summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/wasm-external-refs.cc
blob: 08e6139abe9cfcf5e0a2b6d82b131dbb7291a648 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include <limits>

#include "include/v8config.h"

#include "src/base/bits.h"
#include "src/base/ieee754.h"
#include "src/utils/memcopy.h"

#if defined(ADDRESS_SANITIZER) || defined(MEMORY_SANITIZER) || \
    defined(THREAD_SANITIZER) || defined(LEAK_SANITIZER) ||    \
    defined(UNDEFINED_SANITIZER)
#define V8_WITH_SANITIZER
#endif

#if defined(V8_OS_WIN) && defined(V8_WITH_SANITIZER)
// With ASAN on Windows we have to reset the thread-in-wasm flag. Exceptions
// caused by ASAN let the thread-in-wasm flag get out of sync. Even marking
// functions with DISABLE_ASAN is not sufficient when the compiler produces
// calls to memset. Therefore we add test-specific code for ASAN on
// Windows.
#define RESET_THREAD_IN_WASM_FLAG_FOR_ASAN_ON_WINDOWS
#include "src/trap-handler/trap-handler.h"
#endif

#include "src/base/memory.h"
#include "src/utils/utils.h"
#include "src/wasm/wasm-external-refs.h"

namespace v8 {
namespace internal {
namespace wasm {

using base::ReadUnalignedValue;
using base::WriteUnalignedValue;

void f32_trunc_wrapper(Address data) {
  WriteUnalignedValue<float>(data, truncf(ReadUnalignedValue<float>(data)));
}

void f32_floor_wrapper(Address data) {
  WriteUnalignedValue<float>(data, floorf(ReadUnalignedValue<float>(data)));
}

void f32_ceil_wrapper(Address data) {
  WriteUnalignedValue<float>(data, ceilf(ReadUnalignedValue<float>(data)));
}

void f32_nearest_int_wrapper(Address data) {
  WriteUnalignedValue<float>(data, nearbyintf(ReadUnalignedValue<float>(data)));
}

void f64_trunc_wrapper(Address data) {
  WriteUnalignedValue<double>(data, trunc(ReadUnalignedValue<double>(data)));
}

void f64_floor_wrapper(Address data) {
  WriteUnalignedValue<double>(data, floor(ReadUnalignedValue<double>(data)));
}

void f64_ceil_wrapper(Address data) {
  WriteUnalignedValue<double>(data, ceil(ReadUnalignedValue<double>(data)));
}

void f64_nearest_int_wrapper(Address data) {
  WriteUnalignedValue<double>(data,
                              nearbyint(ReadUnalignedValue<double>(data)));
}

void int64_to_float32_wrapper(Address data) {
  int64_t input = ReadUnalignedValue<int64_t>(data);
  WriteUnalignedValue<float>(data, static_cast<float>(input));
}

void uint64_to_float32_wrapper(Address data) {
  uint64_t input = ReadUnalignedValue<uint64_t>(data);
  float result = static_cast<float>(input);

#if V8_CC_MSVC
  // With MSVC we use static_cast<float>(uint32_t) instead of
  // static_cast<float>(uint64_t) to achieve round-to-nearest-ties-even
  // semantics. The idea is to calculate
  // static_cast<float>(high_word) * 2^32 + static_cast<float>(low_word). To
  // achieve proper rounding in all cases we have to adjust the high_word
  // with a "rounding bit" sometimes. The rounding bit is stored in the LSB of
  // the high_word if the low_word may affect the rounding of the high_word.
  uint32_t low_word = static_cast<uint32_t>(input & 0xFFFFFFFF);
  uint32_t high_word = static_cast<uint32_t>(input >> 32);

  float shift = static_cast<float>(1ull << 32);
  // If the MSB of the high_word is set, then we make space for a rounding bit.
  if (high_word < 0x80000000) {
    high_word <<= 1;
    shift = static_cast<float>(1ull << 31);
  }

  if ((high_word & 0xFE000000) && low_word) {
    // Set the rounding bit.
    high_word |= 1;
  }

  result = static_cast<float>(high_word);
  result *= shift;
  result += static_cast<float>(low_word);
#endif

  WriteUnalignedValue<float>(data, result);
}

void int64_to_float64_wrapper(Address data) {
  int64_t input = ReadUnalignedValue<int64_t>(data);
  WriteUnalignedValue<double>(data, static_cast<double>(input));
}

void uint64_to_float64_wrapper(Address data) {
  uint64_t input = ReadUnalignedValue<uint64_t>(data);
  double result = static_cast<double>(input);

