summaryrefslogtreecommitdiff
path: root/deps/v8/test/cctest/heap/test-spaces.cc
blob: 27300c0c3d1a1bd22e1bfbca7fb7d78989c3c85a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>

#include "include/v8-platform.h"
#include "src/base/bounded-page-allocator.h"
#include "src/base/macros.h"
#include "src/base/platform/platform.h"
#include "src/common/globals.h"
#include "src/heap/factory.h"
#include "src/heap/large-spaces.h"
#include "src/heap/memory-allocator.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/spaces-inl.h"
#include "src/heap/spaces.h"
#include "src/objects/free-space.h"
#include "src/objects/objects-inl.h"
#include "src/snapshot/snapshot.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-tester.h"
#include "test/cctest/heap/heap-utils.h"

namespace v8 {
namespace internal {
namespace heap {

// Temporarily sets a given allocator in an isolate.
class V8_NODISCARD TestMemoryAllocatorScope {
 public:
  TestMemoryAllocatorScope(Isolate* isolate, size_t max_capacity,
                           PageAllocator* page_allocator = nullptr)
      : isolate_(isolate),
        old_allocator_(std::move(isolate->heap()->memory_allocator_)) {
    // Save the code pages for restoring them later on because the constructor
    // of MemoryAllocator will change them.
    isolate->GetCodePages()->swap(code_pages_);
    isolate->heap()->memory_allocator_.reset(new MemoryAllocator(
        isolate,
        page_allocator != nullptr ? page_allocator : isolate->page_allocator(),
        max_capacity));
    if (page_allocator != nullptr) {
      isolate->heap()->memory_allocator_->data_page_allocator_ = page_allocator;
    }
  }

  MemoryAllocator* allocator() { return isolate_->heap()->memory_allocator(); }

  ~TestMemoryAllocatorScope() {
    isolate_->heap()->memory_allocator()->TearDown();
    isolate_->heap()->memory_allocator_.swap(old_allocator_);
    isolate_->GetCodePages()->swap(code_pages_);
  }

  TestMemoryAllocatorScope(const TestMemoryAllocatorScope&) = delete;
  TestMemoryAllocatorScope& operator=(const TestMemoryAllocatorScope&) = delete;

 private:
  Isolate* isolate_;
  std::unique_ptr<MemoryAllocator> old_allocator_;
  std::vector<MemoryRange> code_pages_;
};

// Temporarily sets a given code page allocator in an isolate.
class V8_NODISCARD TestCodePageAllocatorScope {
 public:
  TestCodePageAllocatorScope(Isolate* isolate,
                             v8::PageAllocator* code_page_allocator)
      : isolate_(isolate),
        old_code_page_allocator_(
            isolate->heap()->memory_allocator()->code_page_allocator()) {
    isolate->heap()->memory_allocator()->code_page_allocator_ =
        code_page_allocator;
  }

  ~TestCodePageAllocatorScope() {
    isolate_->heap()->memory_allocator()->code_page_allocator_ =
        old_code_page_allocator_;
  }
  TestCodePageAllocatorScope(const TestCodePageAllocatorScope&) = delete;
  TestCodePageAllocatorScope& operator=(const TestCodePageAllocatorScope&) =
      delete;

 private:
  Isolate* isolate_;
  v8::PageAllocator* old_code_page_allocator_;
};

static void VerifyMemoryChunk(Isolate* isolate, Heap* heap,
                              v8::PageAllocator* code_page_allocator,
                              size_t reserve_area_size, size_t commit_area_size,
                              Executability executable, Space* space) {
  TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
  MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
  TestCodePageAllocatorScope test_code_page_allocator_scope(
      isolate, code_page_allocator);

  v8::PageAllocator* page_allocator =
      memory_allocator->page_allocator(executable);

  size_t allocatable_memory_area_offset =
      MemoryChunkLayout::ObjectStartOffsetInMemoryChunk(space->identity());
  size_t guard_size =
      (executable == EXECUTABLE) ? MemoryChunkLayout::CodePageGuardSize() : 0;

  MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(
      reserve_area_size, commit_area_size, executable, space);
  size_t reserved_size =
      ((executable == EXECUTABLE))
          ? allocatable_memory_area_offset +
                RoundUp(reserve_area_size, page_allocator->CommitPageSize()) +
                guard_size
          : RoundUp(allocatable_memory_area_offset + reserve_area_size,
                    page_allocator->CommitPageSize());
  CHECK(memory_chunk->size() == reserved_size);
  CHECK(memory_chunk->area_start() <
        memory_chunk->address() + memory_chunk->size());
  CHECK(memory_chunk->area_end() <=
        memory_chunk->address() + memory_chunk->size());
  CHECK(static_cast<size_t>(memory_chunk->area_size()) == commit_area_size);

  memory_allocator->Free<MemoryAllocator::kFull>(memory_chunk);
}

static unsigned int PseudorandomAreaSize() {
  static uint32_t lo = 2345;
  lo = 18273 * (lo & 0xFFFFF) + (lo >> 16);
  return lo & 0xFFFFF;
}


TEST(MemoryChunk) {
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();

  v8::PageAllocator* page_allocator = GetPlatformPageAllocator();

  size_t reserve_area_size = 1 * MB;
  size_t initial_commit_area_size;

  for (int i = 0; i < 100; i++) {
    initial_commit_area_size =
        RoundUp(PseudorandomAreaSize(), page_allocator->CommitPageSize());

    // With CodeRange.
    const size_t code_range_size = 32 * MB;
    VirtualMemory code_range_reservation(page_allocator, code_range_size,
                                         nullptr, MemoryChunk::kAlignment);
    CHECK(code_range_reservation.IsReserved());

    base::BoundedPageAllocator code_page_allocator(
        page_allocator, code_range_reservation.address(),
        code_range_reservation.size(), MemoryChunk::kAlignment);

    VerifyMemoryChunk(isolate, heap, &code_page_allocator, reserve_area_size,
                      initial_commit_area_size, EXECUTABLE, heap->code_space());

    VerifyMemoryChunk(isolate, heap, &code_page_allocator, reserve_area_size,
                      initial_commit_area_size, NOT_EXECUTABLE,
                      heap->old_space());
  }
}


TEST(MemoryAllocator) {
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();

  TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
  MemoryAllocator* memory_allocator = test_allocator_scope.allocator();

  int total_pages = 0;
  OldSpace faked_space(heap);
  CHECK(!faked_space.first_page());
  CHECK(!faked_space.last_page());
  Page* first_page = memory_allocator->AllocatePage(
      faked_space.AreaSize(), static_cast<PagedSpace*>(&faked_space),
      NOT_EXECUTABLE);

  faked_space.memory_chunk_list().PushBack(first_page);
  CHECK(first_page->next_page() == nullptr);
  total_pages++;

  for (Page* p = first_page; p != nullptr; p = p->next_page()) {
    CHECK(p->owner() == &faked_space);
  }

  // Again, we should get n or n - 1 pages.
  Page* other = memory_allocator->AllocatePage(
      faked_space.AreaSize(), static_cast<PagedSpace*>(&faked_space),
      NOT_EXECUTABLE);
  total_pages++;
  faked_space.memory_chunk_list().PushBack(other);
  int page_count = 0;
  for (Page* p = first_page; p != nullptr; p = p->next_page()) {
    CHECK(p->owner() == &faked_space);
    page_count++;
  }
  CHECK(total_pages == page_count);

  Page* second_page = first_page->next_page();
  CHECK_NOT_NULL(second_page);

  // OldSpace's destructor will tear down the space and free up all pages.
}

TEST(ComputeDiscardMemoryAreas) {
  base::AddressRegion memory_area;
  size_t page_size = MemoryAllocator::GetCommitPageSize();
  size_t free_header_size = FreeSpace::kSize;

  memory_area = MemoryAllocator::ComputeDiscardMemoryArea(0, 0);
  CHECK_EQ(memory_area.begin(), 0);
  CHECK_EQ(memory_area.size(), 0);

  memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
      0, page_size + free_header_size);
  CHECK_EQ(memory_area.begin(), 0);
  CHECK_EQ(memory_area.size(), 0);

  memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
      page_size - free_header_size, page_size + free_header_size);
  CHECK_EQ(memory_area.begin(), page_size);
  CHECK_EQ(memory_area.size(), page_size);

  memory_area = MemoryAllocator::ComputeDiscardMemoryArea(page_size, page_size);
  CHECK_EQ(memory_area.begin(), 0);
  CHECK_EQ(memory_area.size(), 0);

  memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
      page_size / 2, page_size + page_size / 2);
  CHECK_EQ(memory_area.begin(), page_size);
  CHECK_EQ(memory_area.size(), page_size);

  memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
      page_size / 2, page_size + page_size / 4);
  CHECK_EQ(memory_area.begin(), 0);
  CHECK_EQ(memory_area.size(), 0);

  memory_area =
      MemoryAllocator::ComputeDiscardMemoryArea(page_size / 2, page_size * 3);
  CHECK_EQ(memory_area.begin(), page_size);
  CHECK_EQ(memory_area.size(), page_size * 2);
}

TEST(NewSpace) {
  if (FLAG_single_generation) return;
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();
  TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
  MemoryAllocator* memory_allocator = test_allocator_scope.allocator();

  NewSpace new_space(heap, memory_allocator->data_page_allocator(),
                     CcTest::heap()->InitialSemiSpaceSize(),
                     CcTest::heap()->InitialSemiSpaceSize());
  CHECK(new_space.MaximumCapacity());

  while (new_space.Available() >= kMaxRegularHeapObjectSize) {
    CHECK(new_space.Contains(new_space
                                 .AllocateRaw(kMaxRegularHeapObjectSize,
                                              AllocationAlignment::kWordAligned)
                                 .ToObjectChecked()));
  }

  new_space.TearDown();
  memory_allocator->unmapper()->EnsureUnmappingCompleted();
}


TEST(OldSpace) {
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();
  TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());

  OldSpace* s = new OldSpace(heap);
  CHECK_NOT_NULL(s);

  while (s->Available() > 0) {
    s->AllocateRawUnaligned(kMaxRegularHeapObjectSize).ToObjectChecked();
  }

  delete s;
}

TEST(OldLargeObjectSpace) {
  // This test does not initialize allocated objects, which confuses the
  // incremental marker.
  FLAG_incremental_marking = false;
  FLAG_max_heap_size = 20;
  v8::V8::Initialize();

  OldLargeObjectSpace* lo = CcTest::heap()->lo_space();
  CHECK_NOT_NULL(lo);

  int lo_size = Page::kPageSize;

  Object obj = lo->AllocateRaw(lo_size).ToObjectChecked();
  CHECK(obj.IsHeapObject());

  HeapObject ho = HeapObject::cast(obj);

  CHECK(lo->Contains(HeapObject::cast(obj)));

  CHECK(lo->Contains(ho));

  CHECK_EQ(0, Heap::GetFillToAlign(ho.address(), kWordAligned));
  // All large objects have the same alignment because they start at the
  // same offset within a page. Fixed double arrays have the most strict
  // alignment requirements.
  CHECK_EQ(
      0, Heap::GetFillToAlign(
             ho.address(),
             HeapObject::RequiredAlignment(
                 ReadOnlyRoots(CcTest::i_isolate()).fixed_double_array_map())));
  Isolate* isolate = CcTest::i_isolate();
  HandleScope handle_scope(isolate);
  while (true) {
    {
      AllocationResult allocation = lo->AllocateRaw(lo_size);
      if (allocation.IsRetry()) break;
      HeapObject ho = HeapObject::cast(allocation.ToObjectChecked());
      Handle<HeapObject> keep_alive(ho, isolate);
    }
  }

