summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/wasm-code-manager.cc
blob: 5d4f0f5d622c09b0443393b8182f9ec6b59ee150 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/wasm/wasm-code-manager.h"

#include <algorithm>
#include <iomanip>
#include <numeric>

#include "src/base/atomicops.h"
#include "src/base/build_config.h"
#include "src/base/iterator.h"
#include "src/base/macros.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/wrappers.h"
#include "src/base/small-vector.h"
#include "src/base/string-format.h"
#include "src/base/vector.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/common/code-memory-access.h"
#include "src/common/globals.h"
#include "src/diagnostics/disassembler.h"
#include "src/logging/counters.h"
#include "src/logging/log.h"
#include "src/objects/objects-inl.h"
#include "src/snapshot/embedded/embedded-data-inl.h"
#include "src/utils/ostreams.h"
#include "src/wasm/code-space-access.h"
#include "src/wasm/compilation-environment.h"
#include "src/wasm/function-compiler.h"
#include "src/wasm/jump-table-assembler.h"
#include "src/wasm/module-compiler.h"
#include "src/wasm/names-provider.h"
#include "src/wasm/pgo.h"
#include "src/wasm/wasm-debug.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-import-wrapper-cache.h"
#include "src/wasm/wasm-module-sourcemap.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-objects.h"
#include "src/wasm/well-known-imports.h"

#if defined(V8_OS_WIN64)
#include "src/diagnostics/unwinding-info-win64.h"
#endif  // V8_OS_WIN64

#define TRACE_HEAP(...)                                       \
  do {                                                        \
    if (v8_flags.trace_wasm_native_heap) PrintF(__VA_ARGS__); \
  } while (false)

namespace v8 {
namespace internal {
namespace wasm {

using trap_handler::ProtectedInstructionData;

// Check that {WasmCode} objects are sufficiently small. We create many of them,
// often for rather small functions.
// Increase the limit if needed, but first check if the size increase is
// justified.
#ifndef V8_GC_MOLE
static_assert(sizeof(WasmCode) <= 88);
#endif

base::AddressRegion DisjointAllocationPool::Merge(
    base::AddressRegion new_region) {
  // Find the possible insertion position by identifying the first region whose
  // start address is not less than that of {new_region}. Since there cannot be
  // any overlap between regions, this also means that the start of {above} is
  // bigger or equal than the *end* of {new_region}.
  auto above = regions_.lower_bound(new_region);
  DCHECK(above == regions_.end() || above->begin() >= new_region.end());

  // Check whether to merge with {above}.
  if (above != regions_.end() && new_region.end() == above->begin()) {
    base::AddressRegion merged_region{new_region.begin(),
                                      new_region.size() + above->size()};
    DCHECK_EQ(merged_region.end(), above->end());
    // Check whether to also merge with the region below.
    if (above != regions_.begin()) {
      auto below = above;
      --below;
      if (below->end() == new_region.begin()) {
        merged_region = {below->begin(), below->size() + merged_region.size()};
        regions_.erase(below);
      }
    }
    auto insert_pos = regions_.erase(above);
    regions_.insert(insert_pos, merged_region);
    return merged_region;
  }

  // No element below, and not adjavent to {above}: insert and done.
  if (above == regions_.begin()) {
    regions_.insert(above, new_region);
    return new_region;
  }

  auto below = above;
  --below;
  // Consistency check:
  DCHECK(above == regions_.end() || below->end() < above->begin());

  // Adjacent to {below}: merge and done.
  if (below->end() == new_region.begin()) {
    base::AddressRegion merged_region{below->begin(),
                                      below->size() + new_region.size()};
    DCHECK_EQ(merged_region.end(), new_region.end());
    regions_.erase(below);
    regions_.insert(above, merged_region);
    return merged_region;
  }

  // Not adjacent to any existing region: insert between {below} and {above}.
  DCHECK_LT(below->end(), new_region.begin());
  regions_.insert(above, new_region);
  return new_region;
}

base::AddressRegion DisjointAllocationPool::Allocate(size_t size) {
  return AllocateInRegion(size,
                          {kNullAddress, std::numeric_limits<size_t>::max()});
}

base::AddressRegion DisjointAllocationPool::AllocateInRegion(
    size_t size, base::AddressRegion region) {
  // Get an iterator to the first contained region whose start address is not
  // smaller than the start address of {region}. Start the search from the
  // region one before that (the last one whose start address is smaller).
  auto it = regions_.lower_bound(region);
  if (it != regions_.begin()) --it;

  for (auto end = regions_.end(); it != end; ++it) {
    base::AddressRegion overlap = it->GetOverlap(region);
    if (size > overlap.size()) continue;
    base::AddressRegion ret{overlap.begin(), size};
    base::AddressRegion old = *it;
    auto insert_pos = regions_.erase(it);
    if (size == old.size()) {
      // We use the full region --> nothing to add back.
    } else if (ret.begin() == old.begin()) {
      // We return a region at the start --> shrink old region from front.
      regions_.insert(insert_pos, {old.begin() + size, old.size() - size});
    } else if (ret.end() == old.end()) {
      // We return a region at the end --> shrink remaining region.
      regions_.insert(insert_pos, {old.begin(), old.size() - size});
    } else {
      // We return something in the middle --> split the remaining region
      // (insert the region with smaller address first).
      regions_.insert(insert_pos, {old.begin(), ret.begin() - old.begin()});
      regions_.insert(insert_pos, {ret.end(), old.end() - ret.end()});
    }
    return ret;
  }
  return {};
}

Address WasmCode::constant_pool() const {
  if (V8_EMBEDDED_CONSTANT_POOL_BOOL) {
    if (constant_pool_offset_ < code_comments_offset_) {
      return instruction_start() + constant_pool_offset_;
    }
  }
  return kNullAddress;
}

Address WasmCode::handler_table() const {
  return instruction_start() + handler_table_offset_;
}

int WasmCode::handler_table_size() const {
  DCHECK_GE(constant_pool_offset_, handler_table_offset_);
  return static_cast<int>(constant_pool_offset_ - handler_table_offset_);
}

Address WasmCode::code_comments() const {
  return instruction_start() + code_comments_offset_;
}

int WasmCode::code_comments_size() const {
  DCHECK_GE(unpadded_binary_size_, code_comments_offset_);
  return static_cast<int>(unpadded_binary_size_ - code_comments_offset_);
}

std::unique_ptr<const byte[]> WasmCode::ConcatenateBytes(
    std::initializer_list<base::Vector<const byte>> vectors) {
  size_t total_size = 0;
  for (auto& vec : vectors) total_size += vec.size();
  // Use default-initialization (== no initialization).
  std::unique_ptr<byte[]> result{new byte[total_size]};
  byte* ptr = result.get();
  for (auto& vec : vectors) {
    if (vec.empty()) continue;  // Avoid nullptr in {memcpy}.
    memcpy(ptr, vec.begin(), vec.size());
    ptr += vec.size();
  }
  return result;
}

void WasmCode::RegisterTrapHandlerData() {
  DCHECK(!has_trap_handler_index());
  if (kind() != WasmCode::kWasmFunction) return;
  if (protected_instructions_size_ == 0) return;

  Address base = instruction_start();

  size_t size = instructions().size();
  auto protected_instruction_data = this->protected_instructions();
  const int index =
      RegisterHandlerData(base, size, protected_instruction_data.size(),
                          protected_instruction_data.begin());

  // TODO(eholk): if index is negative, fail.
  CHECK_LE(0, index);
  set_trap_handler_index(index);
  DCHECK(has_trap_handler_index());
}

bool WasmCode::ShouldBeLogged(Isolate* isolate) {
  // The return value is cached in {WasmEngine::IsolateData::log_codes}. Ensure
  // to call {WasmEngine::EnableCodeLogging} if this return value would change
  // for any isolate. Otherwise we might lose code events.
  return isolate->v8_file_logger()->is_listening_to_code_events() ||
         isolate->logger()->is_listening_to_code_events() ||
         isolate->is_profiling();
}

std::string WasmCode::DebugName() const {
  if (IsAnonymous()) {
    return "anonymous function";
  }

  ModuleWireBytes wire_bytes(native_module()->wire_bytes());
  const WasmModule* module = native_module()->module();
  WireBytesRef name_ref =
      module->lazily_generated_names.LookupFunctionName(wire_bytes, index());
  WasmName name = wire_bytes.GetNameOrNull(name_ref);
  std::string name_buffer;
  if (kind() == kWasmToJsWrapper) {
    name_buffer = "wasm-to-js:";
    size_t prefix_len = name_buffer.size();
    constexpr size_t kMaxSigLength = 128;
    name_buffer.resize(prefix_len + kMaxSigLength);
    const FunctionSig* sig = module->functions[index()].sig;
    size_t sig_length = PrintSignature(
        base::VectorOf(&name_buffer[prefix_len], kMaxSigLength), sig);
    name_buffer.resize(prefix_len + sig_length);
    // If the import has a name, also append that (separated by "-").
    if (!name.empty()) {
      name_buffer += '-';
      name_buffer.append(name.begin(), name.size());
    }
  } else if (name.empty()) {
    name_buffer.resize(32);
    name_buffer.resize(
        SNPrintF(base::VectorOf(&name_buffer.front(), name_buffer.size()),
                 "wasm-function[%d]", index()));
  } else {
    name_buffer.append(name.begin(), name.end());
  }
  return name_buffer;
}

void WasmCode::LogCode(Isolate* isolate, const char* source_url,
                       int script_id) const {
  DCHECK(ShouldBeLogged(isolate));
  if (IsAnonymous()) return;

  ModuleWireBytes wire_bytes(native_module_->wire_bytes());
  const WasmModule* module = native_module_->module();
  std::string fn_name = DebugName();
  WasmName name = base::VectorOf(fn_name);

  const WasmDebugSymbols& debug_symbols = module->debug_symbols;
  auto load_wasm_source_map = isolate->wasm_load_source_map_callback();
  auto source_map = native_module_->GetWasmSourceMap();
  if (!source_map && debug_symbols.type == WasmDebugSymbols::Type::SourceMap &&
      !debug_symbols.external_url.is_empty() && load_wasm_source_map) {
    WasmName external_url =
        wire_bytes.GetNameOrNull(debug_symbols.external_url);
    std::string external_url_string(external_url.data(), external_url.size());
    HandleScope scope(isolate);
    v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate);
    Local<v8::String> source_map_str =
        load_wasm_source_map(v8_isolate, external_url_string.c_str());
    native_module_->SetWasmSourceMap(
        std::make_unique<WasmModuleSourceMap>(v8_isolate, source_map_str));
  }

  // Record source positions before adding code, otherwise when code is added,
  // there are no source positions to associate with the added code.
  if (!source_positions().empty()) {
    LOG_CODE_EVENT(isolate, WasmCodeLinePosInfoRecordEvent(instruction_start(),
                                                           source_positions()));
  }

  int code_offset = module->functions[index_].code.offset();
  PROFILE(isolate, CodeCreateEvent(LogEventListener::CodeTag::kFunction, this,
                                   name, source_url, code_offset, script_id));
}

void WasmCode::Validate() const {
  // The packing strategy for {tagged_parameter_slots} only works if both the
  // max number of parameters and their max combined stack slot usage fits into
  // their respective half of the result value.
  static_assert(wasm::kV8MaxWasmFunctionParams <
                std::numeric_limits<uint16_t>::max());
  static constexpr int kMaxSlotsPerParam = 4;  // S128 on 32-bit platforms.
  static_assert(wasm::kV8MaxWasmFunctionParams * kMaxSlotsPerParam <
                std::numeric_limits<uint16_t>::max());