#if V8_CC_MSVC
  // With MSVC we use static_cast<double>(uint32_t) instead of
  // static_cast<double>(uint64_t) to achieve round-to-nearest-ties-even
  // semantics. The idea is to calculate
  // static_cast<double>(high_word) * 2^32 + static_cast<double>(low_word).
  uint32_t low_word = static_cast<uint32_t>(input & 0xFFFFFFFF);
  uint32_t high_word = static_cast<uint32_t>(input >> 32);

  double shift = static_cast<double>(1ull << 32);

  result = static_cast<double>(high_word);
  result *= shift;
  result += static_cast<double>(low_word);
#endif

  WriteUnalignedValue<double>(data, result);
}

int32_t float32_to_int64_wrapper(Address data) {
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within int64 range which are actually
  // not within int64 range.
  float input = ReadUnalignedValue<float>(data);
  if (input >= static_cast<float>(std::numeric_limits<int64_t>::min()) &&
      input < static_cast<float>(std::numeric_limits<int64_t>::max())) {
    WriteUnalignedValue<int64_t>(data, static_cast<int64_t>(input));
    return 1;
  }
  return 0;
}

int32_t float32_to_uint64_wrapper(Address data) {
  float input = ReadUnalignedValue<float>(data);
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within uint64 range which are actually
  // not within uint64 range.
  if (input > -1.0 &&
      input < static_cast<float>(std::numeric_limits<uint64_t>::max())) {
    WriteUnalignedValue<uint64_t>(data, static_cast<uint64_t>(input));
    return 1;
  }
  return 0;
}

int32_t float64_to_int64_wrapper(Address data) {
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within int64 range which are actually
  // not within int64 range.
  double input = ReadUnalignedValue<double>(data);
  if (input >= static_cast<double>(std::numeric_limits<int64_t>::min()) &&
      input < static_cast<double>(std::numeric_limits<int64_t>::max())) {
    WriteUnalignedValue<int64_t>(data, static_cast<int64_t>(input));
    return 1;
  }
  return 0;
}

int32_t float64_to_uint64_wrapper(Address data) {
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within uint64 range which are actually
  // not within uint64 range.
  double input = ReadUnalignedValue<double>(data);
  if (input > -1.0 &&
      input < static_cast<double>(std::numeric_limits<uint64_t>::max())) {
    WriteUnalignedValue<uint64_t>(data, static_cast<uint64_t>(input));
    return 1;
  }
  return 0;
}

int32_t int64_div_wrapper(Address data) {
  int64_t dividend = ReadUnalignedValue<int64_t>(data);
  int64_t divisor = ReadUnalignedValue<int64_t>(data + sizeof(dividend));
  if (divisor == 0) {
    return 0;
  }
  if (divisor == -1 && dividend == std::numeric_limits<int64_t>::min()) {
    return -1;
  }
  WriteUnalignedValue<int64_t>(data, dividend / divisor);
  return 1;
}

int32_t int64_mod_wrapper(Address data) {
  int64_t dividend = ReadUnalignedValue<int64_t>(data);
  int64_t divisor = ReadUnalignedValue<int64_t>(data + sizeof(dividend));
  if (divisor == 0) {
    return 0;
  }
  WriteUnalignedValue<int64_t>(data, dividend % divisor);
  return 1;
}

int32_t uint64_div_wrapper(Address data) {
  uint64_t dividend = ReadUnalignedValue<uint64_t>(data);
  uint64_t divisor = ReadUnalignedValue<uint64_t>(data + sizeof(dividend));
  if (divisor == 0) {
    return 0;
  }
  WriteUnalignedValue<uint64_t>(data, dividend / divisor);
  return 1;
}

int32_t uint64_mod_wrapper(Address data) {
  uint64_t dividend = ReadUnalignedValue<uint64_t>(data);
  uint64_t divisor = ReadUnalignedValue<uint64_t>(data + sizeof(dividend));
  if (divisor == 0) {
    return 0;
  }
  WriteUnalignedValue<uint64_t>(data, dividend % divisor);
  return 1;
}

uint32_t word32_ctz_wrapper(Address data) {
  return base::bits::CountTrailingZeros(ReadUnalignedValue<uint32_t>(data));
}

