal& global : module->globals) {
byte size =
WasmOpcodes::MemSize(WasmOpcodes::MachineTypeFor(global.type));
offset = (offset + size - 1) & ~(size - 1); // align
global.offset = offset;
offset += size;
}
module->globals_size = offset;
}
// Verifies the body (code) of a given function.
void VerifyFunctionBody(uint32_t func_num, ModuleBytesEnv* menv,
WasmFunction* function) {
if (FLAG_trace_wasm_decoder || FLAG_trace_wasm_decode_time) {
OFStream os(stdout);
os << "Verifying WASM function " << WasmFunctionName(function, menv)
<< std::endl;
}
FunctionBody body = {function->sig, start_,
start_ + function->code_start_offset,
start_ + function->code_end_offset};
DecodeResult result =
VerifyWasmCode(module_zone->allocator(),
menv == nullptr ? nullptr : menv->module, body);
if (result.failed()) {
// Wrap the error message from the function decoder.
std::ostringstream str;
str << "in function " << WasmFunctionName(function, menv) << ": ";
str << result;
std::string strval = str.str();
const char* raw = strval.c_str();
size_t len = strlen(raw);
char* buffer = new char[len];
strncpy(buffer, raw, len);
buffer[len - 1] = 0;
// Copy error code and location.
result_.MoveFrom(result);
result_.error_msg.reset(buffer);
}
}
uint32_t consume_string(uint32_t* length, bool validate_utf8) {
return consume_string(*this, length, validate_utf8);
}
// Reads a length-prefixed string, checking that it is within bounds. Returns
// the offset of the string, and the length as an out parameter.
uint32_t consume_string(Decoder& decoder, uint32_t* length,
bool validate_utf8) {
*length = decoder.consume_u32v("string length");
uint32_t offset = decoder.pc_offset();
const byte* string_start = decoder.pc();
// Consume bytes before validation to guarantee that the string is not oob.
if (*length > 0) decoder.consume_bytes(*length, "string");
if (decoder.ok() && validate_utf8 &&
!unibrow::Utf8::Validate(string_start, *length)) {
decoder.error(string_start, "no valid UTF-8 string");
}
return offset;
}
uint32_t consume_sig_index(WasmModule* module, FunctionSig** sig) {
const byte* pos = pc_;
uint32_t sig_index = consume_u32v("signature index");
if (sig_index >= module->signatures.size()) {
error(pos, pos, "signature index %u out of bounds (%d signatures)",
sig_index, static_cast<int>(module->signatures.size()));
*sig = nullptr;
return 0;
}
*sig = module->signatures[sig_index];
return sig_index;
}
uint32_t consume_count(const char* name, size_t maximum) {
const byte* p = pc_;
uint32_t count = consume_u32v(name);
if (count > maximum) {
error(p, p, "%s of %u exceeds internal limit of %zu", name, count,
maximum);
return static_cast<uint32_t>(maximum);
}
return count;
}
uint32_t consume_func_index(WasmModule* module, WasmFunction** func) {
return consume_index("function index", module->functions, func);
}
uint32_t consume_global_index(WasmModule* module, WasmGlobal** global) {
return consume_index("global index", module->globals, global);
}
uint32_t consume_table_index(WasmModule* module,
WasmIndirectFunctionTable** table) {
return consume_index("table index", module->function_tables, table);
}
template <typename T>
uint32_t consume_index(const char* name, std::vector<T>& vector, T** ptr) {
const byte* pos = pc_;
uint32_t index = consume_u32v(name);
if (index >= vector.size()) {
error(pos, pos, "%s %u out of bounds (%d entries)", name, index,
static_cast<int>(vector.size()));
*ptr = nullptr;
return 0;
}
*ptr = &vector[index];
return index;
}
void consume_resizable_limits(const char* name, const char* units,
uint32_t max_initial, uint32_t* initial,
bool* has_max, uint32_t max_maximum,
uint32_t* maximum) {
uint32_t flags = consume_u32v("resizable limits flags");
const byte* pos = pc();
*initial = consume_u32v("initial size");
*has_max = false;
if (*initial > max_initial) {
error(pos, pos,
"initial %s size (%u %s) is larger than implementation limit (%u)",
name, *initial, units, max_initial);
}
if (flags & 1) {
*has_max = true;
pos = pc();
*maximum = consume_u32v("maximum size");
if (*maximum > max_maximum) {
error(
pos, pos,