#ifdef DEBUG
  // Scope for foreign WasmCode pointers.
  WasmCodeRefScope code_ref_scope;
  // We expect certain relocation info modes to never appear in {WasmCode}
  // objects or to be restricted to a small set of valid values. Hence the
  // iteration below does not use a mask, but visits all relocation data.
  for (RelocIterator it(instructions(), reloc_info(), constant_pool());
       !it.done(); it.next()) {
    RelocInfo::Mode mode = it.rinfo()->rmode();
    switch (mode) {
      case RelocInfo::WASM_CALL: {
        Address target = it.rinfo()->wasm_call_address();
        WasmCode* code = native_module_->Lookup(target);
        CHECK_NOT_NULL(code);
        CHECK_EQ(WasmCode::kJumpTable, code->kind());
        CHECK(code->contains(target));
        break;
      }
      case RelocInfo::WASM_STUB_CALL: {
        Address target = it.rinfo()->wasm_stub_call_address();
        WasmCode* code = native_module_->Lookup(target);
        CHECK_NOT_NULL(code);
        CHECK_EQ(WasmCode::kJumpTable, code->kind());
        CHECK(code->contains(target));
        break;
      }
      case RelocInfo::INTERNAL_REFERENCE:
      case RelocInfo::INTERNAL_REFERENCE_ENCODED: {
        Address target = it.rinfo()->target_internal_reference();
        CHECK(contains(target));
        break;
      }
      case RelocInfo::EXTERNAL_REFERENCE:
      case RelocInfo::CONST_POOL:
      case RelocInfo::VENEER_POOL:
        // These are OK to appear.
        break;
      default:
        FATAL("Unexpected mode: %d", mode);
    }
  }
#endif
}

void WasmCode::MaybePrint() const {
  // Determines whether flags want this code to be printed.
  bool function_index_matches =
      (!IsAnonymous() &&
       v8_flags.print_wasm_code_function_index == static_cast<int>(index()));
  if (v8_flags.print_code ||
      (kind() == kWasmFunction
           ? (v8_flags.print_wasm_code || function_index_matches)
           : v8_flags.print_wasm_stub_code.value())) {
    std::string name = DebugName();
    Print(name.c_str());
  }
}

void WasmCode::Print(const char* name) const {
  StdoutStream os;
  os << "--- WebAssembly code ---\n";
  Disassemble(name, os);
  if (native_module_->HasDebugInfo()) {
    if (auto* debug_side_table =
            native_module_->GetDebugInfo()->GetDebugSideTableIfExists(this)) {
      debug_side_table->Print(os);
    }
  }
  os << "--- End code ---\n";
}

void WasmCode::Disassemble(const char* name, std::ostream& os,
                           Address current_pc) const {
  if (name) os << "name: " << name << "\n";
  if (!IsAnonymous()) os << "index: " << index() << "\n";
  os << "kind: " << GetWasmCodeKindAsString(kind()) << "\n";
  if (kind() == kWasmFunction) {
    DCHECK(is_liftoff() || tier() == ExecutionTier::kTurbofan);
    const char* compiler =
        is_liftoff() ? (for_debugging() ? "Liftoff (debug)" : "Liftoff")
                     : "TurboFan";
    os << "compiler: " << compiler << "\n";
  }
  size_t padding = instructions().size() - unpadded_binary_size_;
  os << "Body (size = " << instructions().size() << " = "
     << unpadded_binary_size_ << " + " << padding << " padding)\n";

  int instruction_size = unpadded_binary_size_;
  if (constant_pool_offset_ < instruction_size) {
    instruction_size = constant_pool_offset_;
  }
  if (safepoint_table_offset_ && safepoint_table_offset_ < instruction_size) {
    instruction_size = safepoint_table_offset_;
  }
  if (handler_table_offset_ < instruction_size) {
    instruction_size = handler_table_offset_;
  }
  DCHECK_LT(0, instruction_size);

#ifdef ENABLE_DISASSEMBLER
  os << "Instructions (size = " << instruction_size << ")\n";
  Disassembler::Decode(nullptr, os, instructions().begin(),
                       instructions().begin() + instruction_size,
                       CodeReference(this), current_pc);
  os << "\n";

  if (handler_table_size() > 0) {
    HandlerTable table(this);
    os << "Exception Handler Table (size = " << table.NumberOfReturnEntries()
       << "):\n";
    table.HandlerTableReturnPrint(os);
    os << "\n";
  }

  if (protected_instructions_size_ > 0) {
    os << "Protected instructions:\n pc offset  land pad\n";
    for (auto& data : protected_instructions()) {
      os << std::setw(10) << std::hex << data.instr_offset << std::setw(10)
         << std::hex << data.landing_offset << "\n";
    }
    os << "\n";
  }

  if (!source_positions().empty()) {
    os << "Source positions:\n pc offset  position\n";
    for (SourcePositionTableIterator it(source_positions()); !it.done();
         it.Advance()) {
      os << std::setw(10) << std::hex << it.code_offset() << std::dec
         << std::setw(10) << it.source_position().ScriptOffset()
         << (it.is_statement() ? "  statement" : "") << "\n";
    }
    os << "\n";
  }

  if (safepoint_table_offset_ > 0) {
    SafepointTable table(this);
    table.Print(os);
    os << "\n";
  }

  os << "RelocInfo (size = " << reloc_info().size() << ")\n";
  for (RelocIterator it(instructions(), reloc_info(), constant_pool());
       !it.done(); it.next()) {
    it.rinfo()->Print(nullptr, os);
  }
  os << "\n";
#else   // !ENABLE_DISASSEMBLER
  os << "Instructions (size = " << instruction_size << ", "
     << static_cast<void*>(instructions().begin()) << "-"
     << static_cast<void*>(instructions().begin() + instruction_size) << ")\n";
#endif  // !ENABLE_DISASSEMBLER
}

const char* GetWasmCodeKindAsString(WasmCode::Kind kind) {
  switch (kind) {
    case WasmCode::kWasmFunction:
      return "wasm function";
    case WasmCode::kWasmToCapiWrapper:
      return "wasm-to-capi";
    case WasmCode::kWasmToJsWrapper:
      return "wasm-to-js";
    case WasmCode::kJumpTable:
      return "jump table";
  }
  return "unknown kind";
}

WasmCode::~WasmCode() {
  if (has_trap_handler_index()) {
    trap_handler::ReleaseHandlerData(trap_handler_index());
  }
}

V8_WARN_UNUSED_RESULT bool WasmCode::DecRefOnPotentiallyDeadCode() {
  if (GetWasmEngine()->AddPotentiallyDeadCode(this)) {
    // The code just became potentially dead. The ref count we wanted to
    // decrement is now transferred to the set of potentially dead code, and
    // will be decremented when the next GC is run.
    return false;
  }
  // If we reach here, the code was already potentially dead. Decrement the ref
  // count, and return true if it drops to zero.
  return DecRefOnDeadCode();
}

// static
void WasmCode::DecrementRefCount(base::Vector<WasmCode* const> code_vec) {
  // Decrement the ref counter of all given code objects. Keep the ones whose
  // ref count drops to zero.
  WasmEngine::DeadCodeMap dead_code;
  for (WasmCode* code : code_vec) {
    if (!code->DecRef()) continue;  // Remaining references.
    dead_code[code->native_module()].push_back(code);
  }

  if (dead_code.empty()) return;

  GetWasmEngine()->FreeDeadCode(dead_code);
}

SourcePosition WasmCode::GetSourcePositionBefore(int code_offset) {
  SourcePosition position;
  for (SourcePositionTableIterator iterator(source_positions());
       !iterator.done() && iterator.code_offset() < code_offset;
       iterator.Advance()) {
    position = iterator.source_position();
  }
  return position;
}

int WasmCode::GetSourceOffsetBefore(int code_offset) {
  return GetSourcePositionBefore(code_offset).ScriptOffset();
}

std::pair<int, SourcePosition> WasmCode::GetInliningPosition(
    int inlining_id) const {
  const size_t elem_size = sizeof(int) + sizeof(SourcePosition);
  const byte* start = inlining_positions().begin() + elem_size * inlining_id;
  DCHECK_LE(start, inlining_positions().end());
  std::pair<int, SourcePosition> result;
  std::memcpy(&result.first, start, sizeof result.first);
  std::memcpy(&result.second, start + sizeof result.first,
              sizeof result.second);
  return result;
}

WasmCodeAllocator::WasmCodeAllocator(std::shared_ptr<Counters> async_counters)
    : async_counters_(std::move(async_counters)) {
  owned_code_space_.reserve(4);
}

WasmCodeAllocator::~WasmCodeAllocator() {
  GetWasmCodeManager()->FreeNativeModule(base::VectorOf(owned_code_space_),
                                         committed_code_space());
}

void WasmCodeAllocator::Init(VirtualMemory code_space) {
  DCHECK(owned_code_space_.empty());
  DCHECK(free_code_space_.IsEmpty());
  free_code_space_.Merge(code_space.region());
  owned_code_space_.emplace_back(std::move(code_space));
  async_counters_->wasm_module_num_code_spaces()->AddSample(1);
}

namespace {
// On Windows, we cannot commit a region that straddles different reservations
// of virtual memory. Because we bump-allocate, and because, if we need more
// memory, we append that memory at the end of the owned_code_space_ list, we
// traverse that list in reverse order to find the reservation(s) that guide how
// to chunk the region to commit.
#if V8_OS_WIN
constexpr bool kNeedsToSplitRangeByReservations = true;
#else
constexpr bool kNeedsToSplitRangeByReservations = false;
#endif

base::SmallVector<base::AddressRegion, 1> SplitRangeByReservationsIfNeeded(
    base::AddressRegion range,
    const std::vector<VirtualMemory>& owned_code_space) {
  if (!kNeedsToSplitRangeByReservations) return {range};

  base::SmallVector<base::AddressRegion, 1> split_ranges;
  size_t missing_begin = range.begin();
  size_t missing_end = range.end();
  for (auto& vmem : base::Reversed(owned_code_space)) {
    Address overlap_begin = std::max(missing_begin, vmem.address());
    Address overlap_end = std::min(missing_end, vmem.end());
    if (overlap_begin >= overlap_end) continue;
    split_ranges.emplace_back(overlap_begin, overlap_end - overlap_begin);
    // Opportunistically reduce the missing range. This might terminate the loop
    // early.
    if (missing_begin == overlap_begin) missing_begin = overlap_end;
    if (missing_end == overlap_end) missing_end = overlap_begin;
    if (missing_begin >= missing_end) break;
  }
#ifdef ENABLE_SLOW_DCHECKS
  // The returned vector should cover the full range.
  size_t total_split_size = 0;
  for (auto split : split_ranges) total_split_size += split.size();
  DCHECK_EQ(range.size(), total_split_size);
#endif
  return split_ranges;
}

int NumWasmFunctionsInFarJumpTable(uint32_t num_declared_functions) {
  return NativeModule::kNeedsFarJumpsBetweenCodeSpaces
             ? static_cast<int>(num_declared_functions)
             : 0;
}

// Returns an overapproximation of the code size overhead per new code space
// created by the jump tables.
size_t OverheadPerCodeSpace(uint32_t num_declared_functions) {
  // Overhead for the jump table.
  size_t overhead = RoundUp<kCodeAlignment>(
      JumpTableAssembler::SizeForNumberOfSlots(num_declared_functions));

#if defined(V8_OS_WIN64)
  // On Win64, we need to reserve some pages at the beginning of an executable
  // space. See {AddCodeSpace}.
  overhead += Heap::GetCodeRangeReservedAreaSize();
#endif  // V8_OS_WIN64

  // Overhead for the far jump table.
  overhead +=
      RoundUp<kCodeAlignment>(JumpTableAssembler::SizeForNumberOfFarJumpSlots(
          WasmCode::kRuntimeStubCount,
          NumWasmFunctionsInFarJumpTable(num_declared_functions)));

  return overhead;
}

// Returns an estimate how much code space should be reserved. This can be
// smaller than the passed-in {code_size_estimate}, see comments in the code.
size_t ReservationSize(size_t code_size_estimate, int num_declared_functions,
                       size_t total_reserved) {
  size_t overhead = OverheadPerCodeSpace(num_declared_functions);

  // Reserve the maximum of
  //   a) needed size + overhead (this is the minimum needed)
  //   b) 2 * overhead (to not waste too much space by overhead)
  //   c) 1/4 of current total reservation size (to grow exponentially)
  // For the minimum size we only take the overhead into account and not the
  // code space estimate, for two reasons:
  //  - The code space estimate is only an estimate; we might actually need less
  //    space later.
  //  - When called at module construction time we pass the estimate for all
  //    code in the module; this can still be split up into multiple spaces
  //    later.
  size_t minimum_size = 2 * overhead;
  size_t suggested_size =
      std::max(std::max(RoundUp<kCodeAlignment>(code_size_estimate) + overhead,
                        minimum_size),
               total_reserved / 4);

  const size_t max_code_space_size =
      size_t{v8_flags.wasm_max_code_space_size_mb} * MB;
  if (V8_UNLIKELY(minimum_size > max_code_space_size)) {
    auto oom_detail = base::FormattedString{}
                      << "required reservation minimum (" << minimum_size
                      << ") is bigger than supported maximum ("
                      << max_code_space_size << ")";
    V8::FatalProcessOutOfMemory(nullptr,
                                "Exceeding maximum wasm code space size",
                                oom_detail.PrintToArray().data());
    UNREACHABLE();
  }

  // Limit by the maximum code space size.
  size_t reserve_size = std::min(max_code_space_size, suggested_size);

  return reserve_size;
}

// Sentinel value to be used for {AllocateForCodeInRegion} for specifying no
// restriction on the region to allocate in.
constexpr base::AddressRegion kUnrestrictedRegion{
    kNullAddress, std::numeric_limits<size_t>::max()};

}  // namespace

base::Vector<byte> WasmCodeAllocator::AllocateForCode(
    NativeModule* native_module, size_t size) {
  return AllocateForCodeInRegion(native_module, size, kUnrestrictedRegion);
}

base::Vector<byte> WasmCodeAllocator::AllocateForCodeInRegion(
    NativeModule* native_module, size_t size, base::AddressRegion region) {
  DCHECK_LT(0, size);
  auto* code_manager = GetWasmCodeManager();
  size = RoundUp<kCodeAlignment>(size);
  base::AddressRegion code_space =
      free_code_space_.AllocateInRegion(size, region);
  if (V8_UNLIKELY(code_space.is_empty())) {
    // Only allocations without a specific region are allowed to fail. Otherwise
    // the region must have been allocated big enough to hold all initial
    // allocations (jump tables etc).
    CHECK_EQ(kUnrestrictedRegion, region);

