1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#ifdef __linux__
#include <errno.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#endif
#include <utility>
#include "src/v8.h"
#include "src/full-codegen/full-codegen.h"
#include "src/global-handles.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-tester.h"
#include "test/cctest/heap/heap-utils.h"
using namespace v8::internal;
using v8::Just;
TEST(MarkingDeque) {
CcTest::InitializeVM();
MarkingDeque s(CcTest::i_isolate()->heap());
s.SetUp();
s.StartUsing();
Address original_address = reinterpret_cast<Address>(&s);
Address current_address = original_address;
while (!s.IsFull()) {
s.Push(HeapObject::FromAddress(current_address));
current_address += kPointerSize;
}
while (!s.IsEmpty()) {
Address value = s.Pop()->address();
current_address -= kPointerSize;
CHECK_EQ(current_address, value);
}
CHECK_EQ(original_address, current_address);
s.StopUsing();
CcTest::i_isolate()->cancelable_task_manager()->CancelAndWait();
s.TearDown();
}
TEST(Promotion) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
{
v8::HandleScope sc(CcTest::isolate());
Heap* heap = isolate->heap();
heap::SealCurrentObjects(heap);
int array_length = heap::FixedArrayLenFromSize(kMaxRegularHeapObjectSize);
Handle<FixedArray> array = isolate->factory()->NewFixedArray(array_length);
// Array should be in the new space.
CHECK(heap->InSpace(*array, NEW_SPACE));
CcTest::CollectAllGarbage(i::Heap::kFinalizeIncrementalMarkingMask);
CcTest::CollectAllGarbage(i::Heap::kFinalizeIncrementalMarkingMask);
CHECK(heap->InSpace(*array, OLD_SPACE));
}
}
HEAP_TEST(NoPromotion) {
// Page promotion allows pages to be moved to old space even in the case of
// OOM scenarios.
FLAG_page_promotion = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
{
v8::HandleScope sc(CcTest::isolate());
Heap* heap = isolate->heap();
heap::SealCurrentObjects(heap);
int array_length = heap::FixedArrayLenFromSize(kMaxRegularHeapObjectSize);
Handle<FixedArray> array = isolate->factory()->NewFixedArray(array_length);
heap->set_force_oom(true);
// Array should be in the new space.
CHECK(heap->InSpace(*array, NEW_SPACE));
CcTest::CollectAllGarbage(i::Heap::kFinalizeIncrementalMarkingMask);
CcTest::CollectAllGarbage(i::Heap::kFinalizeIncrementalMarkingMask);
CHECK(heap->InSpace(*array, NEW_SPACE));
}
}
HEAP_TEST(MarkCompactCollector) {
FLAG_incremental_marking = false;
FLAG_retain_maps_for_n_gc = 0;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = CcTest::heap();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<JSGlobalObject> global(isolate->context()->global_object());
// call mark-compact when heap is empty
CcTest::CollectGarbage(OLD_SPACE);
// keep allocating garbage in new space until it fails
const int arraysize = 100;
AllocationResult allocation;
do {
allocation = heap->AllocateFixedArray(arraysize);
} while (!allocation.IsRetry());
CcTest::CollectGarbage(NEW_SPACE);
heap->AllocateFixedArray(arraysize).ToObjectChecked();
// keep allocating maps until it fails
do {
allocation = heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
} while (!allocation.IsRetry());
CcTest::CollectGarbage(MAP_SPACE);
heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize).ToObjectChecked();
{ HandleScope scope(isolate);
// allocate a garbage
Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
Handle<JSFunction> function = factory->NewFunction(func_name);
JSReceiver::SetProperty(global, func_name, function, SLOPPY).Check();
factory->NewJSObject(function);
}
CcTest::CollectGarbage(OLD_SPACE);
{ HandleScope scope(isolate);
Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, func_name));
Handle<Object> func_value =
Object::GetProperty(global, func_name).ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
Handle<JSObject> obj = factory->NewJSObject(function);
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
JSReceiver::SetProperty(global, obj_name, obj, SLOPPY).Check();
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
}
CcTest::CollectGarbage(OLD_SPACE);
{ HandleScope scope(isolate);
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, obj_name));
Handle<Object> object =
Object::GetProperty(global, obj_name).ToHandleChecked();
CHECK(object->IsJSObject());
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
CHECK_EQ(*Object::GetProperty(object, prop_name).ToHandleChecked(),
Smi::FromInt(23));
}
}
// TODO(1600): compaction of map space is temporary removed from GC.
#if 0
static Handle<Map> CreateMap(Isolate* isolate) {
return isolate->factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
}
TEST(MapCompact) {
FLAG_max_map_space_pages = 16;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
{
v8::HandleScope sc;
// keep allocating maps while pointers are still encodable and thus
// mark compact is permitted.