"maximum %s size (%u %s) is larger than implementation limit (%u)",
name, *maximum, units, max_maximum);
}
if (*maximum < *initial) {
error(pos, pos, "maximum %s size (%u %s) is less than initial (%u %s)",
name, *maximum, units, *initial, units);
}
} else {
*has_max = false;
*maximum = max_initial;
}
}
bool expect_u8(const char* name, uint8_t expected) {
const byte* pos = pc();
uint8_t value = consume_u8(name);
if (value != expected) {
error(pos, pos, "expected %s 0x%02x, got 0x%02x", name, expected, value);
return false;
}
return true;
}
WasmInitExpr consume_init_expr(WasmModule* module, ValueType expected) {
const byte* pos = pc();
uint8_t opcode = consume_u8("opcode");
WasmInitExpr expr;
unsigned len = 0;
switch (opcode) {
case kExprGetGlobal: {
GlobalIndexOperand operand(this, pc() - 1);
if (module->globals.size() <= operand.index) {
error("global index is out of bounds");
expr.kind = WasmInitExpr::kNone;
expr.val.i32_const = 0;
break;
}
WasmGlobal* global = &module->globals[operand.index];
if (global->mutability || !global->imported) {
error(
"only immutable imported globals can be used in initializer "
"expressions");
expr.kind = WasmInitExpr::kNone;
expr.val.i32_const = 0;
break;
}
expr.kind = WasmInitExpr::kGlobalIndex;
expr.val.global_index = operand.index;
len = operand.length;
break;
}
case kExprI32Const: {
ImmI32Operand operand(this, pc() - 1);
expr.kind = WasmInitExpr::kI32Const;
expr.val.i32_const = operand.value;
len = operand.length;
break;
}
case kExprF32Const: {
ImmF32Operand operand(this, pc() - 1);
expr.kind = WasmInitExpr::kF32Const;
expr.val.f32_const = operand.value;
len = operand.length;
break;
}
case kExprI64Const: {
ImmI64Operand operand(this, pc() - 1);
expr.kind = WasmInitExpr::kI64Const;
expr.val.i64_const = operand.value;
len = operand.length;
break;
}
case kExprF64Const: {
ImmF64Operand operand(this, pc() - 1);
expr.kind = WasmInitExpr::kF64Const;
expr.val.f64_const = operand.value;
len = operand.length;
break;
}
default: {
error("invalid opcode in initialization expression");
expr.kind = WasmInitExpr::kNone;
expr.val.i32_const = 0;
}
}
consume_bytes(len, "init code");
if (!expect_u8("end opcode", kExprEnd)) {
expr.kind = WasmInitExpr::kNone;
}
if (expected != kWasmStmt && TypeOf(module, expr) != kWasmI32) {
error(pos, pos, "type error in init expression, expected %s, got %s",
WasmOpcodes::TypeName(expected),
WasmOpcodes::TypeName(TypeOf(module, expr)));
}
return expr;
}
// Read a mutability flag
bool consume_mutability() {
byte val = consume_u8("mutability");
if (val > 1) error(pc_ - 1, "invalid mutability");
return val != 0;
}
// Reads a single 8-bit integer, interpreting it as a local type.
ValueType consume_value_type() {
byte val = consume_u8("value type");
ValueTypeCode t = static_cast<ValueTypeCode>(val);
switch (t) {
case kLocalI32:
return kWasmI32;
case kLocalI64:
return kWasmI64;
case kLocalF32:
return kWasmF32;
case kLocalF64:
return kWasmF64;
case kLocalS128:
if (origin_ != kAsmJsOrigin && FLAG_wasm_simd_prototype) {
return kWasmS128;
} else {
error(pc_ - 1, "invalid local type");
return kWasmStmt;
}
default:
error(pc_ - 1, "invalid local type");
return kWasmStmt;
}
}
// Parses a type entry, which is currently limited to functions only.
FunctionSig* consume_sig() {
if (!expect_u8("type form", kWasmFunctionTypeForm)) return nullptr;
// parse parameter types
uint32_t param_count =
consume_count("param count", kV8MaxWasmFunctionParams);
if (failed()) return nullptr;
std::vector<ValueType> params;
for (uint32_t i = 0; ok() && i < param_count; ++i) {
ValueType param = consume_value_type();
params.push_back(param);
}
// parse return types
const size_t max_return_count = FLAG_wasm_mv_prototype
? kV8MaxWasmFunctionMultiReturns
: kV8MaxWasmFunctionReturns;
uint32_t return_count = consume_count("return count", max_return_count);
if (failed()) return nullptr;
std::vector<ValueType> returns;
for (uint32_t i = 0; ok() && i < return_count; ++i) {
ValueType ret = consume_value_type();
returns.push_back(ret);
}
if (failed()) return nullptr;
// FunctionSig stores the return types first.