  CHECK(!lo->IsEmpty());
  CHECK(lo->AllocateRaw(lo_size).IsRetry());
}

#ifndef DEBUG
// The test verifies that committed size of a space is less then some threshold.
// Debug builds pull in all sorts of additional instrumentation that increases
// heap sizes. E.g. CSA_ASSERT creates on-heap strings for error messages. These
// messages are also not stable if files are moved and modified during the build
// process (jumbo builds).
TEST(SizeOfInitialHeap) {
  ManualGCScope manual_gc_scope;
  if (i::FLAG_always_opt) return;
  // Bootstrapping without a snapshot causes more allocations.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  if (!isolate->snapshot_available()) return;
  HandleScope scope(isolate);
  v8::Local<v8::Context> context = CcTest::isolate()->GetCurrentContext();
  // Skip this test on the custom snapshot builder.
  if (!CcTest::global()
           ->Get(context, v8_str("assertEquals"))
           .ToLocalChecked()
           ->IsUndefined()) {
    return;
  }
  // Initial size of LO_SPACE
  size_t initial_lo_space = isolate->heap()->lo_space()->Size();

// The limit for each space for an empty isolate containing just the
// snapshot.
// In PPC the page size is 64K, causing more internal fragmentation
// hence requiring a larger limit.
#if V8_OS_LINUX && (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64)
  const size_t kMaxInitialSizePerSpace = 3 * MB;
#else
  const size_t kMaxInitialSizePerSpace = 2 * MB;
#endif

  // Freshly initialized VM gets by with the snapshot size (which is below
  // kMaxInitialSizePerSpace per space).
  Heap* heap = isolate->heap();
  for (int i = FIRST_GROWABLE_PAGED_SPACE; i <= LAST_GROWABLE_PAGED_SPACE;
       i++) {
    // Debug code can be very large, so skip CODE_SPACE if we are generating it.
    if (i == CODE_SPACE && i::FLAG_debug_code) continue;

    // Check that the initial heap is also below the limit.
    CHECK_LE(heap->paged_space(i)->CommittedMemory(), kMaxInitialSizePerSpace);
  }

  CompileRun("/*empty*/");

  // No large objects required to perform the above steps.
  CHECK_EQ(initial_lo_space,
           static_cast<size_t>(isolate->heap()->lo_space()->Size()));
}
#endif  // DEBUG

static HeapObject AllocateUnaligned(NewSpace* space, int size) {
  AllocationResult allocation = space->AllocateRaw(size, kWordAligned);
  CHECK(!allocation.IsRetry());
  HeapObject filler;
  CHECK(allocation.To(&filler));
  space->heap()->CreateFillerObjectAt(filler.address(), size,
                                      ClearRecordedSlots::kNo);
  return filler;
}

static HeapObject AllocateUnaligned(PagedSpace* space, int size) {
  AllocationResult allocation = space->AllocateRaw(size, kWordAligned);
  CHECK(!allocation.IsRetry());
  HeapObject filler;
  CHECK(allocation.To(&filler));
  space->heap()->CreateFillerObjectAt(filler.address(), size,
                                      ClearRecordedSlots::kNo);
  return filler;
}

static HeapObject AllocateUnaligned(OldLargeObjectSpace* space, int size) {
  AllocationResult allocation = space->AllocateRaw(size);
  CHECK(!allocation.IsRetry());
  HeapObject filler;
  CHECK(allocation.To(&filler));
  return filler;
}

class Observer : public AllocationObserver {
 public:
  explicit Observer(intptr_t step_size)
      : AllocationObserver(step_size), count_(0) {}

  void Step(int bytes_allocated, Address addr, size_t) override { count_++; }

  int count() const { return count_; }

 private:
  int count_;
};

template <typename T>
void testAllocationObserver(Isolate* i_isolate, T* space) {
  Observer observer1(128);
  space->AddAllocationObserver(&observer1);

  // The observer should not get notified if we have only allocated less than
  // 128 bytes.
  AllocateUnaligned(space, 64);
  CHECK_EQ(observer1.count(), 0);

  // The observer should get called when we have allocated exactly 128 bytes.
  AllocateUnaligned(space, 64);
  CHECK_EQ(observer1.count(), 1);

  // Another >128 bytes should get another notification.
  AllocateUnaligned(space, 136);
  CHECK_EQ(observer1.count(), 2);

  // Allocating a large object should get only one notification.
  AllocateUnaligned(space, 1024);
  CHECK_EQ(observer1.count(), 3);

  // Allocating another 2048 bytes in small objects should get 16
  // notifications.
  for (int i = 0; i < 64; ++i) {
    AllocateUnaligned(space, 32);
  }
  CHECK_EQ(observer1.count(), 19);

