summaryrefslogtreecommitdiff
path: root/deps/v8/test/cctest/heap/heap-utils.cc
blob: f8c47a6a733ca9516abc875be1b1673106adf128 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "test/cctest/heap/heap-utils.h"

#include "src/base/platform/mutex.h"
#include "src/execution/isolate.h"
#include "src/heap/factory.h"
#include "src/heap/heap-inl.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/safepoint.h"
#include "test/cctest/cctest.h"

namespace v8 {
namespace internal {
namespace heap {

void InvokeScavenge(Isolate* isolate) {
  CcTest::CollectGarbage(i::NEW_SPACE, isolate);
}

void InvokeMarkSweep(Isolate* isolate) { CcTest::CollectAllGarbage(isolate); }

void SealCurrentObjects(Heap* heap) {
  // If you see this check failing, disable the flag at the start of your test:
  // FLAG_stress_concurrent_allocation = false;
  // Background thread allocating concurrently interferes with this function.
  CHECK(!FLAG_stress_concurrent_allocation);
  CcTest::CollectAllGarbage();
  CcTest::CollectAllGarbage();
  heap->mark_compact_collector()->EnsureSweepingCompleted();
  heap->old_space()->FreeLinearAllocationArea();
  for (Page* page : *heap->old_space()) {
    page->MarkNeverAllocateForTesting();
  }
}

int FixedArrayLenFromSize(int size) {
  return Min((size - FixedArray::kHeaderSize) / kTaggedSize,
             FixedArray::kMaxRegularLength);
}

std::vector<Handle<FixedArray>> FillOldSpacePageWithFixedArrays(Heap* heap,
                                                                int remainder) {
  PauseAllocationObserversScope pause_observers(heap);
  std::vector<Handle<FixedArray>> handles;
  Isolate* isolate = heap->isolate();
  const int kArraySize = 128;
  const int kArrayLen = heap::FixedArrayLenFromSize(kArraySize);
  Handle<FixedArray> array;
  int allocated = 0;
  do {
    if (allocated + kArraySize * 2 >
        static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) {
      int size =
          kArraySize * 2 -
          ((allocated + kArraySize * 2) -
           static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) -
          remainder;
      int last_array_len = heap::FixedArrayLenFromSize(size);
      array = isolate->factory()->NewFixedArray(last_array_len,
                                                AllocationType::kOld);
      CHECK_EQ(size, array->Size());
      allocated += array->Size() + remainder;
    } else {
      array =
          isolate->factory()->NewFixedArray(kArrayLen, AllocationType::kOld);
      allocated += array->Size();
      CHECK_EQ(kArraySize, array->Size());
    }
    if (handles.empty()) {
      // Check that allocations started on a new page.
      CHECK_EQ(array->address(), Page::FromHeapObject(*array)->area_start());
    }
    handles.push_back(array);
  } while (allocated <
           static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()));
  return handles;
}

std::vector<Handle<FixedArray>> CreatePadding(Heap* heap, int padding_size,
                                              AllocationType allocation,
                                              int object_size) {
  std::vector<Handle<FixedArray>> handles;
  Isolate* isolate = heap->isolate();
  int allocate_memory;
  int length;
  int free_memory = padding_size;
  if (allocation == i::AllocationType::kOld) {
    heap->old_space()->FreeLinearAllocationArea();
    int overall_free_memory = static_cast<int>(heap->old_space()->Available());
    CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
  } else {
    int overall_free_memory = static_cast<int>(heap->new_space()->Available());
    CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
  }
  while (free_memory > 0) {
    if (free_memory > object_size) {
      allocate_memory = object_size;
      length = FixedArrayLenFromSize(allocate_memory);
    } else {
      allocate_memory = free_memory;
      length = FixedArrayLenFromSize(allocate_memory);
      if (length <= 0) {
        // Not enough room to create another FixedArray, so create a filler.
        if (allocation == i::AllocationType::kOld) {
          heap->CreateFillerObjectAt(
              *heap->old_space()->allocation_top_address(), free_memory,
              ClearRecordedSlots::kNo);
        } else {
          heap->CreateFillerObjectAt(
              *heap->new_space()->allocation_top_address(), free_memory,
              ClearRecordedSlots::kNo);
        }
        break;
      }
    }
    handles.push_back(isolate->factory()->NewFixedArray(length, allocation));
    CHECK((allocation == AllocationType::kYoung &&
           heap->new_space()->Contains(*handles.back())) ||
          (allocation == AllocationType::kOld &&
           heap->InOldSpace(*handles.back())));
    free_memory -= handles.back()->Size();
  }
  return handles;
}

bool FillCurrentPage(v8::internal::NewSpace* space,
                     std::vector<Handle<FixedArray>>* out_handles) {
  return heap::FillCurrentPageButNBytes(space, 0, out_handles);
}