ValueType* buffer =
module_zone->NewArray<ValueType>(param_count + return_count);
uint32_t b = 0;
for (uint32_t i = 0; i < return_count; ++i) buffer[b++] = returns[i];
for (uint32_t i = 0; i < param_count; ++i) buffer[b++] = params[i];
return new (module_zone) FunctionSig(return_count, param_count, buffer);
}
};
// Helpers for nice error messages.
class ModuleError : public ModuleResult {
public:
explicit ModuleError(const char* msg) {
error_code = kError;
size_t len = strlen(msg) + 1;
char* result = new char[len];
strncpy(result, msg, len);
result[len - 1] = 0;
error_msg.reset(result);
}
};
// Helpers for nice error messages.
class FunctionError : public FunctionResult {
public:
explicit FunctionError(const char* msg) {
error_code = kError;
size_t len = strlen(msg) + 1;
char* result = new char[len];
strncpy(result, msg, len);
result[len - 1] = 0;
error_msg.reset(result);
}
};
// Find section with given section code. Return Vector of the payload, or null
// Vector if section is not found or module bytes are invalid.
Vector<const byte> FindSection(const byte* module_start, const byte* module_end,
WasmSectionCode code) {
Decoder decoder(module_start, module_end);
uint32_t magic_word = decoder.consume_u32("wasm magic");
if (magic_word != kWasmMagic) decoder.error("wrong magic word");
uint32_t magic_version = decoder.consume_u32("wasm version");
if (magic_version != kWasmVersion) decoder.error("wrong wasm version");
WasmSectionIterator section_iter(decoder);
while (section_iter.more()) {
if (section_iter.section_code() == code) {
return Vector<const uint8_t>(section_iter.payload_start(),
section_iter.payload_length());
}
decoder.consume_bytes(section_iter.payload_length(), "section payload");
section_iter.advance();
}
return Vector<const uint8_t>();
}
} // namespace
ModuleResult DecodeWasmModule(Isolate* isolate, const byte* module_start,
const byte* module_end, bool verify_functions,
ModuleOrigin origin) {
HistogramTimerScope wasm_decode_module_time_scope(
isolate->counters()->wasm_decode_module_time());
size_t size = module_end - module_start;
if (module_start > module_end) return ModuleError("start > end");
if (size >= kV8MaxWasmModuleSize)
return ModuleError("size > maximum module size");
// TODO(bradnelson): Improve histogram handling of size_t.
isolate->counters()->wasm_module_size_bytes()->AddSample(
static_cast<int>(size));
// Signatures are stored in zone memory, which have the same lifetime
// as the {module}.
Zone* zone = new Zone(isolate->allocator(), ZONE_NAME);
ModuleDecoder decoder(zone, module_start, module_end, origin);
ModuleResult result = decoder.DecodeModule(verify_functions);
// TODO(bradnelson): Improve histogram handling of size_t.
// TODO(titzer): this isn't accurate, since it doesn't count the data
// allocated on the C++ heap.
// https://bugs.chromium.org/p/chromium/issues/detail?id=657320
isolate->counters()->wasm_decode_module_peak_memory_bytes()->AddSample(
static_cast<int>(zone->allocation_size()));
return result;
}
FunctionSig* DecodeWasmSignatureForTesting(Zone* zone, const byte* start,
const byte* end) {
ModuleDecoder decoder(zone, start, end, kWasmOrigin);
return decoder.DecodeFunctionSignature(start);
}
WasmInitExpr DecodeWasmInitExprForTesting(const byte* start, const byte* end) {
AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
ModuleDecoder decoder(&zone, start, end, kWasmOrigin);
return decoder.DecodeInitExpr(start);
}
FunctionResult DecodeWasmFunction(Isolate* isolate, Zone* zone,
ModuleBytesEnv* module_env,
const byte* function_start,
const byte* function_end) {
HistogramTimerScope wasm_decode_function_time_scope(
isolate->counters()->wasm_decode_function_time());
size_t size = function_end - function_start;
if (function_start > function_end) return FunctionError("start > end");
if (size > kV8MaxWasmFunctionSize)
return FunctionError("size > maximum function size");
isolate->counters()->wasm_function_size_bytes()->AddSample(
static_cast<int>(size));
WasmFunction* function = new WasmFunction();
ModuleDecoder decoder(zone, function_start, function_end, kWasmOrigin);
return decoder.DecodeSingleFunction(module_env, function);
}
FunctionOffsetsResult DecodeWasmFunctionOffsets(const byte* module_start,
const byte* module_end) {
// Find and decode the code section.
