1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_X64_CODE_STUBS_X64_H_
#define V8_X64_CODE_STUBS_X64_H_
#include "ic-inl.h"
#include "type-info.h"
namespace v8 {
namespace internal {
// Compute a transcendental math function natively, or call the
// TranscendentalCache runtime function.
class TranscendentalCacheStub: public CodeStub {
public:
enum ArgumentType {
TAGGED = 0,
UNTAGGED = 1 << TranscendentalCache::kTranscendentalTypeBits
};
explicit TranscendentalCacheStub(TranscendentalCache::Type type,
ArgumentType argument_type)
: type_(type), argument_type_(argument_type) {}
void Generate(MacroAssembler* masm);
private:
TranscendentalCache::Type type_;
ArgumentType argument_type_;
Major MajorKey() { return TranscendentalCache; }
int MinorKey() { return type_ | argument_type_; }
Runtime::FunctionId RuntimeFunction();
void GenerateOperation(MacroAssembler* masm);
};
class UnaryOpStub: public CodeStub {
public:
UnaryOpStub(Token::Value op,
UnaryOverwriteMode mode,
UnaryOpIC::TypeInfo operand_type = UnaryOpIC::UNINITIALIZED)
: op_(op),
mode_(mode),
operand_type_(operand_type) {
}
private:
Token::Value op_;
UnaryOverwriteMode mode_;
// Operand type information determined at runtime.
UnaryOpIC::TypeInfo operand_type_;
virtual void PrintName(StringStream* stream);
class ModeBits: public BitField<UnaryOverwriteMode, 0, 1> {};
class OpBits: public BitField<Token::Value, 1, 7> {};
class OperandTypeInfoBits: public BitField<UnaryOpIC::TypeInfo, 8, 3> {};
Major MajorKey() { return UnaryOp; }
int MinorKey() {
return ModeBits::encode(mode_)
| OpBits::encode(op_)
| OperandTypeInfoBits::encode(operand_type_);
}
// Note: A lot of the helper functions below will vanish when we use virtual
// function instead of switch more often.
void Generate(MacroAssembler* masm);
void GenerateTypeTransition(MacroAssembler* masm);
void GenerateSmiStub(MacroAssembler* masm);
void GenerateSmiStubSub(MacroAssembler* masm);
void GenerateSmiStubBitNot(MacroAssembler* masm);
void GenerateSmiCodeSub(MacroAssembler* masm,
Label* non_smi,
Label* slow,
Label::Distance non_smi_near = Label::kFar,
Label::Distance slow_near = Label::kFar);
void GenerateSmiCodeBitNot(MacroAssembler* masm,
Label* non_smi,
Label::Distance non_smi_near);
void GenerateHeapNumberStub(MacroAssembler* masm);
void GenerateHeapNumberStubSub(MacroAssembler* masm);
void GenerateHeapNumberStubBitNot(MacroAssembler* masm);
void GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow);
void GenerateHeapNumberCodeBitNot(MacroAssembler* masm, Label* slow);
void GenerateGenericStub(MacroAssembler* masm);
void GenerateGenericStubSub(MacroAssembler* masm);
void GenerateGenericStubBitNot(MacroAssembler* masm);
void GenerateGenericCodeFallback(MacroAssembler* masm);
virtual int GetCodeKind() { return Code::UNARY_OP_IC; }
virtual InlineCacheState GetICState() {
return UnaryOpIC::ToState(operand_type_);
}
virtual void FinishCode(Code* code) {
code->set_unary_op_type(operand_type_);
}
};
class BinaryOpStub: public CodeStub {
public:
BinaryOpStub(Token::Value op, OverwriteMode mode)
: op_(op),
mode_(mode),
operands_type_(BinaryOpIC::UNINITIALIZED),
result_type_(BinaryOpIC::UNINITIALIZED) {
ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
}
BinaryOpStub(
int key,
BinaryOpIC::TypeInfo operands_type,
BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED)
: op_(OpBits::decode(key)),
mode_(ModeBits::decode(key)),
operands_type_(operands_type),
result_type_(result_type) { }
private:
enum SmiCodeGenerateHeapNumberResults {
ALLOW_HEAPNUMBER_RESULTS,
NO_HEAPNUMBER_RESULTS
};
Token::Value op_;
OverwriteMode mode_;
// Operand type information determined at runtime.