    Address hint = owned_code_space_.empty() ? kNullAddress
                                             : owned_code_space_.back().end();

    size_t total_reserved = 0;
    for (auto& vmem : owned_code_space_) total_reserved += vmem.size();
    size_t reserve_size = ReservationSize(
        size, native_module->module()->num_declared_functions, total_reserved);
    if (reserve_size < size) {
      auto oom_detail = base::FormattedString{}
                        << "cannot reserve space for " << size
                        << "bytes of code (maximum reservation size is "
                        << reserve_size << ")";
      V8::FatalProcessOutOfMemory(nullptr, "Grow wasm code space",
                                  oom_detail.PrintToArray().data());
    }
    VirtualMemory new_mem =
        code_manager->TryAllocate(reserve_size, reinterpret_cast<void*>(hint));
    if (!new_mem.IsReserved()) {
      auto oom_detail = base::FormattedString{}
                        << "cannot allocate more code space (" << reserve_size
                        << " bytes, currently " << total_reserved << ")";
      V8::FatalProcessOutOfMemory(nullptr, "Grow wasm code space",
                                  oom_detail.PrintToArray().data());
      UNREACHABLE();
    }

    base::AddressRegion new_region = new_mem.region();
    code_manager->AssignRange(new_region, native_module);
    free_code_space_.Merge(new_region);
    owned_code_space_.emplace_back(std::move(new_mem));
    native_module->AddCodeSpaceLocked(new_region);

    code_space = free_code_space_.Allocate(size);
    CHECK(!code_space.is_empty());

    async_counters_->wasm_module_num_code_spaces()->AddSample(
        static_cast<int>(owned_code_space_.size()));
  }
  const Address commit_page_size = CommitPageSize();
  Address commit_start = RoundUp(code_space.begin(), commit_page_size);

  Address commit_end = RoundUp(code_space.end(), commit_page_size);
  // {commit_start} will be either code_space.start or the start of the next
  // page. {commit_end} will be the start of the page after the one in which
  // the allocation ends.
  // We start from an aligned start, and we know we allocated vmem in
  // page multiples.
  // We just need to commit what's not committed. The page in which we
  // start is already committed (or we start at the beginning of a page).
  // The end needs to be committed all through the end of the page.
  if (commit_start < commit_end) {
    for (base::AddressRegion split_range : SplitRangeByReservationsIfNeeded(
             {commit_start, commit_end - commit_start}, owned_code_space_)) {
      code_manager->Commit(split_range);
    }
    committed_code_space_.fetch_add(commit_end - commit_start);
    // Committed code cannot grow bigger than maximum code space size.
    DCHECK_LE(committed_code_space_.load(),
              v8_flags.wasm_max_committed_code_mb * MB);
  }
  DCHECK(IsAligned(code_space.begin(), kCodeAlignment));
  generated_code_size_.fetch_add(code_space.size(), std::memory_order_relaxed);

  TRACE_HEAP("Code alloc for %p: 0x%" PRIxPTR ",+%zu\n", this,
             code_space.begin(), size);
  return {reinterpret_cast<byte*>(code_space.begin()), code_space.size()};
}

void WasmCodeAllocator::FreeCode(base::Vector<WasmCode* const> codes) {
  // Zap code area and collect freed code regions.
  DisjointAllocationPool freed_regions;
  size_t code_size = 0;
  for (WasmCode* code : codes) {
    code_size += code->instructions().size();
    freed_regions.Merge(base::AddressRegion{code->instruction_start(),
                                            code->instructions().size()});
  }
  freed_code_size_.fetch_add(code_size);

  // Merge {freed_regions} into {freed_code_space_} and put all ranges of full
  // pages to decommit into {regions_to_decommit} (decommitting is expensive,
  // so try to merge regions before decommitting).
  DisjointAllocationPool regions_to_decommit;
  size_t commit_page_size = CommitPageSize();
  for (auto region : freed_regions.regions()) {
    auto merged_region = freed_code_space_.Merge(region);
    Address discard_start =
        std::max(RoundUp(merged_region.begin(), commit_page_size),
                 RoundDown(region.begin(), commit_page_size));
    Address discard_end =
        std::min(RoundDown(merged_region.end(), commit_page_size),
                 RoundUp(region.end(), commit_page_size));
    if (discard_start >= discard_end) continue;
    regions_to_decommit.Merge({discard_start, discard_end - discard_start});
  }

  auto* code_manager = GetWasmCodeManager();
  for (auto region : regions_to_decommit.regions()) {
    size_t old_committed = committed_code_space_.fetch_sub(region.size());
    DCHECK_GE(old_committed, region.size());
    USE(old_committed);
    for (base::AddressRegion split_range :
         SplitRangeByReservationsIfNeeded(region, owned_code_space_)) {
      code_manager->Decommit(split_range);
    }
  }
}

size_t WasmCodeAllocator::GetNumCodeSpaces() const {
  return owned_code_space_.size();
}

namespace {
BoundsCheckStrategy GetBoundsChecks(const WasmModule* module) {
  if (!v8_flags.wasm_bounds_checks) return kNoBoundsChecks;
  if (v8_flags.wasm_enforce_bounds_checks) return kExplicitBoundsChecks;
  // We do not have trap handler support for memory64 yet.
  if (module->is_memory64) return kExplicitBoundsChecks;
  if (trap_handler::IsTrapHandlerEnabled()) return kTrapHandler;
  return kExplicitBoundsChecks;
}
}  // namespace

NativeModule::NativeModule(const WasmFeatures& enabled,
                           DynamicTiering dynamic_tiering,
                           VirtualMemory code_space,
                           std::shared_ptr<const WasmModule> module,
                           std::shared_ptr<Counters> async_counters,
                           std::shared_ptr<NativeModule>* shared_this)
    : engine_scope_(
          GetWasmEngine()->GetBarrierForBackgroundCompile()->TryLock()),
      code_allocator_(async_counters),
      enabled_features_(enabled),
      module_(std::move(module)),
      import_wrapper_cache_(std::unique_ptr<WasmImportWrapperCache>(
          new WasmImportWrapperCache())),
      bounds_checks_(GetBoundsChecks(module_.get())) {
  DCHECK(engine_scope_);
  // We receive a pointer to an empty {std::shared_ptr}, and install ourselve
  // there.
  DCHECK_NOT_NULL(shared_this);
  DCHECK_NULL(*shared_this);
  shared_this->reset(this);
  compilation_state_ = CompilationState::New(
      *shared_this, std::move(async_counters), dynamic_tiering);
  compilation_state_->InitCompileJob();
  DCHECK_NOT_NULL(module_);
  if (module_->num_declared_functions > 0) {
    code_table_ =
        std::make_unique<WasmCode*[]>(module_->num_declared_functions);
    tiering_budgets_ =
        std::make_unique<uint32_t[]>(module_->num_declared_functions);

    std::fill_n(tiering_budgets_.get(), module_->num_declared_functions,
                v8_flags.wasm_tiering_budget);
  }
  // Even though there cannot be another thread using this object (since we are
  // just constructing it), we need to hold the mutex to fulfill the
  // precondition of {WasmCodeAllocator::Init}, which calls
  // {NativeModule::AddCodeSpaceLocked}.
  base::RecursiveMutexGuard guard{&allocation_mutex_};
  auto initial_region = code_space.region();
  code_allocator_.Init(std::move(code_space));
  AddCodeSpaceLocked(initial_region);
}

void NativeModule::ReserveCodeTableForTesting(uint32_t max_functions) {
  WasmCodeRefScope code_ref_scope;
  DCHECK_LE(module_->num_declared_functions, max_functions);
  auto new_table = std::make_unique<WasmCode*[]>(max_functions);
  if (module_->num_declared_functions > 0) {
    memcpy(new_table.get(), code_table_.get(),
           module_->num_declared_functions * sizeof(WasmCode*));
  }
  code_table_ = std::move(new_table);

  base::AddressRegion single_code_space_region;
  base::RecursiveMutexGuard guard(&allocation_mutex_);
  CHECK_EQ(1, code_space_data_.size());
  single_code_space_region = code_space_data_[0].region;
  // Re-allocate jump table.
  main_jump_table_ = CreateEmptyJumpTableInRegionLocked(
      JumpTableAssembler::SizeForNumberOfSlots(max_functions),
      single_code_space_region);
  code_space_data_[0].jump_table = main_jump_table_;
  CodeSpaceWriteScope code_space_write_scope(this);
  InitializeJumpTableForLazyCompilation(max_functions);
}

void NativeModule::LogWasmCodes(Isolate* isolate, Script script) {
  DisallowGarbageCollection no_gc;
  if (!WasmCode::ShouldBeLogged(isolate)) return;

  TRACE_EVENT1("v8.wasm", "wasm.LogWasmCodes", "functions",
               module_->num_declared_functions);

  Object url_obj = script.name();
  DCHECK(url_obj.IsString() || url_obj.IsUndefined());
  std::unique_ptr<char[]> source_url =
      url_obj.IsString() ? String::cast(url_obj).ToCString()
                         : std::unique_ptr<char[]>(new char[1]{'\0'});

  // Log all owned code, not just the current entries in the code table. This
  // will also include import wrappers.
  WasmCodeRefScope code_ref_scope;
  for (auto& code : SnapshotAllOwnedCode()) {
    code->LogCode(isolate, source_url.get(), script.id());
  }
}

CompilationEnv NativeModule::CreateCompilationEnv() const {
  return {module(), bounds_checks_, kRuntimeExceptionSupport, enabled_features_,
          compilation_state()->dynamic_tiering()};
}

WasmCode* NativeModule::AddCodeForTesting(Handle<Code> code) {
  CodeSpaceWriteScope code_space_write_scope(this);
  const size_t relocation_size = code->relocation_size();
  base::OwnedVector<byte> reloc_info;
  if (relocation_size > 0) {
    reloc_info = base::OwnedVector<byte>::Of(
        base::Vector<byte>{code->relocation_start(), relocation_size});
  }
  Handle<ByteArray> source_pos_table(code->source_position_table(),
                                     code->instruction_stream().GetIsolate());
  base::OwnedVector<byte> source_pos =
      base::OwnedVector<byte>::NewForOverwrite(source_pos_table->length());
  if (source_pos_table->length() > 0) {
    source_pos_table->copy_out(0, source_pos.begin(),
                               source_pos_table->length());
  }
  static_assert(InstructionStream::kOnHeapBodyIsContiguous);
  base::Vector<const byte> instructions(
      reinterpret_cast<byte*>(code->body_start()),
      static_cast<size_t>(code->body_size()));
  const int stack_slots = code->stack_slots();

  // Metadata offsets in InstructionStream objects are relative to the start of
  // the metadata section, whereas WasmCode expects offsets relative to
  // InstructionStart.
  const int base_offset = code->instruction_size();
  // TODO(jgruber,v8:8758): Remove this translation. It exists only because
  // InstructionStream objects contains real offsets but WasmCode expects an
  // offset of 0 to mean 'empty'.
  const int safepoint_table_offset =
      code->has_safepoint_table() ? base_offset + code->safepoint_table_offset()
                                  : 0;
  const int handler_table_offset = base_offset + code->handler_table_offset();
  const int constant_pool_offset = base_offset + code->constant_pool_offset();
  const int code_comments_offset = base_offset + code->code_comments_offset();

  base::RecursiveMutexGuard guard{&allocation_mutex_};
  base::Vector<uint8_t> dst_code_bytes =
      code_allocator_.AllocateForCode(this, instructions.size());
  memcpy(dst_code_bytes.begin(), instructions.begin(), instructions.size());

  // Apply the relocation delta by iterating over the RelocInfo.
  intptr_t delta = reinterpret_cast<Address>(dst_code_bytes.begin()) -
                   code->InstructionStart();
  int mode_mask =
      RelocInfo::kApplyMask | RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL);
  auto jump_tables_ref =
      FindJumpTablesForRegionLocked(base::AddressRegionOf(dst_code_bytes));
  Address dst_code_addr = reinterpret_cast<Address>(dst_code_bytes.begin());
  Address constant_pool_start = dst_code_addr + constant_pool_offset;
  RelocIterator orig_it(*code, mode_mask);
  for (RelocIterator it(dst_code_bytes, reloc_info.as_vector(),
                        constant_pool_start, mode_mask);
       !it.done(); it.next(), orig_it.next()) {
    RelocInfo::Mode mode = it.rinfo()->rmode();
    if (RelocInfo::IsWasmStubCall(mode)) {
      uint32_t stub_call_tag = orig_it.rinfo()->wasm_call_tag();
      DCHECK_LT(stub_call_tag, WasmCode::kRuntimeStubCount);
      Address entry = GetNearRuntimeStubEntry(
          static_cast<WasmCode::RuntimeStubId>(stub_call_tag), jump_tables_ref);
      it.rinfo()->set_wasm_stub_call_address(entry, SKIP_ICACHE_FLUSH);
    } else {
      it.rinfo()->apply(delta);
    }
  }

  // Flush the i-cache after relocation.
  FlushInstructionCache(dst_code_bytes.begin(), dst_code_bytes.size());

  // FIXME(mliedtke): Get inlining positions from input.
  std::unique_ptr<WasmCode> new_code{
      new WasmCode{this,                     // native_module
                   kAnonymousFuncIndex,      // index
                   dst_code_bytes,           // instructions
                   stack_slots,              // stack_slots
                   0,                        // tagged_parameter_slots
                   safepoint_table_offset,   // safepoint_table_offset
                   handler_table_offset,     // handler_table_offset
                   constant_pool_offset,     // constant_pool_offset
                   code_comments_offset,     // code_comments_offset
                   instructions.length(),    // unpadded_binary_size
                   {},                       // protected_instructions
                   reloc_info.as_vector(),   // reloc_info
                   source_pos.as_vector(),   // source positions
                   {},                       // inlining positions
                   WasmCode::kWasmFunction,  // kind
                   ExecutionTier::kNone,     // tier
                   kNotForDebugging}};       // for_debugging
  new_code->MaybePrint();
  new_code->Validate();

  return PublishCodeLocked(std::move(new_code));
}

void NativeModule::InitializeJumpTableForLazyCompilation(
    uint32_t num_wasm_functions) {
  if (!num_wasm_functions) return;
  allocation_mutex_.AssertHeld();
  DCHECK(CodeSpaceWriteScope::IsInScope());

