summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/pgo.cc
blob: 5f17cf1b156429ca5830d9381aed6f648b9178f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Copyright 2022 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/wasm/pgo.h"

#include "src/wasm/decoder.h"
#include "src/wasm/wasm-module-builder.h"  // For {ZoneBuffer}.

namespace v8::internal::wasm {

constexpr uint8_t kFunctionExecutedBit = 1 << 0;
constexpr uint8_t kFunctionTieredUpBit = 1 << 1;

class ProfileGenerator {
 public:
  ProfileGenerator(const WasmModule* module,
                   const uint32_t* tiering_budget_array)
      : module_(module),
        type_feedback_mutex_guard_(&module->type_feedback.mutex),
        tiering_budget_array_(tiering_budget_array) {}

  base::OwnedVector<uint8_t> GetProfileData() {
    ZoneBuffer buffer{&zone_};

    SerializeTypeFeedback(buffer);
    SerializeTieringInfo(buffer);

    return base::OwnedVector<uint8_t>::Of(buffer);
  }

 private:
  void SerializeTypeFeedback(ZoneBuffer& buffer) {
    std::unordered_map<uint32_t, FunctionTypeFeedback>& feedback_for_function =
        module_->type_feedback.feedback_for_function;

    // Get an ordered list of function indexes, so we generate deterministic
    // data.
    std::vector<uint32_t> ordered_function_indexes;
    ordered_function_indexes.reserve(feedback_for_function.size());
    for (const auto& entry : feedback_for_function) {
      // Skip functions for which we have no feedback.
      if (entry.second.feedback_vector.empty()) continue;
      ordered_function_indexes.push_back(entry.first);
    }
    std::sort(ordered_function_indexes.begin(), ordered_function_indexes.end());

    buffer.write_u32v(static_cast<uint32_t>(ordered_function_indexes.size()));
    for (const uint32_t func_index : ordered_function_indexes) {
      buffer.write_u32v(func_index);
      // Serialize {feedback_vector}.
      const FunctionTypeFeedback& feedback =
          feedback_for_function.at(func_index);
      buffer.write_u32v(static_cast<uint32_t>(feedback.feedback_vector.size()));
      for (const CallSiteFeedback& call_site_feedback :
           feedback.feedback_vector) {
        int cases = call_site_feedback.num_cases();
        buffer.write_i32v(cases);
        for (int i = 0; i < cases; ++i) {
          buffer.write_i32v(call_site_feedback.function_index(i));
          buffer.write_i32v(call_site_feedback.call_count(i));
        }
      }
      // Serialize {call_targets}.
      buffer.write_u32v(static_cast<uint32_t>(feedback.call_targets.size()));
      for (uint32_t call_target : feedback.call_targets) {
        buffer.write_u32v(call_target);
      }
    }
  }

  void SerializeTieringInfo(ZoneBuffer& buffer) {
    std::unordered_map<uint32_t, FunctionTypeFeedback>& feedback_for_function =
        module_->type_feedback.feedback_for_function;
    const uint32_t initial_budget = v8_flags.wasm_tiering_budget;
    for (uint32_t declared_index = 0;
         declared_index < module_->num_declared_functions; ++declared_index) {
      uint32_t func_index = declared_index + module_->num_imported_functions;
      auto feedback_it = feedback_for_function.find(func_index);
      int prio = feedback_it == feedback_for_function.end()
                     ? 0
                     : feedback_it->second.tierup_priority;
      DCHECK_LE(0, prio);
      uint32_t remaining_budget = tiering_budget_array_[declared_index];
      DCHECK_GE(initial_budget, remaining_budget);

      bool was_tiered_up = prio > 0;
      bool was_executed = was_tiered_up || remaining_budget != initial_budget;

      // TODO(13209): Make this less V8-specific for productionization.
      buffer.write_u8((was_executed ? kFunctionExecutedBit : 0) |
                      (was_tiered_up ? kFunctionTieredUpBit : 0));
    }
  }

 private:
  const WasmModule* module_;
  AccountingAllocator allocator_;
  Zone zone_{&allocator_, "wasm::ProfileGenerator"};
  base::MutexGuard type_feedback_mutex_guard_;
  const uint32_t* const tiering_budget_array_;
};