  // Multiple observers should work.
  Observer observer2(96);
  space->AddAllocationObserver(&observer2);

  AllocateUnaligned(space, 2048);
  CHECK_EQ(observer1.count(), 20);
  CHECK_EQ(observer2.count(), 1);

  AllocateUnaligned(space, 104);
  CHECK_EQ(observer1.count(), 20);
  CHECK_EQ(observer2.count(), 2);

  // Callback should stop getting called after an observer is removed.
  space->RemoveAllocationObserver(&observer1);

  AllocateUnaligned(space, 384);
  CHECK_EQ(observer1.count(), 20);  // no more notifications.
  CHECK_EQ(observer2.count(), 3);   // this one is still active.

  // Ensure that PauseInlineAllocationObserversScope work correctly.
  AllocateUnaligned(space, 48);
  CHECK_EQ(observer2.count(), 3);
  {
    PauseAllocationObserversScope pause_observers(i_isolate->heap());
    CHECK_EQ(observer2.count(), 3);
    AllocateUnaligned(space, 384);
    CHECK_EQ(observer2.count(), 3);
  }
  CHECK_EQ(observer2.count(), 3);
  // Coupled with the 48 bytes allocated before the pause, another 48 bytes
  // allocated here should trigger a notification.
  AllocateUnaligned(space, 48);
  CHECK_EQ(observer2.count(), 4);

  space->RemoveAllocationObserver(&observer2);
  AllocateUnaligned(space, 384);
  CHECK_EQ(observer1.count(), 20);
  CHECK_EQ(observer2.count(), 4);
}

UNINITIALIZED_TEST(AllocationObserver) {
  if (FLAG_single_generation) return;
  v8::Isolate::CreateParams create_params;
  create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
  v8::Isolate* isolate = v8::Isolate::New(create_params);
  {
    v8::Isolate::Scope isolate_scope(isolate);
    v8::HandleScope handle_scope(isolate);
    v8::Context::New(isolate)->Enter();

    Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);

    testAllocationObserver<NewSpace>(i_isolate, i_isolate->heap()->new_space());
    // Old space is used but the code path is shared for all
    // classes inheriting from PagedSpace.
    testAllocationObserver<PagedSpace>(i_isolate,
                                       i_isolate->heap()->old_space());
    testAllocationObserver<OldLargeObjectSpace>(i_isolate,
                                                i_isolate->heap()->lo_space());
  }
  isolate->Dispose();
}

UNINITIALIZED_TEST(InlineAllocationObserverCadence) {
  if (FLAG_single_generation) return;
  v8::Isolate::CreateParams create_params;
  create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
  v8::Isolate* isolate = v8::Isolate::New(create_params);
  {
    v8::Isolate::Scope isolate_scope(isolate);
    v8::HandleScope handle_scope(isolate);
    v8::Context::New(isolate)->Enter();

    Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);

    // Clear out any pre-existing garbage to make the test consistent
    // across snapshot/no-snapshot builds.
    CcTest::CollectAllGarbage(i_isolate);

    NewSpace* new_space = i_isolate->heap()->new_space();

    Observer observer1(512);
    new_space->AddAllocationObserver(&observer1);
    Observer observer2(576);
    new_space->AddAllocationObserver(&observer2);

    for (int i = 0; i < 512; ++i) {
      AllocateUnaligned(new_space, 32);
    }

    new_space->RemoveAllocationObserver(&observer1);
    new_space->RemoveAllocationObserver(&observer2);

    CHECK_EQ(observer1.count(), 32);
    CHECK_EQ(observer2.count(), 28);
  }
  isolate->Dispose();
}

HEAP_TEST(Regress777177) {
  FLAG_stress_concurrent_allocation = false;  // For SimulateFullSpace.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();
  HandleScope scope(isolate);
  PagedSpace* old_space = heap->old_space();
  Observer observer(128);
  old_space->AddAllocationObserver(&observer);

  int area_size = old_space->AreaSize();
  int max_object_size = kMaxRegularHeapObjectSize;
  int filler_size = area_size - max_object_size;