  DCHECK_NULL(lazy_compile_table_);
  lazy_compile_table_ = CreateEmptyJumpTableLocked(
      JumpTableAssembler::SizeForNumberOfLazyFunctions(num_wasm_functions));

  DCHECK_EQ(1, code_space_data_.size());
  const CodeSpaceData& code_space_data = code_space_data_[0];
  DCHECK_NOT_NULL(code_space_data.jump_table);
  DCHECK_NOT_NULL(code_space_data.far_jump_table);

  Address compile_lazy_address =
      code_space_data.far_jump_table->instruction_start() +
      JumpTableAssembler::FarJumpSlotIndexToOffset(WasmCode::kWasmCompileLazy);

  JumpTableAssembler::GenerateLazyCompileTable(
      lazy_compile_table_->instruction_start(), num_wasm_functions,
      module_->num_imported_functions, compile_lazy_address);

  JumpTableAssembler::InitializeJumpsToLazyCompileTable(
      code_space_data.jump_table->instruction_start(), num_wasm_functions,
      lazy_compile_table_->instruction_start());
}

void NativeModule::UseLazyStubLocked(uint32_t func_index) {
  allocation_mutex_.AssertHeld();
  DCHECK_LE(module_->num_imported_functions, func_index);
  DCHECK_LT(func_index,
            module_->num_imported_functions + module_->num_declared_functions);
  // Avoid opening a new write scope per function. The caller should hold the
  // scope instead.
  DCHECK(CodeSpaceWriteScope::IsInScope());

  DCHECK_NOT_NULL(lazy_compile_table_);

  // Add jump table entry for jump to the lazy compile stub.
  uint32_t slot_index = declared_function_index(module(), func_index);
  DCHECK_NULL(code_table_[slot_index]);
  Address lazy_compile_target =
      lazy_compile_table_->instruction_start() +
      JumpTableAssembler::LazyCompileSlotIndexToOffset(slot_index);
  PatchJumpTablesLocked(slot_index, lazy_compile_target);
}

std::unique_ptr<WasmCode> NativeModule::AddCode(
    int index, const CodeDesc& desc, int stack_slots,
    uint32_t tagged_parameter_slots,
    base::Vector<const byte> protected_instructions_data,
    base::Vector<const byte> source_position_table, WasmCode::Kind kind,
    ExecutionTier tier, ForDebugging for_debugging) {
  base::Vector<byte> code_space;
  base::Vector<byte> inlining_positions;
  NativeModule::JumpTablesRef jump_table_ref;
  {
    base::RecursiveMutexGuard guard{&allocation_mutex_};
    code_space = code_allocator_.AllocateForCode(this, desc.instr_size);
    jump_table_ref =
        FindJumpTablesForRegionLocked(base::AddressRegionOf(code_space));
  }
  // Only Liftoff code can have the {frame_has_feedback_slot} bit set.
  DCHECK_NE(tier, ExecutionTier::kLiftoff);
  bool frame_has_feedback_slot = false;
  return AddCodeWithCodeSpace(index, desc, stack_slots, tagged_parameter_slots,
                              protected_instructions_data,
                              source_position_table, inlining_positions, kind,
                              tier, for_debugging, frame_has_feedback_slot,
                              code_space, jump_table_ref);
}

std::unique_ptr<WasmCode> NativeModule::AddCodeWithCodeSpace(
    int index, const CodeDesc& desc, int stack_slots,
    uint32_t tagged_parameter_slots,
    base::Vector<const byte> protected_instructions_data,
    base::Vector<const byte> source_position_table,
    base::Vector<const byte> inlining_positions, WasmCode::Kind kind,
    ExecutionTier tier, ForDebugging for_debugging,
    bool frame_has_feedback_slot, base::Vector<uint8_t> dst_code_bytes,
    const JumpTablesRef& jump_tables) {
  base::Vector<byte> reloc_info{
      desc.buffer + desc.buffer_size - desc.reloc_size,
      static_cast<size_t>(desc.reloc_size)};
  UpdateCodeSize(desc.instr_size, tier, for_debugging);

  // TODO(jgruber,v8:8758): Remove this translation. It exists only because
  // CodeDesc contains real offsets but WasmCode expects an offset of 0 to mean
  // 'empty'.
  const int safepoint_table_offset =
      desc.safepoint_table_size == 0 ? 0 : desc.safepoint_table_offset;
  const int handler_table_offset = desc.handler_table_offset;
  const int constant_pool_offset = desc.constant_pool_offset;
  const int code_comments_offset = desc.code_comments_offset;
  const int instr_size = desc.instr_size;

  memcpy(dst_code_bytes.begin(), desc.buffer,
         static_cast<size_t>(desc.instr_size));

  // Apply the relocation delta by iterating over the RelocInfo.
  intptr_t delta = dst_code_bytes.begin() - desc.buffer;
  int mode_mask = RelocInfo::kApplyMask |
                  RelocInfo::ModeMask(RelocInfo::WASM_CALL) |
                  RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL);
  Address code_start = reinterpret_cast<Address>(dst_code_bytes.begin());
  Address constant_pool_start = code_start + constant_pool_offset;
  for (RelocIterator it(dst_code_bytes, reloc_info, constant_pool_start,
                        mode_mask);
       !it.done(); it.next()) {
    RelocInfo::Mode mode = it.rinfo()->rmode();
    if (RelocInfo::IsWasmCall(mode)) {
      uint32_t call_tag = it.rinfo()->wasm_call_tag();
      Address target = GetNearCallTargetForFunction(call_tag, jump_tables);
      it.rinfo()->set_wasm_call_address(target, SKIP_ICACHE_FLUSH);
    } else if (RelocInfo::IsWasmStubCall(mode)) {
      uint32_t stub_call_tag = it.rinfo()->wasm_call_tag();
      DCHECK_LT(stub_call_tag, WasmCode::kRuntimeStubCount);
      Address entry = GetNearRuntimeStubEntry(
          static_cast<WasmCode::RuntimeStubId>(stub_call_tag), jump_tables);
      it.rinfo()->set_wasm_stub_call_address(entry, SKIP_ICACHE_FLUSH);
    } else {
      it.rinfo()->apply(delta);
    }
  }

  // Flush the i-cache after relocation.
  FlushInstructionCache(dst_code_bytes.begin(), dst_code_bytes.size());

  // Liftoff code will not be relocated or serialized, thus do not store any
  // relocation information.
  if (tier == ExecutionTier::kLiftoff) reloc_info = {};

  std::unique_ptr<WasmCode> code{new WasmCode{
      this, index, dst_code_bytes, stack_slots, tagged_parameter_slots,
      safepoint_table_offset, handler_table_offset, constant_pool_offset,
      code_comments_offset, instr_size, protected_instructions_data, reloc_info,
      source_position_table, inlining_positions, kind, tier, for_debugging,
      frame_has_feedback_slot}};

  code->MaybePrint();
  code->Validate();

  return code;
}

WasmCode* NativeModule::PublishCode(std::unique_ptr<WasmCode> code,
                                    AssumptionsJournal* assumptions) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"),
               "wasm.PublishCode");
  base::RecursiveMutexGuard lock(&allocation_mutex_);
  if (assumptions != nullptr) {
    // Acquiring the lock is expensive, so callers should only pass non-empty
    // assumptions journals.
    DCHECK(!assumptions->empty());
    // Only Turbofan makes assumptions.
    DCHECK_EQ(ExecutionTier::kTurbofan, code->tier());
    WellKnownImportsList& current = module_->type_feedback.well_known_imports;
    base::MutexGuard wki_lock(current.mutex());
    for (auto [import_index, status] : assumptions->import_statuses()) {
      if (current.get(import_index) != status) {
        compilation_state_->AllowAnotherTopTierJob(code->index());
        return nullptr;
      }
    }
  }
  CodeSpaceWriteScope code_space_write_scope(this);
  return PublishCodeLocked(std::move(code));
}

std::vector<WasmCode*> NativeModule::PublishCode(
    base::Vector<std::unique_ptr<WasmCode>> codes) {
  // Publishing often happens in a loop, so the caller should hold the
  // {CodeSpaceWriteScope} outside of such a loop.
  DCHECK(CodeSpaceWriteScope::IsInScope());
  TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"),
               "wasm.PublishCode", "number", codes.size());
  std::vector<WasmCode*> published_code;
  published_code.reserve(codes.size());
  base::RecursiveMutexGuard lock(&allocation_mutex_);
  // The published code is put into the top-most surrounding {WasmCodeRefScope}.
  for (auto& code : codes) {
    published_code.push_back(PublishCodeLocked(std::move(code)));
  }
  return published_code;
}

WasmCode::Kind GetCodeKind(const WasmCompilationResult& result) {
  switch (result.kind) {
    case WasmCompilationResult::kWasmToJsWrapper:
      return WasmCode::Kind::kWasmToJsWrapper;
    case WasmCompilationResult::kFunction:
      return WasmCode::Kind::kWasmFunction;
    default:
      UNREACHABLE();
  }
}

WasmCode* NativeModule::PublishCodeLocked(
    std::unique_ptr<WasmCode> owned_code) {
  allocation_mutex_.AssertHeld();

  WasmCode* code = owned_code.get();
  new_owned_code_.emplace_back(std::move(owned_code));

  // Add the code to the surrounding code ref scope, so the returned pointer is
  // guaranteed to be valid.
  WasmCodeRefScope::AddRef(code);

  if (code->index() < static_cast<int>(module_->num_imported_functions)) {
    return code;
  }

  DCHECK_LT(code->index(), num_functions());

  code->RegisterTrapHandlerData();

  // Put the code in the debugging cache, if needed.
  if (V8_UNLIKELY(cached_code_)) InsertToCodeCache(code);

  // Assume an order of execution tiers that represents the quality of their
  // generated code.
  static_assert(ExecutionTier::kNone < ExecutionTier::kLiftoff &&
                    ExecutionTier::kLiftoff < ExecutionTier::kTurbofan,
                "Assume an order on execution tiers");

  uint32_t slot_idx = declared_function_index(module(), code->index());
  WasmCode* prior_code = code_table_[slot_idx];
  // If we are tiered down, install all debugging code (except for stepping
  // code, which is only used for a single frame and never installed in the
  // code table of jump table). Otherwise, install code if it was compiled
  // with a higher tier.
  static_assert(
      kForDebugging > kNotForDebugging && kWithBreakpoints > kForDebugging,
      "for_debugging is ordered");

  if (should_update_code_table(code, prior_code)) {
    code_table_[slot_idx] = code;
    if (prior_code) {
      WasmCodeRefScope::AddRef(prior_code);
      // The code is added to the current {WasmCodeRefScope}, hence the ref
      // count cannot drop to zero here.
      prior_code->DecRefOnLiveCode();
    }

    PatchJumpTablesLocked(slot_idx, code->instruction_start());
  } else {
    // The code tables does not hold a reference to the code, hence decrement
    // the initial ref count of 1. The code was added to the
    // {WasmCodeRefScope} though, so it cannot die here.
    code->DecRefOnLiveCode();
  }

  return code;
}

bool NativeModule::should_update_code_table(WasmCode* new_code,
                                            WasmCode* prior_code) const {
  if (new_code->for_debugging() == kForStepping) {
    // Never install stepping code.
    return false;
  }
  if (debug_state_ == kDebugging) {
    if (new_code->for_debugging() == kNotForDebugging) {
      // In debug state, only install debug code.
      return false;
    }
    if (prior_code && prior_code->for_debugging() > new_code->for_debugging()) {
      // In debug state, install breakpoints over normal debug code.
      return false;
    }
  }
  // In kNoDebugging:
  // Install if the tier is higher than before or we replace debugging code with
  // non-debugging code.
  if (prior_code && !prior_code->for_debugging() &&
      prior_code->tier() > new_code->tier()) {
    return false;
  }
  return true;
}

void NativeModule::ReinstallDebugCode(WasmCode* code) {
  base::RecursiveMutexGuard lock(&allocation_mutex_);

  DCHECK_EQ(this, code->native_module());
  DCHECK_EQ(kWithBreakpoints, code->for_debugging());
  DCHECK(!code->IsAnonymous());
  DCHECK_LE(module_->num_imported_functions, code->index());
  DCHECK_LT(code->index(), num_functions());

  // If the module is tiered up by now, do not reinstall debug code.
  if (debug_state_ != kDebugging) return;

  uint32_t slot_idx = declared_function_index(module(), code->index());
  if (WasmCode* prior_code = code_table_[slot_idx]) {
    WasmCodeRefScope::AddRef(prior_code);
    // The code is added to the current {WasmCodeRefScope}, hence the ref
    // count cannot drop to zero here.
    prior_code->DecRefOnLiveCode();
  }
  code_table_[slot_idx] = code;
  code->IncRef();