void DeserializeTypeFeedback(Decoder& decoder, WasmModule* module) {
  std::unordered_map<uint32_t, FunctionTypeFeedback>& feedback_for_function =
      module->type_feedback.feedback_for_function;
  uint32_t num_entries = decoder.consume_u32v("num function entries");
  CHECK_LE(num_entries, module->num_declared_functions);
  for (uint32_t missing_entries = num_entries; missing_entries > 0;
       --missing_entries) {
    uint32_t function_index = decoder.consume_u32v("function index");
    CHECK(!feedback_for_function.count(function_index));
    FunctionTypeFeedback& feedback = feedback_for_function[function_index];
    // Deserialize {feedback_vector}.
    uint32_t feedback_vector_size =
        decoder.consume_u32v("feedback vector size");
    feedback.feedback_vector.resize(feedback_vector_size);
    for (CallSiteFeedback& feedback : feedback.feedback_vector) {
      int num_cases = decoder.consume_i32v("num cases");
      if (num_cases == 0) continue;  // no feedback
      if (num_cases == 1) {          // monomorphic
        int called_function_index = decoder.consume_i32v("function index");
        int call_count = decoder.consume_i32v("call count");
        feedback = CallSiteFeedback{called_function_index, call_count};
      } else {  // polymorphic
        auto* polymorphic = new CallSiteFeedback::PolymorphicCase[num_cases];
        for (int i = 0; i < num_cases; ++i) {
          polymorphic[i].function_index =
              decoder.consume_i32v("function index");
          polymorphic[i].absolute_call_frequency =
              decoder.consume_i32v("call count");
        }
        feedback = CallSiteFeedback{polymorphic, num_cases};
      }
    }
    // Deserialize {call_targets}.
    uint32_t num_call_targets = decoder.consume_u32v("num call targets");
    feedback.call_targets =
        base::OwnedVector<uint32_t>::NewForOverwrite(num_call_targets);
    for (uint32_t& call_target : feedback.call_targets) {
      call_target = decoder.consume_u32v("call target");
    }
  }
}

std::unique_ptr<ProfileInformation> DeserializeTieringInformation(
    Decoder& decoder, WasmModule* module) {
  std::vector<uint32_t> executed_functions;
  std::vector<uint32_t> tiered_up_functions;
  uint32_t start = module->num_imported_functions;
  uint32_t end = start + module->num_declared_functions;
  for (uint32_t func_index = start; func_index < end; ++func_index) {
    uint8_t tiering_info = decoder.consume_u8("tiering info");
    CHECK_EQ(0, tiering_info & ~3);
    bool was_executed = tiering_info & kFunctionExecutedBit;
    bool was_tiered_up = tiering_info & kFunctionTieredUpBit;
    if (was_tiered_up) tiered_up_functions.push_back(func_index);
    if (was_executed) executed_functions.push_back(func_index);
  }

  return std::make_unique<ProfileInformation>(std::move(executed_functions),
                                              std::move(tiered_up_functions));
}

std::unique_ptr<ProfileInformation> RestoreProfileData(
    WasmModule* module, base::Vector<uint8_t> profile_data) {
  Decoder decoder{profile_data.begin(), profile_data.end()};

  DeserializeTypeFeedback(decoder, module);
  std::unique_ptr<ProfileInformation> pgo_info =
      DeserializeTieringInformation(decoder, module);

  CHECK(decoder.ok());
  CHECK_EQ(decoder.pc(), decoder.end());

  return pgo_info;
}

void DumpProfileToFile(const WasmModule* module,
                       base::Vector<const uint8_t> wire_bytes,
                       uint32_t* tiering_budget_array) {
  CHECK(!wire_bytes.empty());
  // File are named `profile-wasm-<hash>`.
  // We use the same hash as for reported scripts, to make it easier to
  // correlate files to wasm modules (see {CreateWasmScript}).
  uint32_t hash = static_cast<uint32_t>(GetWireBytesHash(wire_bytes));
  base::EmbeddedVector<char, 32> filename;
  SNPrintF(filename, "profile-wasm-%08x", hash);

  ProfileGenerator profile_generator{module, tiering_budget_array};
  base::OwnedVector<uint8_t> profile_data = profile_generator.GetProfileData();

  PrintF("Dumping Wasm PGO data to file '%s' (%zu bytes)\n", filename.begin(),
         profile_data.size());
  if (FILE* file = base::OS::FOpen(filename.begin(), "wb")) {
    size_t written = fwrite(profile_data.begin(), 1, profile_data.size(), file);
    CHECK_EQ(profile_data.size(), written);
    base::Fclose(file);
  }
}

std::unique_ptr<ProfileInformation> LoadProfileFromFile(
    WasmModule* module, base::Vector<const uint8_t> wire_bytes) {
  CHECK(!wire_bytes.empty());
  // File are named `profile-wasm-<hash>`.
  // We use the same hash as for reported scripts, to make it easier to
  // correlate files to wasm modules (see {CreateWasmScript}).
  uint32_t hash = static_cast<uint32_t>(GetWireBytesHash(wire_bytes));
  base::EmbeddedVector<char, 32> filename;
  SNPrintF(filename, "profile-wasm-%08x", hash);

  FILE* file = base::OS::FOpen(filename.begin(), "rb");
  if (!file) {
    PrintF("No Wasm PGO data found: Cannot open file '%s'\n", filename.begin());
    return {};
  }

  fseek(file, 0, SEEK_END);
  size_t size = ftell(file);
  rewind(file);

  PrintF("Loading Wasm PGO data from file '%s' (%zu bytes)\n", filename.begin(),
         size);
  base::OwnedVector<uint8_t> profile_data =
      base::OwnedVector<uint8_t>::NewForOverwrite(size);
  for (size_t read = 0; read < size;) {
    read += fread(profile_data.begin() + read, 1, size - read, file);
    CHECK(!ferror(file));
  }

  base::Fclose(file);

  return RestoreProfileData(module, profile_data.as_vector());
}

}  // namespace v8::internal::wasm