BinaryOpIC::TypeInfo operands_type_;
BinaryOpIC::TypeInfo result_type_;
virtual void PrintName(StringStream* stream);
// Minor key encoding in 15 bits RRRTTTOOOOOOOMM.
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
class OpBits: public BitField<Token::Value, 2, 7> {};
class OperandTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 9, 3> {};
class ResultTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 12, 3> {};
Major MajorKey() { return BinaryOp; }
int MinorKey() {
return OpBits::encode(op_)
| ModeBits::encode(mode_)
| OperandTypeInfoBits::encode(operands_type_)
| ResultTypeInfoBits::encode(result_type_);
}
void Generate(MacroAssembler* masm);
void GenerateGeneric(MacroAssembler* masm);
void GenerateSmiCode(MacroAssembler* masm,
Label* slow,
SmiCodeGenerateHeapNumberResults heapnumber_results);
void GenerateFloatingPointCode(MacroAssembler* masm,
Label* allocation_failure,
Label* non_numeric_failure);
void GenerateStringAddCode(MacroAssembler* masm);
void GenerateCallRuntimeCode(MacroAssembler* masm);
void GenerateLoadArguments(MacroAssembler* masm);
void GenerateReturn(MacroAssembler* masm);
void GenerateUninitializedStub(MacroAssembler* masm);
void GenerateSmiStub(MacroAssembler* masm);
void GenerateInt32Stub(MacroAssembler* masm);
void GenerateHeapNumberStub(MacroAssembler* masm);
void GenerateOddballStub(MacroAssembler* masm);
void GenerateStringStub(MacroAssembler* masm);
void GenerateBothStringStub(MacroAssembler* masm);
void GenerateGenericStub(MacroAssembler* masm);
void GenerateHeapResultAllocation(MacroAssembler* masm, Label* alloc_failure);
void GenerateRegisterArgsPush(MacroAssembler* masm);
void GenerateTypeTransition(MacroAssembler* masm);
void GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm);
virtual int GetCodeKind() { return Code::BINARY_OP_IC; }
virtual InlineCacheState GetICState() {
return BinaryOpIC::ToState(operands_type_);
}
virtual void FinishCode(Code* code) {
code->set_binary_op_type(operands_type_);
code->set_binary_op_result_type(result_type_);
}
friend class CodeGenerator;
};
class StringHelper : public AllStatic {
public:
// Generate code for copying characters using a simple loop. This should only
// be used in places where the number of characters is small and the
// additional setup and checking in GenerateCopyCharactersREP adds too much
// overhead. Copying of overlapping regions is not supported.
static void GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
bool ascii);
// Generate code for copying characters using the rep movs instruction.
// Copies rcx characters from rsi to rdi. Copying of overlapping regions is
// not supported.
static void GenerateCopyCharactersREP(MacroAssembler* masm,
Register dest, // Must be rdi.
Register src, // Must be rsi.
Register count, // Must be rcx.
bool ascii);
// Probe the symbol table for a two character string. If the string is
// not found by probing a jump to the label not_found is performed. This jump
// does not guarantee that the string is not in the symbol table. If the
// string is found the code falls through with the string in register rax.
static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* not_found);
// Generate string hash.
static void GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character,
Register scratch);
static void GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character,
Register scratch);
static void GenerateHashGetHash(MacroAssembler* masm,
Register hash,
Register scratch);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};
// Flag that indicates how to generate code for the stub StringAddStub.
enum StringAddFlags {
NO_STRING_ADD_FLAGS = 0,
// Omit left string check in stub (left is definitely a string).