  CodeSpaceWriteScope code_space_write_scope(this);
  PatchJumpTablesLocked(slot_idx, code->instruction_start());
}

std::pair<base::Vector<uint8_t>, NativeModule::JumpTablesRef>
NativeModule::AllocateForDeserializedCode(size_t total_code_size) {
  base::RecursiveMutexGuard guard{&allocation_mutex_};
  base::Vector<uint8_t> code_space =
      code_allocator_.AllocateForCode(this, total_code_size);
  auto jump_tables =
      FindJumpTablesForRegionLocked(base::AddressRegionOf(code_space));
  return {code_space, jump_tables};
}

std::unique_ptr<WasmCode> NativeModule::AddDeserializedCode(
    int index, base::Vector<byte> instructions, int stack_slots,
    uint32_t tagged_parameter_slots, int safepoint_table_offset,
    int handler_table_offset, int constant_pool_offset,
    int code_comments_offset, int unpadded_binary_size,
    base::Vector<const byte> protected_instructions_data,
    base::Vector<const byte> reloc_info,
    base::Vector<const byte> source_position_table,
    base::Vector<const byte> inlining_positions, WasmCode::Kind kind,
    ExecutionTier tier) {
  UpdateCodeSize(instructions.size(), tier, kNotForDebugging);

  return std::unique_ptr<WasmCode>{new WasmCode{
      this, index, instructions, stack_slots, tagged_parameter_slots,
      safepoint_table_offset, handler_table_offset, constant_pool_offset,
      code_comments_offset, unpadded_binary_size, protected_instructions_data,
      reloc_info, source_position_table, inlining_positions, kind, tier,
      kNotForDebugging}};
}

std::pair<std::vector<WasmCode*>, std::vector<WellKnownImport>>
NativeModule::SnapshotCodeTable() const {
  base::RecursiveMutexGuard lock(&allocation_mutex_);
  WasmCode** start = code_table_.get();
  WasmCode** end = start + module_->num_declared_functions;
  for (WasmCode* code : base::VectorOf(start, end - start)) {
    if (code) WasmCodeRefScope::AddRef(code);
  }
  std::vector<WellKnownImport> import_statuses(module_->num_imported_functions);
  for (uint32_t i = 0; i < module_->num_imported_functions; i++) {
    import_statuses[i] = module_->type_feedback.well_known_imports.get(i);
  }
  return {std::vector<WasmCode*>{start, end}, std::move(import_statuses)};
}

std::vector<WasmCode*> NativeModule::SnapshotAllOwnedCode() const {
  base::RecursiveMutexGuard lock(&allocation_mutex_);
  if (!new_owned_code_.empty()) TransferNewOwnedCodeLocked();

  std::vector<WasmCode*> all_code(owned_code_.size());
  std::transform(owned_code_.begin(), owned_code_.end(), all_code.begin(),
                 [](auto& entry) { return entry.second.get(); });
  std::for_each(all_code.begin(), all_code.end(), WasmCodeRefScope::AddRef);
  return all_code;
}

WasmCode* NativeModule::GetCode(uint32_t index) const {
  base::RecursiveMutexGuard guard(&allocation_mutex_);
  WasmCode* code = code_table_[declared_function_index(module(), index)];
  if (code) WasmCodeRefScope::AddRef(code);
  return code;
}

bool NativeModule::HasCode(uint32_t index) const {
  base::RecursiveMutexGuard guard(&allocation_mutex_);
  return code_table_[declared_function_index(module(), index)] != nullptr;
}

bool NativeModule::HasCodeWithTier(uint32_t index, ExecutionTier tier) const {
  base::RecursiveMutexGuard guard(&allocation_mutex_);
  return code_table_[declared_function_index(module(), index)] != nullptr &&
         code_table_[declared_function_index(module(), index)]->tier() == tier;
}

void NativeModule::SetWasmSourceMap(
    std::unique_ptr<WasmModuleSourceMap> source_map) {
  source_map_ = std::move(source_map);
}

WasmModuleSourceMap* NativeModule::GetWasmSourceMap() const {
  return source_map_.get();
}

WasmCode* NativeModule::CreateEmptyJumpTableLocked(int jump_table_size) {
  return CreateEmptyJumpTableInRegionLocked(jump_table_size,
                                            kUnrestrictedRegion);
}

WasmCode* NativeModule::CreateEmptyJumpTableInRegionLocked(
    int jump_table_size, base::AddressRegion region) {
  allocation_mutex_.AssertHeld();
  // Only call this if we really need a jump table.
  DCHECK_LT(0, jump_table_size);
  CodeSpaceWriteScope code_space_write_scope(this);
  base::Vector<uint8_t> code_space =
      code_allocator_.AllocateForCodeInRegion(this, jump_table_size, region);
  DCHECK(!code_space.empty());
  UpdateCodeSize(jump_table_size, ExecutionTier::kNone, kNotForDebugging);
  ZapCode(reinterpret_cast<Address>(code_space.begin()), code_space.size());
  std::unique_ptr<WasmCode> code{
      new WasmCode{this,                  // native_module
                   kAnonymousFuncIndex,   // index
                   code_space,            // instructions
                   0,                     // stack_slots
                   0,                     // tagged_parameter_slots
                   0,                     // safepoint_table_offset
                   jump_table_size,       // handler_table_offset
                   jump_table_size,       // constant_pool_offset
                   jump_table_size,       // code_comments_offset
                   jump_table_size,       // unpadded_binary_size
                   {},                    // protected_instructions
                   {},                    // reloc_info
                   {},                    // source_pos
                   {},                    // inlining pos
                   WasmCode::kJumpTable,  // kind
                   ExecutionTier::kNone,  // tier
                   kNotForDebugging}};    // for_debugging
  return PublishCodeLocked(std::move(code));
}

void NativeModule::UpdateCodeSize(size_t size, ExecutionTier tier,
                                  ForDebugging for_debugging) {
  if (for_debugging != kNotForDebugging) return;
  // Count jump tables (ExecutionTier::kNone) for both Liftoff and TurboFan as
  // this is shared code.
  if (tier != ExecutionTier::kTurbofan) liftoff_code_size_.fetch_add(size);
  if (tier != ExecutionTier::kLiftoff) turbofan_code_size_.fetch_add(size);
}

void NativeModule::PatchJumpTablesLocked(uint32_t slot_index, Address target) {
  allocation_mutex_.AssertHeld();

  for (auto& code_space_data : code_space_data_) {
    DCHECK_IMPLIES(code_space_data.jump_table, code_space_data.far_jump_table);
    if (!code_space_data.jump_table) continue;
    PatchJumpTableLocked(code_space_data, slot_index, target);
  }
}

void NativeModule::PatchJumpTableLocked(const CodeSpaceData& code_space_data,
                                        uint32_t slot_index, Address target) {
  allocation_mutex_.AssertHeld();

  DCHECK_NOT_NULL(code_space_data.jump_table);
  DCHECK_NOT_NULL(code_space_data.far_jump_table);

  DCHECK_LT(slot_index, module_->num_declared_functions);
  Address jump_table_slot =
      code_space_data.jump_table->instruction_start() +
      JumpTableAssembler::JumpSlotIndexToOffset(slot_index);
  uint32_t far_jump_table_offset = JumpTableAssembler::FarJumpSlotIndexToOffset(
      WasmCode::kRuntimeStubCount + slot_index);
  // Only pass the far jump table start if the far jump table actually has a
  // slot for this function index (i.e. does not only contain runtime stubs).
  bool has_far_jump_slot =
      far_jump_table_offset <
      code_space_data.far_jump_table->instructions().size();
  Address far_jump_table_start =
      code_space_data.far_jump_table->instruction_start();
  Address far_jump_table_slot =
      has_far_jump_slot ? far_jump_table_start + far_jump_table_offset
                        : kNullAddress;
  JumpTableAssembler::PatchJumpTableSlot(jump_table_slot, far_jump_table_slot,
                                         target);
}

void NativeModule::AddCodeSpaceLocked(base::AddressRegion region) {
  allocation_mutex_.AssertHeld();

  // Each code space must be at least twice as large as the overhead per code
  // space. Otherwise, we are wasting too much memory.
  DCHECK_GE(region.size(),
            2 * OverheadPerCodeSpace(module()->num_declared_functions));

  CodeSpaceWriteScope code_space_write_scope(this);
#if defined(V8_OS_WIN64)
  // On some platforms, specifically Win64, we need to reserve some pages at
  // the beginning of an executable space.
  // See src/heap/spaces.cc, MemoryAllocator::InitializeCodePageAllocator() and
  // https://cs.chromium.org/chromium/src/components/crash/content/app/crashpad_win.cc?rcl=fd680447881449fba2edcf0589320e7253719212&l=204
  // for details.
  if (WasmCodeManager::CanRegisterUnwindInfoForNonABICompliantCodeRange()) {
    size_t size = Heap::GetCodeRangeReservedAreaSize();
    DCHECK_LT(0, size);
    base::Vector<byte> padding =
        code_allocator_.AllocateForCodeInRegion(this, size, region);
    CHECK_EQ(reinterpret_cast<Address>(padding.begin()), region.begin());
    win64_unwindinfo::RegisterNonABICompliantCodeRange(
        reinterpret_cast<void*>(region.begin()), region.size());
  }
#endif  // V8_OS_WIN64

  WasmCodeRefScope code_ref_scope;
  WasmCode* jump_table = nullptr;
  WasmCode* far_jump_table = nullptr;
  const uint32_t num_wasm_functions = module_->num_declared_functions;
  const bool is_first_code_space = code_space_data_.empty();
  // We always need a far jump table, because it contains the runtime stubs.
  const bool needs_far_jump_table =
      !FindJumpTablesForRegionLocked(region).is_valid();
  const bool needs_jump_table = num_wasm_functions > 0 && needs_far_jump_table;

  if (needs_jump_table) {
    jump_table = CreateEmptyJumpTableInRegionLocked(
        JumpTableAssembler::SizeForNumberOfSlots(num_wasm_functions), region);
    CHECK(region.contains(jump_table->instruction_start()));
  }

  if (needs_far_jump_table) {
    int num_function_slots = NumWasmFunctionsInFarJumpTable(num_wasm_functions);
    far_jump_table = CreateEmptyJumpTableInRegionLocked(
        JumpTableAssembler::SizeForNumberOfFarJumpSlots(
            WasmCode::kRuntimeStubCount,
            NumWasmFunctionsInFarJumpTable(num_function_slots)),
        region);
    CHECK(region.contains(far_jump_table->instruction_start()));
    EmbeddedData embedded_data = EmbeddedData::FromBlob();
#define RUNTIME_STUB(Name) Builtin::k##Name,
#define RUNTIME_STUB_TRAP(Name) RUNTIME_STUB(ThrowWasm##Name)
    Builtin stub_names[WasmCode::kRuntimeStubCount] = {
        WASM_RUNTIME_STUB_LIST(RUNTIME_STUB, RUNTIME_STUB_TRAP)};
#undef RUNTIME_STUB
#undef RUNTIME_STUB_TRAP
    static_assert(Builtins::kAllBuiltinsAreIsolateIndependent);
    Address builtin_addresses[WasmCode::kRuntimeStubCount];
    for (int i = 0; i < WasmCode::kRuntimeStubCount; ++i) {
      Builtin builtin = stub_names[i];
      builtin_addresses[i] = embedded_data.InstructionStartOfBuiltin(builtin);
    }
    JumpTableAssembler::GenerateFarJumpTable(
        far_jump_table->instruction_start(), builtin_addresses,
        WasmCode::kRuntimeStubCount, num_function_slots);
  }

  if (is_first_code_space) {
    // This can be updated and accessed without locks, since the addition of the
    // first code space happens during initialization of the {NativeModule},
    // where no concurrent accesses are possible.
    main_jump_table_ = jump_table;
    main_far_jump_table_ = far_jump_table;
  }

  code_space_data_.push_back(CodeSpaceData{region, jump_table, far_jump_table});

  if (is_first_code_space) {
    InitializeJumpTableForLazyCompilation(num_wasm_functions);
  }

  if (jump_table && !is_first_code_space) {
    // Patch the new jump table(s) with existing functions. If this is the first
    // code space, there cannot be any functions that have been compiled yet.
    const CodeSpaceData& new_code_space_data = code_space_data_.back();
    for (uint32_t slot_index = 0; slot_index < num_wasm_functions;
         ++slot_index) {
      if (code_table_[slot_index]) {
        PatchJumpTableLocked(new_code_space_data, slot_index,
                             code_table_[slot_index]->instruction_start());
      } else if (lazy_compile_table_) {
        Address lazy_compile_target =
            lazy_compile_table_->instruction_start() +
            JumpTableAssembler::LazyCompileSlotIndexToOffset(slot_index);
        PatchJumpTableLocked(new_code_space_data, slot_index,
                             lazy_compile_target);
      }
    }
  }
}

namespace {
class NativeModuleWireBytesStorage final : public WireBytesStorage {
 public:
  explicit NativeModuleWireBytesStorage(
      std::shared_ptr<base::OwnedVector<const uint8_t>> wire_bytes)
      : wire_bytes_(std::move(wire_bytes)) {}

  base::Vector<const uint8_t> GetCode(WireBytesRef ref) const final {
    return std::atomic_load(&wire_bytes_)
        ->as_vector()
        .SubVector(ref.offset(), ref.end_offset());
  }