Vector<const byte> code_section =
FindSection(module_start, module_end, kCodeSectionCode);
Decoder decoder(code_section.start(), code_section.end());
FunctionOffsets table;
if (!code_section.start()) {
decoder.error("no code section");
return decoder.toResult(std::move(table));
}
uint32_t functions_count = decoder.consume_u32v("functions count");
// Reserve space for the entries, taking care of invalid input.
if (functions_count < static_cast<unsigned>(code_section.length()) / 2) {
table.reserve(functions_count);
}
int section_offset = static_cast<int>(code_section.start() - module_start);
DCHECK_LE(0, section_offset);
for (uint32_t i = 0; i < functions_count && decoder.ok(); ++i) {
uint32_t size = decoder.consume_u32v("body size");
int offset = static_cast<int>(section_offset + decoder.pc_offset());
table.push_back(std::make_pair(offset, static_cast<int>(size)));
DCHECK(table.back().first >= 0 && table.back().second >= 0);
decoder.consume_bytes(size);
}
if (decoder.more()) decoder.error("unexpected additional bytes");
return decoder.toResult(std::move(table));
}
AsmJsOffsetsResult DecodeAsmJsOffsets(const byte* tables_start,
const byte* tables_end) {
AsmJsOffsets table;
Decoder decoder(tables_start, tables_end);
uint32_t functions_count = decoder.consume_u32v("functions count");
// Reserve space for the entries, taking care of invalid input.
if (functions_count < static_cast<unsigned>(tables_end - tables_start)) {
table.reserve(functions_count);
}
for (uint32_t i = 0; i < functions_count && decoder.ok(); ++i) {
uint32_t size = decoder.consume_u32v("table size");
if (size == 0) {
table.push_back(std::vector<AsmJsOffsetEntry>());
continue;
}
if (!decoder.checkAvailable(size)) {
decoder.error("illegal asm function offset table size");
}
const byte* table_end = decoder.pc() + size;
uint32_t locals_size = decoder.consume_u32v("locals size");
int function_start_position = decoder.consume_u32v("function start pos");
int last_byte_offset = locals_size;
int last_asm_position = function_start_position;
std::vector<AsmJsOffsetEntry> func_asm_offsets;
func_asm_offsets.reserve(size / 4); // conservative estimation
// Add an entry for the stack check, associated with position 0.
func_asm_offsets.push_back(
{0, function_start_position, function_start_position});
while (decoder.ok() && decoder.pc() < table_end) {
last_byte_offset += decoder.consume_u32v("byte offset delta");
int call_position =
last_asm_position + decoder.consume_i32v("call position delta");
int to_number_position =
call_position + decoder.consume_i32v("to_number position delta");
last_asm_position = to_number_position;
func_asm_offsets.push_back(
{last_byte_offset, call_position, to_number_position});
}
if (decoder.pc() != table_end) {
decoder.error("broken asm offset table");
}
table.push_back(std::move(func_asm_offsets));
}
if (decoder.more()) decoder.error("unexpected additional bytes");
return decoder.toResult(std::move(table));
}
std::vector<CustomSectionOffset> DecodeCustomSections(const byte* start,
const byte* end) {
Decoder decoder(start, end);
decoder.consume_bytes(4, "wasm magic");
decoder.consume_bytes(4, "wasm version");
std::vector<CustomSectionOffset> result;
while (decoder.more()) {
byte section_code = decoder.consume_u8("section code");
uint32_t section_length = decoder.consume_u32v("section length");
uint32_t section_start = decoder.pc_offset();
if (section_code != 0) {
// Skip known sections.
decoder.consume_bytes(section_length, "section bytes");
continue;
}
uint32_t name_length = decoder.consume_u32v("name length");
uint32_t name_offset = decoder.pc_offset();
decoder.consume_bytes(name_length, "section name");
uint32_t payload_offset = decoder.pc_offset();
uint32_t payload_length = section_length - (payload_offset - section_start);
decoder.consume_bytes(payload_length);
result.push_back({section_start, name_offset, name_length, payload_offset,
payload_length, section_length});
}
return result;
}
} // namespace wasm
} // namespace internal
} // namespace v8
|