NO_STRING_CHECK_LEFT_IN_STUB = 1 << 0,
// Omit right string check in stub (right is definitely a string).
NO_STRING_CHECK_RIGHT_IN_STUB = 1 << 1,
// Omit both string checks in stub.
NO_STRING_CHECK_IN_STUB =
NO_STRING_CHECK_LEFT_IN_STUB | NO_STRING_CHECK_RIGHT_IN_STUB
};
class StringAddStub: public CodeStub {
public:
explicit StringAddStub(StringAddFlags flags) : flags_(flags) {}
private:
Major MajorKey() { return StringAdd; }
int MinorKey() { return flags_; }
void Generate(MacroAssembler* masm);
void GenerateConvertArgument(MacroAssembler* masm,
int stack_offset,
Register arg,
Register scratch1,
Register scratch2,
Register scratch3,
Label* slow);
const StringAddFlags flags_;
};
class SubStringStub: public CodeStub {
public:
SubStringStub() {}
private:
Major MajorKey() { return SubString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class StringCompareStub: public CodeStub {
public:
StringCompareStub() {}
// Compares two flat ASCII strings and returns result in rax.
static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4);
// Compares two flat ASCII strings for equality and returns result
// in rax.
static void GenerateFlatAsciiStringEquals(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2);
private:
virtual Major MajorKey() { return StringCompare; }
virtual int MinorKey() { return 0; }
virtual void Generate(MacroAssembler* masm);
static void GenerateAsciiCharsCompareLoop(
MacroAssembler* masm,
Register left,
Register right,
Register length,
Register scratch,
Label* chars_not_equal,
Label::Distance near_jump = Label::kFar);
};
class NumberToStringStub: public CodeStub {
public:
NumberToStringStub() { }
// Generate code to do a lookup in the number string cache. If the number in
// the register object is found in the cache the generated code falls through
// with the result in the result register. The object and the result register
// can be the same. If the number is not found in the cache the code jumps to
// the label not_found with only the content of register object unchanged.
static void GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
bool object_is_smi,
Label* not_found);
private:
static void GenerateConvertHashCodeToIndex(MacroAssembler* masm,
Register hash,
Register mask);
Major MajorKey() { return NumberToString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class StringDictionaryLookupStub: public CodeStub {
public:
enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };
StringDictionaryLookupStub(Register dictionary,
Register result,
Register index,
LookupMode mode)
: dictionary_(dictionary), result_(result), index_(index), mode_(mode) { }
void Generate(MacroAssembler* masm);
MUST_USE_RESULT static MaybeObject* GenerateNegativeLookup(
MacroAssembler* masm,
Label* miss,
Label* done,
Register properties,
String* name,
Register r0);
static void GeneratePositiveLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register r0,
Register r1);
private:
static const int kInlinedProbes = 4;
static const int kTotalProbes = 20;
static const int kCapacityOffset =
StringDictionary::kHeaderSize +
StringDictionary::kCapacityIndex * kPointerSize;
static const int kElementsStartOffset =
StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
Major MajorKey() { return StringDictionaryNegativeLookup; }
int MinorKey() {
return DictionaryBits::encode(dictionary_.code()) |
ResultBits::encode(result_.code()) |
IndexBits::encode(index_.code()) |
LookupModeBits::encode(mode_);
}
class DictionaryBits: public BitField<int, 0, 4> {};
class ResultBits: public BitField<int, 4, 4> {};
class IndexBits: public BitField<int, 8, 4> {};
class LookupModeBits: public BitField<LookupMode, 12, 1> {};
Register dictionary_;
Register result_;
Register index_;
LookupMode mode_;
};
} } // namespace v8::internal
#endif // V8_X64_CODE_STUBS_X64_H_
|