  base::Optional<ModuleWireBytes> GetModuleBytes() const final {
    return base::Optional<ModuleWireBytes>(
        std::atomic_load(&wire_bytes_)->as_vector());
  }

 private:
  const std::shared_ptr<base::OwnedVector<const uint8_t>> wire_bytes_;
};
}  // namespace

void NativeModule::SetWireBytes(base::OwnedVector<const uint8_t> wire_bytes) {
  auto shared_wire_bytes =
      std::make_shared<base::OwnedVector<const uint8_t>>(std::move(wire_bytes));
  std::atomic_store(&wire_bytes_, shared_wire_bytes);
  if (!shared_wire_bytes->empty()) {
    compilation_state_->SetWireBytesStorage(
        std::make_shared<NativeModuleWireBytesStorage>(
            std::move(shared_wire_bytes)));
  }
}

void NativeModule::AddLazyCompilationTimeSample(int64_t sample_in_micro_sec) {
  num_lazy_compilations_.fetch_add(1, std::memory_order_relaxed);
  sum_lazy_compilation_time_in_micro_sec_.fetch_add(sample_in_micro_sec,
                                                    std::memory_order_relaxed);
  int64_t max =
      max_lazy_compilation_time_in_micro_sec_.load(std::memory_order_relaxed);
  while (sample_in_micro_sec > max &&
         !max_lazy_compilation_time_in_micro_sec_.compare_exchange_weak(
             max, sample_in_micro_sec, std::memory_order_relaxed,
             std::memory_order_relaxed)) {
    // Repeat until we set the new maximum sucessfully.
  }
}

void NativeModule::TransferNewOwnedCodeLocked() const {
  allocation_mutex_.AssertHeld();
  DCHECK(!new_owned_code_.empty());
  // Sort the {new_owned_code_} vector reversed, such that the position of the
  // previously inserted element can be used as a hint for the next element. If
  // elements in {new_owned_code_} are adjacent, this will guarantee
  // constant-time insertion into the map.
  std::sort(new_owned_code_.begin(), new_owned_code_.end(),
            [](const std::unique_ptr<WasmCode>& a,
               const std::unique_ptr<WasmCode>& b) {
              return a->instruction_start() > b->instruction_start();
            });
  auto insertion_hint = owned_code_.end();
  for (auto& code : new_owned_code_) {
    DCHECK_EQ(0, owned_code_.count(code->instruction_start()));
    // Check plausibility of the insertion hint.
    DCHECK(insertion_hint == owned_code_.end() ||
           insertion_hint->first > code->instruction_start());
    insertion_hint = owned_code_.emplace_hint(
        insertion_hint, code->instruction_start(), std::move(code));
  }
  new_owned_code_.clear();
}

void NativeModule::InsertToCodeCache(WasmCode* code) {
  allocation_mutex_.AssertHeld();
  DCHECK_NOT_NULL(cached_code_);
  if (code->IsAnonymous()) return;
  // Only cache Liftoff debugging code or TurboFan code (no breakpoints or
  // stepping).
  if (code->tier() == ExecutionTier::kLiftoff &&
      code->for_debugging() != kForDebugging) {
    return;
  }
  auto key = std::make_pair(code->tier(), code->index());
  if (cached_code_->insert(std::make_pair(key, code)).second) {
    code->IncRef();
  }
}

WasmCode* NativeModule::Lookup(Address pc) const {
  base::RecursiveMutexGuard lock(&allocation_mutex_);
  if (!new_owned_code_.empty()) TransferNewOwnedCodeLocked();
  auto iter = owned_code_.upper_bound(pc);
  if (iter == owned_code_.begin()) return nullptr;
  --iter;
  WasmCode* candidate = iter->second.get();
  DCHECK_EQ(candidate->instruction_start(), iter->first);
  if (!candidate->contains(pc)) return nullptr;
  WasmCodeRefScope::AddRef(candidate);
  return candidate;
}

NativeModule::JumpTablesRef NativeModule::FindJumpTablesForRegionLocked(
    base::AddressRegion code_region) const {
  allocation_mutex_.AssertHeld();
  auto jump_table_usable = [code_region](const WasmCode* jump_table) {
    // We only ever need to check for suitable jump tables if
    // {kNeedsFarJumpsBetweenCodeSpaces} is true.
    if constexpr (!kNeedsFarJumpsBetweenCodeSpaces) UNREACHABLE();
    Address table_start = jump_table->instruction_start();
    Address table_end = table_start + jump_table->instructions().size();
    // Compute the maximum distance from anywhere in the code region to anywhere
    // in the jump table, avoiding any underflow.
    size_t max_distance = std::max(
        code_region.end() > table_start ? code_region.end() - table_start : 0,
        table_end > code_region.begin() ? table_end - code_region.begin() : 0);
    // kDefaultMaxWasmCodeSpaceSizeMb is <= the maximum near call distance on
    // the current platform.
    // We can allow a max_distance that is equal to
    // kDefaultMaxWasmCodeSpaceSizeMb, because every call or jump will target an
    // address *within* the region, but never exactly the end of the region. So
    // all occuring offsets are actually smaller than max_distance.
    return max_distance <= kDefaultMaxWasmCodeSpaceSizeMb * MB;
  };

  for (auto& code_space_data : code_space_data_) {
    DCHECK_IMPLIES(code_space_data.jump_table, code_space_data.far_jump_table);
    if (!code_space_data.far_jump_table) continue;
    // Only return these jump tables if they are reachable from the whole
    // {code_region}.
    if (kNeedsFarJumpsBetweenCodeSpaces &&
        (!jump_table_usable(code_space_data.far_jump_table) ||
         (code_space_data.jump_table &&
          !jump_table_usable(code_space_data.jump_table)))) {
      continue;
    }
    return {code_space_data.jump_table
                ? code_space_data.jump_table->instruction_start()
                : kNullAddress,
            code_space_data.far_jump_table->instruction_start()};
  }
  return {};
}

Address NativeModule::GetNearCallTargetForFunction(
    uint32_t func_index, const JumpTablesRef& jump_tables) const {
  DCHECK(jump_tables.is_valid());
  uint32_t slot_offset = JumpTableOffset(module(), func_index);
  return jump_tables.jump_table_start + slot_offset;
}

Address NativeModule::GetNearRuntimeStubEntry(
    WasmCode::RuntimeStubId index, const JumpTablesRef& jump_tables) const {
  DCHECK(jump_tables.is_valid());
  auto offset = JumpTableAssembler::FarJumpSlotIndexToOffset(index);
  return jump_tables.far_jump_table_start + offset;
}

uint32_t NativeModule::GetFunctionIndexFromJumpTableSlot(
    Address slot_address) const {
  WasmCodeRefScope code_refs;
  WasmCode* code = Lookup(slot_address);
  DCHECK_NOT_NULL(code);
  DCHECK_EQ(WasmCode::kJumpTable, code->kind());
  uint32_t slot_offset =
      static_cast<uint32_t>(slot_address - code->instruction_start());
  uint32_t slot_idx = JumpTableAssembler::SlotOffsetToIndex(slot_offset);
  DCHECK_LT(slot_idx, module_->num_declared_functions);
  DCHECK_EQ(slot_address,
            code->instruction_start() +
                JumpTableAssembler::JumpSlotIndexToOffset(slot_idx));
  return module_->num_imported_functions + slot_idx;
}

WasmCode::RuntimeStubId NativeModule::GetRuntimeStubId(Address target) const {
  base::RecursiveMutexGuard guard(&allocation_mutex_);

  for (auto& code_space_data : code_space_data_) {
    if (code_space_data.far_jump_table != nullptr &&
        code_space_data.far_jump_table->contains(target)) {
      uint32_t offset = static_cast<uint32_t>(
          target - code_space_data.far_jump_table->instruction_start());
      uint32_t index = JumpTableAssembler::FarJumpSlotOffsetToIndex(offset);
      if (index >= WasmCode::kRuntimeStubCount) continue;
      if (JumpTableAssembler::FarJumpSlotIndexToOffset(index) != offset) {
        continue;
      }
      return static_cast<WasmCode::RuntimeStubId>(index);
    }
  }

  // Invalid address.
  return WasmCode::kRuntimeStubCount;
}

NativeModule::~NativeModule() {
  TRACE_HEAP("Deleting native module: %p\n", this);
  // Cancel all background compilation before resetting any field of the
  // NativeModule or freeing anything.
  compilation_state_->CancelCompilation();
  GetWasmEngine()->FreeNativeModule(this);
  // Free the import wrapper cache before releasing the {WasmCode} objects in
  // {owned_code_}. The destructor of {WasmImportWrapperCache} still needs to
  // decrease reference counts on the {WasmCode} objects.
  import_wrapper_cache_.reset();

  // If experimental PGO support is enabled, serialize the PGO data now.
  if (V8_UNLIKELY(v8_flags.experimental_wasm_pgo_to_file)) {
    DumpProfileToFile(module_.get(), wire_bytes(), tiering_budgets_.get());
  }
}

WasmCodeManager::WasmCodeManager()
    : max_committed_code_space_(v8_flags.wasm_max_committed_code_mb * MB),
      critical_committed_code_space_(max_committed_code_space_ / 2) {
  // Check that --wasm-max-code-space-size-mb is not set bigger than the default
  // value. Otherwise we run into DCHECKs or other crashes later.
  CHECK_GE(kDefaultMaxWasmCodeSpaceSizeMb,
           v8_flags.wasm_max_code_space_size_mb);
}

WasmCodeManager::~WasmCodeManager() {
  // No more committed code space.
  DCHECK_EQ(0, total_committed_code_space_.load());
}

#if defined(V8_OS_WIN64)
// static
bool WasmCodeManager::CanRegisterUnwindInfoForNonABICompliantCodeRange() {
  return win64_unwindinfo::CanRegisterUnwindInfoForNonABICompliantCodeRange() &&
         v8_flags.win64_unwinding_info;
}
#endif  // V8_OS_WIN64

void WasmCodeManager::Commit(base::AddressRegion region) {
  // TODO(v8:8462): Remove eager commit once perf supports remapping.
  if (v8_flags.perf_prof) return;
  DCHECK(IsAligned(region.begin(), CommitPageSize()));
  DCHECK(IsAligned(region.size(), CommitPageSize()));
  // Reserve the size. Use CAS loop to avoid overflow on
  // {total_committed_code_space_}.
  size_t old_value = total_committed_code_space_.load();
  while (true) {
    DCHECK_GE(max_committed_code_space_, old_value);
    if (region.size() > max_committed_code_space_ - old_value) {
      auto oom_detail = base::FormattedString{}
                        << "trying to commit " << region.size()
                        << ", already committed " << old_value;
      V8::FatalProcessOutOfMemory(nullptr,
                                  "Exceeding maximum wasm committed code space",
                                  oom_detail.PrintToArray().data());
      UNREACHABLE();
    }
    if (total_committed_code_space_.compare_exchange_weak(
            old_value, old_value + region.size())) {
      break;
    }
  }
  // Allocate with RWX permissions; this will be restricted via PKU if
  // available and enabled.
  PageAllocator::Permission permission = PageAllocator::kReadWriteExecute;

  bool success = false;
  if (MemoryProtectionKeysEnabled()) {
    DCHECK(CodeSpaceWriteScope::IsInScope());
#if V8_HAS_PKU_JIT_WRITE_PROTECT
    TRACE_HEAP(
        "Setting rwx permissions and memory protection key for 0x%" PRIxPTR
        ":0x%" PRIxPTR "\n",
        region.begin(), region.end());
    success = base::MemoryProtectionKey::SetPermissionsAndKey(
        GetPlatformPageAllocator(), region, permission,
        RwxMemoryWriteScope::memory_protection_key());
#else
    UNREACHABLE();
#endif  // V8_HAS_PKU_JIT_WRITE_PROTECT
  } else {
    TRACE_HEAP("Setting rwx permissions for 0x%" PRIxPTR ":0x%" PRIxPTR "\n",
               region.begin(), region.end());
    success = SetPermissions(GetPlatformPageAllocator(), region.begin(),
                             region.size(), permission);
  }

  if (V8_UNLIKELY(!success)) {
    auto oom_detail = base::FormattedString{} << "region size: "
                                              << region.size();
    V8::FatalProcessOutOfMemory(nullptr, "Commit wasm code space",
                                oom_detail.PrintToArray().data());
    UNREACHABLE();
  }
}

void WasmCodeManager::Decommit(base::AddressRegion region) {
  // TODO(v8:8462): Remove this once perf supports remapping.
  if (v8_flags.perf_prof) return;
  PageAllocator* allocator = GetPlatformPageAllocator();
  DCHECK(IsAligned(region.begin(), allocator->CommitPageSize()));
  DCHECK(IsAligned(region.size(), allocator->CommitPageSize()));
  size_t old_committed = total_committed_code_space_.fetch_sub(region.size());
  DCHECK_LE(region.size(), old_committed);
  USE(old_committed);
  TRACE_HEAP("Decommitting system pages 0x%" PRIxPTR ":0x%" PRIxPTR "\n",
             region.begin(), region.end());
  if (V8_UNLIKELY(!allocator->DecommitPages(
          reinterpret_cast<void*>(region.begin()), region.size()))) {
    // Decommit can fail in near-OOM situations.
    auto oom_detail = base::FormattedString{} << "region size: "
                                              << region.size();
    V8::FatalProcessOutOfMemory(nullptr, "Decommit Wasm code space",
                                oom_detail.PrintToArray().data());
  }
}

void WasmCodeManager::AssignRange(base::AddressRegion region,
                                  NativeModule* native_module) {
  base::MutexGuard lock(&native_modules_mutex_);
  lookup_map_.insert(std::make_pair(
      region.begin(), std::make_pair(region.end(), native_module)));
}