bool FillCurrentPageButNBytes(v8::internal::NewSpace* space, int extra_bytes,
                              std::vector<Handle<FixedArray>>* out_handles) {
  PauseAllocationObserversScope pause_observers(space->heap());
  // We cannot rely on `space->limit()` to point to the end of the current page
  // in the case where inline allocations are disabled, it actually points to
  // the current allocation pointer.
  DCHECK_IMPLIES(space->heap()->inline_allocation_disabled(),
                 space->limit() == space->top());
  int space_remaining =
      static_cast<int>(space->to_space().page_high() - space->top());
  CHECK(space_remaining >= extra_bytes);
  int new_linear_size = space_remaining - extra_bytes;
  if (new_linear_size == 0) return false;
  std::vector<Handle<FixedArray>> handles = heap::CreatePadding(
      space->heap(), space_remaining, i::AllocationType::kYoung);
  if (out_handles != nullptr) {
    out_handles->insert(out_handles->end(), handles.begin(), handles.end());
  }
  return true;
}

void SimulateFullSpace(v8::internal::NewSpace* space,
                       std::vector<Handle<FixedArray>>* out_handles) {
  // If you see this check failing, disable the flag at the start of your test:
  // FLAG_stress_concurrent_allocation = false;
  // Background thread allocating concurrently interferes with this function.
  CHECK(!FLAG_stress_concurrent_allocation);
  while (heap::FillCurrentPage(space, out_handles) || space->AddFreshPage()) {
  }
}

void SimulateIncrementalMarking(i::Heap* heap, bool force_completion) {
  const double kStepSizeInMs = 100;
  CHECK(FLAG_incremental_marking);
  i::IncrementalMarking* marking = heap->incremental_marking();
  i::MarkCompactCollector* collector = heap->mark_compact_collector();
  if (collector->sweeping_in_progress()) {
    SafepointScope scope(heap);
    collector->EnsureSweepingCompleted();
  }
  if (marking->IsSweeping()) {
    marking->FinalizeSweeping();
  }
  CHECK(marking->IsMarking() || marking->IsStopped() || marking->IsComplete());
  if (marking->IsStopped()) {
    heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
                                  i::GarbageCollectionReason::kTesting);
  }
  CHECK(marking->IsMarking() || marking->IsComplete());
  if (!force_completion) return;

  while (!marking->IsComplete()) {
    marking->Step(kStepSizeInMs, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD,
                  i::StepOrigin::kV8);
    if (marking->IsReadyToOverApproximateWeakClosure()) {
      SafepointScope scope(heap);
      marking->FinalizeIncrementally();
    }
  }
  CHECK(marking->IsComplete());
}

void SimulateFullSpace(v8::internal::PagedSpace* space) {
  // If you see this check failing, disable the flag at the start of your test:
  // FLAG_stress_concurrent_allocation = false;
  // Background thread allocating concurrently interferes with this function.
  CHECK(!FLAG_stress_concurrent_allocation);
  CodeSpaceMemoryModificationScope modification_scope(space->heap());
  i::MarkCompactCollector* collector = space->heap()->mark_compact_collector();
  if (collector->sweeping_in_progress()) {
    collector->EnsureSweepingCompleted();
  }
  space->FreeLinearAllocationArea();
  space->ResetFreeList();
}

void AbandonCurrentlyFreeMemory(PagedSpace* space) {
  space->FreeLinearAllocationArea();
  for (Page* page : *space) {
    page->MarkNeverAllocateForTesting();
  }
}

void GcAndSweep(Heap* heap, AllocationSpace space) {
  heap->CollectGarbage(space, GarbageCollectionReason::kTesting);
  if (heap->mark_compact_collector()->sweeping_in_progress()) {
    SafepointScope scope(heap);
    heap->mark_compact_collector()->EnsureSweepingCompleted();
  }
}

void ForceEvacuationCandidate(Page* page) {
  CHECK(FLAG_manual_evacuation_candidates_selection);
  page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
  PagedSpace* space = static_cast<PagedSpace*>(page->owner());
  DCHECK_NOT_NULL(space);
  Address top = space->top();
  Address limit = space->limit();
  if (top < limit && Page::FromAllocationAreaAddress(top) == page) {
    // Create filler object to keep page iterable if it was iterable.
    int remaining = static_cast<int>(limit - top);
    space->heap()->CreateFillerObjectAt(top, remaining,
                                        ClearRecordedSlots::kNo);
    base::MutexGuard guard(space->mutex());
    space->FreeLinearAllocationArea();
  }
}

bool InCorrectGeneration(HeapObject object) {
  return FLAG_single_generation ? !i::Heap::InYoungGeneration(object)
                                : i::Heap::InYoungGeneration(object);
}

void EnsureFlagLocalHeapsEnabled() {
  // Avoid data race in concurrent thread by only setting the flag to true if
  // not already enabled.
  if (!FLAG_local_heaps) FLAG_local_heaps = true;
}

void GrowNewSpace(Heap* heap) {
  SafepointScope scope(heap);
  heap->new_space()->Grow();
}

void GrowNewSpaceToMaximumCapacity(Heap* heap) {
  SafepointScope scope(heap);
  while (!heap->new_space()->IsAtMaximumCapacity()) {
    heap->new_space()->Grow();
  }
}

}  // namespace heap
}  // namespace internal
}  // namespace v8