Handle<JSObject> root = factory->NewJSObjectFromMap(CreateMap());
do {
Handle<Map> map = CreateMap();
map->set_prototype(*root);
root = factory->NewJSObjectFromMap(map);
} while (CcTest::heap()->map_space()->MapPointersEncodable());
}
// Now, as we don't have any handles to just allocated maps, we should
// be able to trigger map compaction.
// To give an additional chance to fail, try to force compaction which
// should be impossible right now.
CcTest::CollectAllGarbage(Heap::kForceCompactionMask);
// And now map pointers should be encodable again.
CHECK(CcTest::heap()->map_space()->MapPointersEncodable());
}
#endif
static int NumberOfWeakCalls = 0;
static void WeakPointerCallback(const v8::WeakCallbackInfo<void>& data) {
std::pair<v8::Persistent<v8::Value>*, int>* p =
reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
data.GetParameter());
CHECK_EQ(1234, p->second);
NumberOfWeakCalls++;
p->first->Reset();
}
HEAP_TEST(ObjectGroups) {
FLAG_incremental_marking = false;
CcTest::InitializeVM();
GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
Heap* heap = CcTest::heap();
NumberOfWeakCalls = 0;
v8::HandleScope handle_scope(CcTest::isolate());
Handle<Object> g1s1 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
Handle<Object> g1s2 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
Handle<Object> g1c1 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
std::pair<Handle<Object>*, int> g1s1_and_id(&g1s1, 1234);
GlobalHandles::MakeWeak(
g1s1.location(), reinterpret_cast<void*>(&g1s1_and_id),
&WeakPointerCallback, v8::WeakCallbackType::kParameter);
std::pair<Handle<Object>*, int> g1s2_and_id(&g1s2, 1234);
GlobalHandles::MakeWeak(
g1s2.location(), reinterpret_cast<void*>(&g1s2_and_id),
&WeakPointerCallback, v8::WeakCallbackType::kParameter);
std::pair<Handle<Object>*, int> g1c1_and_id(&g1c1, 1234);
GlobalHandles::MakeWeak(
g1c1.location(), reinterpret_cast<void*>(&g1c1_and_id),
&WeakPointerCallback, v8::WeakCallbackType::kParameter);
Handle<Object> g2s1 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
Handle<Object> g2s2 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
Handle<Object> g2c1 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
std::pair<Handle<Object>*, int> g2s1_and_id(&g2s1, 1234);
GlobalHandles::MakeWeak(
g2s1.location(), reinterpret_cast<void*>(&g2s1_and_id),
&WeakPointerCallback, v8::WeakCallbackType::kParameter);
std::pair<Handle<Object>*, int> g2s2_and_id(&g2s2, 1234);
GlobalHandles::MakeWeak(
g2s2.location(), reinterpret_cast<void*>(&g2s2_and_id),
&WeakPointerCallback, v8::WeakCallbackType::kParameter);
std::pair<Handle<Object>*, int> g2c1_and_id(&g2c1, 1234);
GlobalHandles::MakeWeak(
g2c1.location(), reinterpret_cast<void*>(&g2c1_and_id),
&WeakPointerCallback, v8::WeakCallbackType::kParameter);
Handle<Object> root = global_handles->Create(*g1s1); // make a root.
// Connect group 1 and 2, make a cycle.
Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
global_handles->AddObjectGroup(g1_objects, 2, NULL);
global_handles->SetReference(Handle<HeapObject>::cast(g1s1).location(),
g1c1.location());
global_handles->AddObjectGroup(g2_objects, 2, NULL);
global_handles->SetReference(Handle<HeapObject>::cast(g2s1).location(),
g2c1.location());
}
// Do a full GC
CcTest::CollectGarbage(OLD_SPACE);
// All object should be alive.
CHECK_EQ(0, NumberOfWeakCalls);
// Weaken the root.
std::pair<Handle<Object>*, int> root_and_id(&root, 1234);
GlobalHandles::MakeWeak(
root.location(), reinterpret_cast<void*>(&root_and_id),
&WeakPointerCallback, v8::WeakCallbackType::kParameter);
// But make children strong roots---all the objects (except for children)
// should be collectable now.
global_handles->ClearWeakness(g1c1.location());
global_handles->ClearWeakness(g2c1.location());
// Groups are deleted, rebuild groups.
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
global_handles->AddObjectGroup(g1_objects, 2, NULL);
global_handles->SetReference(Handle<HeapObject>::cast(g1s1).location(),
g1c1.location());
global_handles->AddObjectGroup(g2_objects, 2, NULL);
global_handles->SetReference(Handle<HeapObject>::cast(g2s1).location(),
g2c1.location());
}
CcTest::CollectGarbage(OLD_SPACE);
// All objects should be gone. 5 global handles in total.
CHECK_EQ(5, NumberOfWeakCalls);
// And now make children weak again and collect them.