VirtualMemory WasmCodeManager::TryAllocate(size_t size, void* hint) {
  v8::PageAllocator* page_allocator = GetPlatformPageAllocator();
  DCHECK_GT(size, 0);
  size_t allocate_page_size = page_allocator->AllocatePageSize();
  size = RoundUp(size, allocate_page_size);
  if (hint == nullptr) hint = page_allocator->GetRandomMmapAddr();

  // When we start exposing Wasm in jitless mode, then the jitless flag
  // will have to determine whether we set kMapAsJittable or not.
  DCHECK(!v8_flags.jitless);
  VirtualMemory mem(page_allocator, size, hint, allocate_page_size,
                    JitPermission::kMapAsJittable);
  if (!mem.IsReserved()) return {};
  TRACE_HEAP("VMem alloc: 0x%" PRIxPTR ":0x%" PRIxPTR " (%zu)\n", mem.address(),
             mem.end(), mem.size());

  // TODO(v8:8462): Remove eager commit once perf supports remapping.
  if (v8_flags.perf_prof) {
    SetPermissions(GetPlatformPageAllocator(), mem.address(), mem.size(),
                   PageAllocator::kReadWriteExecute);
  }
  return mem;
}

namespace {
// The numbers here are rough estimates, used to calculate the size of the
// initial code reservation and for estimating the amount of external memory
// reported to the GC.
// They do not need to be accurate. Choosing them too small will result in
// separate code spaces being allocated (compile time and runtime overhead),
// choosing them too large results in over-reservation (virtual address space
// only).
// In doubt, choose the numbers slightly too large on 64-bit systems (where
// {kNeedsFarJumpsBetweenCodeSpaces} is {true}). Over-reservation is less
// critical in a 64-bit address space, but separate code spaces cause overhead.
// On 32-bit systems (where {kNeedsFarJumpsBetweenCodeSpaces} is {false}), the
// opposite is true: Multiple code spaces are cheaper, and address space is
// scarce, hence choose numbers slightly too small.
//
// Numbers can be determined by running benchmarks with
// --trace-wasm-compilation-times, and piping the output through
// tools/wasm/code-size-factors.py.
#if V8_TARGET_ARCH_X64
constexpr size_t kTurbofanFunctionOverhead = 24;
constexpr size_t kTurbofanCodeSizeMultiplier = 3;
constexpr size_t kLiftoffFunctionOverhead = 56;
constexpr size_t kLiftoffCodeSizeMultiplier = 4;
constexpr size_t kImportSize = 640;
#elif V8_TARGET_ARCH_IA32
constexpr size_t kTurbofanFunctionOverhead = 20;
constexpr size_t kTurbofanCodeSizeMultiplier = 3;
constexpr size_t kLiftoffFunctionOverhead = 48;
constexpr size_t kLiftoffCodeSizeMultiplier = 3;
constexpr size_t kImportSize = 600;
#elif V8_TARGET_ARCH_ARM
constexpr size_t kTurbofanFunctionOverhead = 44;
constexpr size_t kTurbofanCodeSizeMultiplier = 3;
constexpr size_t kLiftoffFunctionOverhead = 96;
constexpr size_t kLiftoffCodeSizeMultiplier = 5;
constexpr size_t kImportSize = 550;
#elif V8_TARGET_ARCH_ARM64
constexpr size_t kTurbofanFunctionOverhead = 40;
constexpr size_t kTurbofanCodeSizeMultiplier = 3;
constexpr size_t kLiftoffFunctionOverhead = 68;
constexpr size_t kLiftoffCodeSizeMultiplier = 4;
constexpr size_t kImportSize = 750;
#else
// Other platforms should add their own estimates for best performance. Numbers
// below are the maximum of other architectures.
constexpr size_t kTurbofanFunctionOverhead = 44;
constexpr size_t kTurbofanCodeSizeMultiplier = 4;
constexpr size_t kLiftoffFunctionOverhead = 96;
constexpr size_t kLiftoffCodeSizeMultiplier = 5;
constexpr size_t kImportSize = 750;
#endif
}  // namespace

// static
size_t WasmCodeManager::EstimateLiftoffCodeSize(int body_size) {
  return kLiftoffFunctionOverhead + kCodeAlignment / 2 +
         body_size * kLiftoffCodeSizeMultiplier;
}

// static
size_t WasmCodeManager::EstimateNativeModuleCodeSize(
    const WasmModule* module, bool include_liftoff,
    DynamicTiering dynamic_tiering) {
  int num_functions = static_cast<int>(module->num_declared_functions);
  int num_imported_functions = static_cast<int>(module->num_imported_functions);
  int code_section_length = 0;
  if (num_functions > 0) {
    DCHECK_EQ(module->functions.size(), num_imported_functions + num_functions);
    auto* first_fn = &module->functions[module->num_imported_functions];
    auto* last_fn = &module->functions.back();
    code_section_length =
        static_cast<int>(last_fn->code.end_offset() - first_fn->code.offset());
  }
  return EstimateNativeModuleCodeSize(num_functions, num_imported_functions,
                                      code_section_length, include_liftoff,
                                      dynamic_tiering);
}

// static
size_t WasmCodeManager::EstimateNativeModuleCodeSize(
    int num_functions, int num_imported_functions, int code_section_length,
    bool include_liftoff, DynamicTiering dynamic_tiering) {
  // The size for the jump table and far jump table is added later, per code
  // space (see {OverheadPerCodeSpace}). We still need to add the overhead for
  // the lazy compile table once, though. There are configurations where we do
  // not need it (non-asm.js, no dynamic tiering and no lazy compilation), but
  // we ignore this here as most of the time we will need it.
  const size_t lazy_compile_table_size =
      JumpTableAssembler::SizeForNumberOfLazyFunctions(num_functions);

  const size_t size_of_imports = kImportSize * num_imported_functions;

  const size_t overhead_per_function_turbofan =
      kTurbofanFunctionOverhead + kCodeAlignment / 2;
  size_t size_of_turbofan = overhead_per_function_turbofan * num_functions +
                            kTurbofanCodeSizeMultiplier * code_section_length;

  const size_t overhead_per_function_liftoff =
      kLiftoffFunctionOverhead + kCodeAlignment / 2;
  const size_t size_of_liftoff =
      include_liftoff ? overhead_per_function_liftoff * num_functions +
                            kLiftoffCodeSizeMultiplier * code_section_length
                      : 0;

  // With dynamic tiering we don't expect to compile more than 25% with
  // TurboFan. If there is no liftoff though then all code will get generated
  // by TurboFan.
  if (include_liftoff && dynamic_tiering) size_of_turbofan /= 4;

  return lazy_compile_table_size + size_of_imports + size_of_liftoff +
         size_of_turbofan;
}

// static
size_t WasmCodeManager::EstimateNativeModuleMetaDataSize(
    const WasmModule* module) {
  size_t wasm_module_estimate = EstimateStoredSize(module);

  uint32_t num_wasm_functions = module->num_declared_functions;

  // TODO(wasm): Include wire bytes size.
  size_t native_module_estimate =
      sizeof(NativeModule) +                      // NativeModule struct
      (sizeof(WasmCode*) * num_wasm_functions) +  // code table size
      (sizeof(WasmCode) * num_wasm_functions);    // code object size

  size_t jump_table_size = RoundUp<kCodeAlignment>(
      JumpTableAssembler::SizeForNumberOfSlots(num_wasm_functions));
  size_t far_jump_table_size =
      RoundUp<kCodeAlignment>(JumpTableAssembler::SizeForNumberOfFarJumpSlots(
          WasmCode::kRuntimeStubCount,
          NumWasmFunctionsInFarJumpTable(num_wasm_functions)));

  return wasm_module_estimate + native_module_estimate + jump_table_size +
         far_jump_table_size;
}

// static
bool WasmCodeManager::HasMemoryProtectionKeySupport() {
#if V8_HAS_PKU_JIT_WRITE_PROTECT
  return RwxMemoryWriteScope::IsSupported();
#else
  return false;
#endif  // V8_HAS_PKU_JIT_WRITE_PROTECT
}

// static
bool WasmCodeManager::MemoryProtectionKeysEnabled() {
  return HasMemoryProtectionKeySupport() &&
         v8_flags.wasm_memory_protection_keys;
}

// static
bool WasmCodeManager::MemoryProtectionKeyWritable() {
#if V8_HAS_PKU_JIT_WRITE_PROTECT
  return RwxMemoryWriteScope::IsPKUWritable();
#else
  return false;
#endif  // V8_HAS_PKU_JIT_WRITE_PROTECT
}

base::AddressRegion WasmCodeManager::AllocateAssemblerBufferSpace(int size) {
#if V8_HAS_PKU_JIT_WRITE_PROTECT
  if (MemoryProtectionKeysEnabled()) {
    auto* page_allocator = GetPlatformPageAllocator();
    size_t page_size = page_allocator->AllocatePageSize();
    size = RoundUp(size, page_size);
    void* mapped = AllocatePages(page_allocator, nullptr, size, page_size,
                                 PageAllocator::kNoAccess);
    if (V8_UNLIKELY(!mapped)) {
      auto oom_detail = base::FormattedString{}
                        << "cannot allocate " << size
                        << " more bytes for assembler buffers";
      V8::FatalProcessOutOfMemory(nullptr,
                                  "Allocate protected assembler buffer space",
                                  oom_detail.PrintToArray().data());
      UNREACHABLE();
    }
    auto region =
        base::AddressRegionOf(reinterpret_cast<uint8_t*>(mapped), size);
    CHECK(base::MemoryProtectionKey::SetPermissionsAndKey(
        page_allocator, region, PageAllocator::kReadWrite,
        RwxMemoryWriteScope::memory_protection_key()));
    return region;
  }
#endif  // V8_HAS_PKU_JIT_WRITE_PROTECT
  DCHECK(!MemoryProtectionKeysEnabled());
  return base::AddressRegionOf(new uint8_t[size], size);
}

void WasmCodeManager::FreeAssemblerBufferSpace(base::AddressRegion region) {
#if V8_HAS_PKU_JIT_WRITE_PROTECT
  if (MemoryProtectionKeysEnabled()) {
    auto* page_allocator = GetPlatformPageAllocator();
    FreePages(page_allocator, reinterpret_cast<void*>(region.begin()),
              region.size());
    return;
  }
#endif  // V8_HAS_PKU_JIT_WRITE_PROTECT
  DCHECK(!MemoryProtectionKeysEnabled());
  delete[] reinterpret_cast<uint8_t*>(region.begin());
}

std::shared_ptr<NativeModule> WasmCodeManager::NewNativeModule(
    Isolate* isolate, const WasmFeatures& enabled, size_t code_size_estimate,
    std::shared_ptr<const WasmModule> module) {
  if (total_committed_code_space_.load() >
      critical_committed_code_space_.load()) {
    (reinterpret_cast<v8::Isolate*>(isolate))
        ->MemoryPressureNotification(MemoryPressureLevel::kCritical);
    size_t committed = total_committed_code_space_.load();
    DCHECK_GE(max_committed_code_space_, committed);
    critical_committed_code_space_.store(
        committed + (max_committed_code_space_ - committed) / 2);
  }

  size_t code_vmem_size =
      ReservationSize(code_size_estimate, module->num_declared_functions, 0);

  // The '--wasm-max-initial-code-space-reservation' testing flag can be used to
  // reduce the maximum size of the initial code space reservation (in MB).
  if (v8_flags.wasm_max_initial_code_space_reservation > 0) {
    size_t flag_max_bytes =
        static_cast<size_t>(v8_flags.wasm_max_initial_code_space_reservation) *
        MB;
    if (flag_max_bytes < code_vmem_size) code_vmem_size = flag_max_bytes;
  }

  // Try up to two times; getting rid of dead JSArrayBuffer allocations might
  // require two GCs because the first GC maybe incremental and may have
  // floating garbage.
  static constexpr int kAllocationRetries = 2;
  VirtualMemory code_space;
  for (int retries = 0;; ++retries) {
    code_space = TryAllocate(code_vmem_size);
    if (code_space.IsReserved()) break;
    if (retries == kAllocationRetries) {
      auto oom_detail = base::FormattedString{}
                        << "NewNativeModule cannot allocate code space of "
                        << code_vmem_size << " bytes";
      V8::FatalProcessOutOfMemory(isolate, "Allocate initial wasm code space",
                                  oom_detail.PrintToArray().data());
      UNREACHABLE();
    }
    // Run one GC, then try the allocation again.
    isolate->heap()->MemoryPressureNotification(MemoryPressureLevel::kCritical,
                                                true);
  }