uint32_t word64_ctz_wrapper(Address data) {
  return base::bits::CountTrailingZeros(ReadUnalignedValue<uint64_t>(data));
}

uint32_t word32_popcnt_wrapper(Address data) {
  return base::bits::CountPopulation(ReadUnalignedValue<uint32_t>(data));
}

uint32_t word64_popcnt_wrapper(Address data) {
  return base::bits::CountPopulation(ReadUnalignedValue<uint64_t>(data));
}

uint32_t word32_rol_wrapper(Address data) {
  uint32_t input = ReadUnalignedValue<uint32_t>(data);
  uint32_t shift = ReadUnalignedValue<uint32_t>(data + sizeof(input)) & 31;
  return (input << shift) | (input >> ((32 - shift) & 31));
}

uint32_t word32_ror_wrapper(Address data) {
  uint32_t input = ReadUnalignedValue<uint32_t>(data);
  uint32_t shift = ReadUnalignedValue<uint32_t>(data + sizeof(input)) & 31;
  return (input >> shift) | (input << ((32 - shift) & 31));
}

void float64_pow_wrapper(Address data) {
  double x = ReadUnalignedValue<double>(data);
  double y = ReadUnalignedValue<double>(data + sizeof(x));
  WriteUnalignedValue<double>(data, base::ieee754::pow(x, y));
}

// Asan on Windows triggers exceptions in this function to allocate
// shadow memory lazily. When this function is called from WebAssembly,
// these exceptions would be handled by the trap handler before they get
// handled by Asan, and thereby confuse the thread-in-wasm flag.
// Therefore we disable ASAN for this function. Alternatively we could
// reset the thread-in-wasm flag before calling this function. However,
// as this is only a problem with Asan on Windows, we did not consider
// it worth the overhead.
DISABLE_ASAN void memory_copy_wrapper(Address dst, Address src, uint32_t size) {
  // Use explicit forward and backward copy to match the required semantics for
  // the memory.copy instruction. It is assumed that the caller of this
  // function has already performed bounds checks, so {src + size} and
  // {dst + size} should not overflow.
  DCHECK(src + size >= src && dst + size >= dst);
  uint8_t* dst8 = reinterpret_cast<uint8_t*>(dst);
  uint8_t* src8 = reinterpret_cast<uint8_t*>(src);
  if (src < dst && src + size > dst && dst + size > src) {
    dst8 += size - 1;
    src8 += size - 1;
    for (; size > 0; size--) {
      *dst8-- = *src8--;
    }
  } else {
    for (; size > 0; size--) {
      *dst8++ = *src8++;
    }
  }
}

// Asan on Windows triggers exceptions in this function that confuse the
// WebAssembly trap handler, so Asan is disabled. See the comment on
// memory_copy_wrapper above for more info.
void memory_fill_wrapper(Address dst, uint32_t value, uint32_t size) {
#if defined(RESET_THREAD_IN_WASM_FLAG_FOR_ASAN_ON_WINDOWS)
  bool thread_was_in_wasm = trap_handler::IsThreadInWasm();
  if (thread_was_in_wasm) {
    trap_handler::ClearThreadInWasm();
  }
#endif

  // Use an explicit forward copy to match the required semantics for the
  // memory.fill instruction. It is assumed that the caller of this function
  // has already performed bounds checks, so {dst + size} should not overflow.
  DCHECK(dst + size >= dst);
  uint8_t* dst8 = reinterpret_cast<uint8_t*>(dst);
  uint8_t value8 = static_cast<uint8_t>(value);
  for (; size > 0; size--) {
    *dst8++ = value8;
  }
#if defined(RESET_THREAD_IN_WASM_FLAG_FOR_ASAN_ON_WINDOWS)
  if (thread_was_in_wasm) {
    trap_handler::SetThreadInWasm();
  }
#endif
}

static WasmTrapCallbackForTesting wasm_trap_callback_for_testing = nullptr;

void set_trap_callback_for_testing(WasmTrapCallbackForTesting callback) {
  wasm_trap_callback_for_testing = callback;
}

void call_trap_callback_for_testing() {
  if (wasm_trap_callback_for_testing) {
    wasm_trap_callback_for_testing();
  }
}

}  // namespace wasm
}  // namespace internal
}  // namespace v8

#undef V8_WITH_SANITIZER
#undef RESET_THREAD_IN_WASM_FLAG_FOR_ASAN_ON_WINDOWS