GlobalHandles::MakeWeak(
g1c1.location(), reinterpret_cast<void*>(&g1c1_and_id),
&WeakPointerCallback, v8::WeakCallbackType::kParameter);
GlobalHandles::MakeWeak(
g2c1.location(), reinterpret_cast<void*>(&g2c1_and_id),
&WeakPointerCallback, v8::WeakCallbackType::kParameter);
CcTest::CollectGarbage(OLD_SPACE);
CHECK_EQ(7, NumberOfWeakCalls);
}
class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
public:
TestRetainedObjectInfo() : has_been_disposed_(false) {}
bool has_been_disposed() { return has_been_disposed_; }
virtual void Dispose() {
CHECK(!has_been_disposed_);
has_been_disposed_ = true;
}
virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
return other == this;
}
virtual intptr_t GetHash() { return 0; }
virtual const char* GetLabel() { return "whatever"; }
private:
bool has_been_disposed_;
};
TEST(EmptyObjectGroups) {
CcTest::InitializeVM();
GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
v8::HandleScope handle_scope(CcTest::isolate());
TestRetainedObjectInfo info;
global_handles->AddObjectGroup(NULL, 0, &info);
CHECK(info.has_been_disposed());
}
#if defined(__has_feature)
#if __has_feature(address_sanitizer)
#define V8_WITH_ASAN 1
#endif
#endif
// Here is a memory use test that uses /proc, and is therefore Linux-only. We
// do not care how much memory the simulator uses, since it is only there for
// debugging purposes. Testing with ASAN doesn't make sense, either.
#if defined(__linux__) && !defined(USE_SIMULATOR) && !defined(V8_WITH_ASAN)
static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
char* end_address = buffer + *position;
uintptr_t result = strtoul(buffer + *position, &end_address, base);
CHECK(result != ULONG_MAX || errno != ERANGE);
CHECK(end_address > buffer + *position);
*position = end_address - buffer;
return result;
}
// The memory use computed this way is not entirely accurate and depends on
// the way malloc allocates memory. That's why the memory use may seem to
// increase even though the sum of the allocated object sizes decreases. It
// also means that the memory use depends on the kernel and stdlib.
static intptr_t MemoryInUse() {
intptr_t memory_use = 0;
int fd = open("/proc/self/maps", O_RDONLY);
if (fd < 0) return -1;
const int kBufSize = 20000;
char buffer[kBufSize];
ssize_t length = read(fd, buffer, kBufSize);
intptr_t line_start = 0;
CHECK_LT(length, kBufSize); // Make the buffer bigger.
CHECK_GT(length, 0); // We have to find some data in the file.
while (line_start < length) {
if (buffer[line_start] == '\n') {
line_start++;
continue;
}
intptr_t position = line_start;
uintptr_t start = ReadLong(buffer, &position, 16);
CHECK_EQ(buffer[position++], '-');
uintptr_t end = ReadLong(buffer, &position, 16);
CHECK_EQ(buffer[position++], ' ');
CHECK(buffer[position] == '-' || buffer[position] == 'r');
bool read_permission = (buffer[position++] == 'r');
CHECK(buffer[position] == '-' || buffer[position] == 'w');
bool write_permission = (buffer[position++] == 'w');
CHECK(buffer[position] == '-' || buffer[position] == 'x');
bool execute_permission = (buffer[position++] == 'x');
CHECK(buffer[position] == 's' || buffer[position] == 'p');
bool private_mapping = (buffer[position++] == 'p');
CHECK_EQ(buffer[position++], ' ');
uintptr_t offset = ReadLong(buffer, &position, 16);
USE(offset);
CHECK_EQ(buffer[position++], ' ');
uintptr_t major = ReadLong(buffer, &position, 16);
USE(major);
CHECK_EQ(buffer[position++], ':');
uintptr_t minor = ReadLong(buffer, &position, 16);
USE(minor);
CHECK_EQ(buffer[position++], ' ');
uintptr_t inode = ReadLong(buffer, &position, 10);
while (position < length && buffer[position] != '\n') position++;
if ((read_permission || write_permission || execute_permission) &&
private_mapping && inode == 0) {
memory_use += (end - start);
}
line_start = position;
}
close(fd);
return memory_use;
}
intptr_t ShortLivingIsolate() {
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{ v8::Isolate::Scope isolate_scope(isolate);
v8::Locker lock(isolate);
v8::HandleScope handle_scope(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
CHECK(!context.IsEmpty());
}
isolate->Dispose();
return MemoryInUse();
}
TEST(RegressJoinThreadsOnIsolateDeinit) {
intptr_t size_limit = ShortLivingIsolate() * 2;
for (int i = 0; i < 10; i++) {
CHECK_GT(size_limit, ShortLivingIsolate());
}
}
#endif // __linux__ and !USE_SIMULATOR
|