  Address start = code_space.address();
  size_t size = code_space.size();
  Address end = code_space.end();
  std::shared_ptr<NativeModule> ret;
  new NativeModule(enabled,
                   DynamicTiering{v8_flags.wasm_dynamic_tiering.value()},
                   std::move(code_space), std::move(module),
                   isolate->async_counters(), &ret);
  // The constructor initialized the shared_ptr.
  DCHECK_NOT_NULL(ret);
  TRACE_HEAP("New NativeModule %p: Mem: 0x%" PRIxPTR ",+%zu\n", ret.get(),
             start, size);

  base::MutexGuard lock(&native_modules_mutex_);
  lookup_map_.insert(std::make_pair(start, std::make_pair(end, ret.get())));
  return ret;
}

void NativeModule::SampleCodeSize(Counters* counters) const {
  size_t code_size = code_allocator_.committed_code_space();
  int code_size_mb = static_cast<int>(code_size / MB);
  counters->wasm_module_code_size_mb()->AddSample(code_size_mb);
  // If this is a wasm module of >= 2MB, also sample the freed code size,
  // absolute and relative. Code GC does not happen on asm.js
  // modules, and small modules will never trigger GC anyway.
  size_t generated_size = code_allocator_.generated_code_size();
  if (generated_size >= 2 * MB && module()->origin == kWasmOrigin) {
    size_t freed_size = code_allocator_.freed_code_size();
    DCHECK_LE(freed_size, generated_size);
    int freed_percent = static_cast<int>(100 * freed_size / generated_size);
    counters->wasm_module_freed_code_size_percent()->AddSample(freed_percent);
  }
}

std::unique_ptr<WasmCode> NativeModule::AddCompiledCode(
    WasmCompilationResult result) {
  std::vector<std::unique_ptr<WasmCode>> code = AddCompiledCode({&result, 1});
  return std::move(code[0]);
}

std::vector<std::unique_ptr<WasmCode>> NativeModule::AddCompiledCode(
    base::Vector<WasmCompilationResult> results) {
  TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"),
               "wasm.AddCompiledCode", "num", results.size());
  DCHECK(!results.empty());
  std::vector<std::unique_ptr<WasmCode>> generated_code;
  generated_code.reserve(results.size());

  // First, allocate code space for all the results.
  // Never add more than half of a code space at once. This leaves some space
  // for jump tables and other overhead. We could use {OverheadPerCodeSpace},
  // but that's only an approximation, so we are conservative here and never use
  // more than half a code space.
  size_t max_code_batch_size = v8_flags.wasm_max_code_space_size_mb * MB / 2;
  size_t total_code_space = 0;
  for (auto& result : results) {
    DCHECK(result.succeeded());
    size_t new_code_space =
        RoundUp<kCodeAlignment>(result.code_desc.instr_size);
    if (total_code_space + new_code_space > max_code_batch_size) {
      // Split off the first part of the {results} vector and process it
      // separately. This method then continues with the rest.
      size_t split_point = &result - results.begin();
      CHECK_WITH_MSG(
          split_point != 0,
          "A single code object needs more than half of the code space size");
      auto first_results = AddCompiledCode(results.SubVector(0, split_point));
      generated_code.insert(generated_code.end(),
                            std::make_move_iterator(first_results.begin()),
                            std::make_move_iterator(first_results.end()));
      // Continue processing the rest of the vector. This change to the
      // {results} vector does not invalidate iterators (which are just
      // pointers). In particular, the end pointer stays the same.
      results += split_point;
      total_code_space = 0;
    }
    total_code_space += new_code_space;
  }
  base::Vector<byte> code_space;
  NativeModule::JumpTablesRef jump_tables;
  CodeSpaceWriteScope code_space_write_scope(this);
  {
    base::RecursiveMutexGuard guard{&allocation_mutex_};
    code_space = code_allocator_.AllocateForCode(this, total_code_space);
    // Lookup the jump tables to use once, then use for all code objects.
    jump_tables =
        FindJumpTablesForRegionLocked(base::AddressRegionOf(code_space));
  }
  // If we happen to have a {total_code_space} which is bigger than
  // {kMaxCodeSpaceSize}, we would not find valid jump tables for the whole
  // region. If this ever happens, we need to handle this case (by splitting the
  // {results} vector in smaller chunks).
  CHECK(jump_tables.is_valid());

  // Now copy the generated code into the code space and relocate it.
  for (auto& result : results) {
    DCHECK_EQ(result.code_desc.buffer, result.instr_buffer->start());
    size_t code_size = RoundUp<kCodeAlignment>(result.code_desc.instr_size);
    base::Vector<byte> this_code_space = code_space.SubVector(0, code_size);
    code_space += code_size;
    generated_code.emplace_back(AddCodeWithCodeSpace(
        result.func_index, result.code_desc, result.frame_slot_count,
        result.tagged_parameter_slots,
        result.protected_instructions_data.as_vector(),
        result.source_positions.as_vector(),
        result.inlining_positions.as_vector(), GetCodeKind(result),
        result.result_tier, result.for_debugging,
        result.frame_has_feedback_slot, this_code_space, jump_tables));
  }
  DCHECK_EQ(0, code_space.size());

  // Check that we added the expected amount of code objects, even if we split
  // the {results} vector.
  DCHECK_EQ(generated_code.capacity(), generated_code.size());

  return generated_code;
}

void NativeModule::SetDebugState(DebugState new_debug_state) {
  // Do not tier down asm.js (just never change the tiering state).
  if (module()->origin != kWasmOrigin) return;

  base::RecursiveMutexGuard lock(&allocation_mutex_);
  debug_state_ = new_debug_state;
}

namespace {
bool ShouldRemoveCode(WasmCode* code, NativeModule::RemoveFilter filter) {
  if (filter == NativeModule::RemoveFilter::kRemoveDebugCode &&
      !code->for_debugging()) {
    return false;
  }
  if (filter == NativeModule::RemoveFilter::kRemoveNonDebugCode &&
      code->for_debugging()) {
    return false;
  }
  if (filter == NativeModule::RemoveFilter::kRemoveLiftoffCode &&
      !code->is_liftoff()) {
    return false;
  }
  if (filter == NativeModule::RemoveFilter::kRemoveTurbofanCode &&
      !code->is_turbofan()) {
    return false;
  }
  return true;
}
}  // namespace

void NativeModule::RemoveCompiledCode(RemoveFilter filter) {
  const uint32_t num_imports = module_->num_imported_functions;
  const uint32_t num_functions = module_->num_declared_functions;
  WasmCodeRefScope ref_scope;
  CodeSpaceWriteScope write_scope(this);
  base::RecursiveMutexGuard guard(&allocation_mutex_);
  for (uint32_t i = 0; i < num_functions; i++) {
    WasmCode* code = code_table_[i];
    if (code && ShouldRemoveCode(code, filter)) {
      code_table_[i] = nullptr;
      // Add the code to the {WasmCodeRefScope}, so the ref count cannot drop to
      // zero here. It might in the {WasmCodeRefScope} destructor, though.
      WasmCodeRefScope::AddRef(code);
      code->DecRefOnLiveCode();
      uint32_t func_index = i + num_imports;
      UseLazyStubLocked(func_index);
    }
  }
  // When resuming optimized execution after a debugging session ends, or when
  // discarding optimized code that made outdated assumptions, allow another
  // tier-up task to get scheduled.
  if (filter == RemoveFilter::kRemoveDebugCode ||
      filter == RemoveFilter::kRemoveTurbofanCode) {
    compilation_state_->AllowAnotherTopTierJobForAllFunctions();
  }
}

void NativeModule::FreeCode(base::Vector<WasmCode* const> codes) {
  base::RecursiveMutexGuard guard(&allocation_mutex_);
  // Free the code space.
  code_allocator_.FreeCode(codes);

  if (!new_owned_code_.empty()) TransferNewOwnedCodeLocked();
  DebugInfo* debug_info = debug_info_.get();
  // Free the {WasmCode} objects. This will also unregister trap handler data.
  for (WasmCode* code : codes) {
    DCHECK_EQ(1, owned_code_.count(code->instruction_start()));
    owned_code_.erase(code->instruction_start());
  }
  // Remove debug side tables for all removed code objects, after releasing our
  // lock. This is to avoid lock order inversion.
  if (debug_info) debug_info->RemoveDebugSideTables(codes);
}

size_t NativeModule::GetNumberOfCodeSpacesForTesting() const {
  base::RecursiveMutexGuard guard{&allocation_mutex_};
  return code_allocator_.GetNumCodeSpaces();
}

bool NativeModule::HasDebugInfo() const {
  base::RecursiveMutexGuard guard(&allocation_mutex_);
  return debug_info_ != nullptr;
}

DebugInfo* NativeModule::GetDebugInfo() {
  base::RecursiveMutexGuard guard(&allocation_mutex_);
  if (!debug_info_) debug_info_ = std::make_unique<DebugInfo>(this);
  return debug_info_.get();
}

NamesProvider* NativeModule::GetNamesProvider() {
  DCHECK(HasWireBytes());
  base::RecursiveMutexGuard guard(&allocation_mutex_);
  if (!names_provider_) {
    names_provider_ =
        std::make_unique<NamesProvider>(module_.get(), wire_bytes());
  }
  return names_provider_.get();
}

void WasmCodeManager::FreeNativeModule(
    base::Vector<VirtualMemory> owned_code_space, size_t committed_size) {
  base::MutexGuard lock(&native_modules_mutex_);
  for (auto& code_space : owned_code_space) {
    DCHECK(code_space.IsReserved());
    TRACE_HEAP("VMem Release: 0x%" PRIxPTR ":0x%" PRIxPTR " (%zu)\n",
               code_space.address(), code_space.end(), code_space.size());

#if defined(V8_OS_WIN64)
    if (CanRegisterUnwindInfoForNonABICompliantCodeRange()) {
      win64_unwindinfo::UnregisterNonABICompliantCodeRange(
          reinterpret_cast<void*>(code_space.address()));
    }
#endif  // V8_OS_WIN64

    lookup_map_.erase(code_space.address());
    code_space.Free();
    DCHECK(!code_space.IsReserved());
  }

  DCHECK(IsAligned(committed_size, CommitPageSize()));
  // TODO(v8:8462): Remove this once perf supports remapping.
  if (!v8_flags.perf_prof) {
    size_t old_committed =
        total_committed_code_space_.fetch_sub(committed_size);
    DCHECK_LE(committed_size, old_committed);
    USE(old_committed);
  }
}

NativeModule* WasmCodeManager::LookupNativeModule(Address pc) const {
  base::MutexGuard lock(&native_modules_mutex_);
  if (lookup_map_.empty()) return nullptr;

  auto iter = lookup_map_.upper_bound(pc);
  if (iter == lookup_map_.begin()) return nullptr;
  --iter;
  Address region_start = iter->first;
  Address region_end = iter->second.first;
  NativeModule* candidate = iter->second.second;

  DCHECK_NOT_NULL(candidate);
  return region_start <= pc && pc < region_end ? candidate : nullptr;
}

WasmCode* WasmCodeManager::LookupCode(Address pc) const {
  NativeModule* candidate = LookupNativeModule(pc);
  return candidate ? candidate->Lookup(pc) : nullptr;
}

namespace {
thread_local WasmCodeRefScope* current_code_refs_scope = nullptr;
}  // namespace

WasmCodeRefScope::WasmCodeRefScope()
    : previous_scope_(current_code_refs_scope) {
  current_code_refs_scope = this;
}

WasmCodeRefScope::~WasmCodeRefScope() {
  DCHECK_EQ(this, current_code_refs_scope);
  current_code_refs_scope = previous_scope_;
  WasmCode::DecrementRefCount(base::VectorOf(code_ptrs_));
}

// static
void WasmCodeRefScope::AddRef(WasmCode* code) {
  DCHECK_NOT_NULL(code);
  WasmCodeRefScope* current_scope = current_code_refs_scope;
  DCHECK_NOT_NULL(current_scope);
  current_scope->code_ptrs_.push_back(code);
  code->IncRef();
}

Builtin RuntimeStubIdToBuiltinName(WasmCode::RuntimeStubId stub_id) {
#define RUNTIME_STUB_NAME(Name) Builtin::k##Name,
#define RUNTIME_STUB_NAME_TRAP(Name) Builtin::kThrowWasm##Name,
  constexpr Builtin builtin_names[] = {
      WASM_RUNTIME_STUB_LIST(RUNTIME_STUB_NAME, RUNTIME_STUB_NAME_TRAP)};
#undef RUNTIME_STUB_NAME
#undef RUNTIME_STUB_NAME_TRAP
  static_assert(arraysize(builtin_names) == WasmCode::kRuntimeStubCount);

  DCHECK_GT(arraysize(builtin_names), stub_id);
  return builtin_names[stub_id];
}

const char* GetRuntimeStubName(WasmCode::RuntimeStubId stub_id) {
#define RUNTIME_STUB_NAME(Name) #Name,
#define RUNTIME_STUB_NAME_TRAP(Name) "ThrowWasm" #Name,
  constexpr const char* runtime_stub_names[] = {WASM_RUNTIME_STUB_LIST(
      RUNTIME_STUB_NAME, RUNTIME_STUB_NAME_TRAP) "<unknown>"};
#undef RUNTIME_STUB_NAME
#undef RUNTIME_STUB_NAME_TRAP
  static_assert(arraysize(runtime_stub_names) ==
                WasmCode::kRuntimeStubCount + 1);

  DCHECK_GT(arraysize(runtime_stub_names), stub_id);
  return runtime_stub_names[stub_id];
}

}  // namespace wasm
}  // namespace internal
}  // namespace v8
#undef TRACE_HEAP