  {
    // Ensure a new linear allocation area on a fresh page.
    AlwaysAllocateScopeForTesting always_allocate(heap);
    heap::SimulateFullSpace(old_space);
    AllocationResult result = old_space->AllocateRaw(filler_size, kWordAligned);
    HeapObject obj = result.ToObjectChecked();
    heap->CreateFillerObjectAt(obj.address(), filler_size,
                               ClearRecordedSlots::kNo);
  }

  {
    // Allocate all bytes of the linear allocation area. This moves top_ and
    // top_on_previous_step_ to the next page.
    AllocationResult result =
        old_space->AllocateRaw(max_object_size, kWordAligned);
    HeapObject obj = result.ToObjectChecked();
    // Simulate allocation folding moving the top pointer back.
    old_space->SetTopAndLimit(obj.address(), old_space->limit());
  }

  {
    // This triggers assert in crbug.com/777177.
    AllocationResult result = old_space->AllocateRaw(filler_size, kWordAligned);
    HeapObject obj = result.ToObjectChecked();
    heap->CreateFillerObjectAt(obj.address(), filler_size,
                               ClearRecordedSlots::kNo);
  }
  old_space->RemoveAllocationObserver(&observer);
}

HEAP_TEST(Regress791582) {
  if (FLAG_single_generation) return;
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();
  HandleScope scope(isolate);
  NewSpace* new_space = heap->new_space();
  GrowNewSpace(heap);

  int until_page_end = static_cast<int>(new_space->limit() - new_space->top());

  if (!IsAligned(until_page_end, kTaggedSize)) {
    // The test works if the size of allocation area size is a multiple of
    // pointer size. This is usually the case unless some allocation observer
    // is already active (e.g. incremental marking observer).
    return;
  }

  Observer observer(128);
  new_space->AddAllocationObserver(&observer);

  {
    AllocationResult result =
        new_space->AllocateRaw(until_page_end, kWordAligned);
    HeapObject obj = result.ToObjectChecked();
    heap->CreateFillerObjectAt(obj.address(), until_page_end,
                               ClearRecordedSlots::kNo);
    // Simulate allocation folding moving the top pointer back.
    *new_space->allocation_top_address() = obj.address();
  }

  {
    // This triggers assert in crbug.com/791582
    AllocationResult result = new_space->AllocateRaw(256, kWordAligned);
    HeapObject obj = result.ToObjectChecked();
    heap->CreateFillerObjectAt(obj.address(), 256, ClearRecordedSlots::kNo);
  }
  new_space->RemoveAllocationObserver(&observer);
}

TEST(ShrinkPageToHighWaterMarkFreeSpaceEnd) {
  FLAG_stress_incremental_marking = false;
  FLAG_stress_concurrent_allocation = false;  // For SealCurrentObjects.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  heap::SealCurrentObjects(CcTest::heap());

  // Prepare page that only contains a single object and a trailing FreeSpace
  // filler.
  Handle<FixedArray> array =
      isolate->factory()->NewFixedArray(128, AllocationType::kOld);
  Page* page = Page::FromHeapObject(*array);

  // Reset space so high water mark is consistent.
  PagedSpace* old_space = CcTest::heap()->old_space();
  old_space->FreeLinearAllocationArea();
  old_space->ResetFreeList();

  HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
  CHECK(filler.IsFreeSpace());
  size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
  size_t should_have_shrunk = RoundDown(
      static_cast<size_t>(MemoryChunkLayout::AllocatableMemoryInDataPage() -
                          array->Size()),
      CommitPageSize());
  CHECK_EQ(should_have_shrunk, shrunk);
}

TEST(ShrinkPageToHighWaterMarkNoFiller) {
  FLAG_stress_concurrent_allocation = false;  // For SealCurrentObjects.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  heap::SealCurrentObjects(CcTest::heap());

  const int kFillerSize = 0;
  std::vector<Handle<FixedArray>> arrays =
      heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
  Handle<FixedArray> array = arrays.back();
  Page* page = Page::FromHeapObject(*array);
  CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);

  // Reset space so high water mark and fillers are consistent.
  PagedSpace* old_space = CcTest::heap()->old_space();
  old_space->ResetFreeList();
  old_space->FreeLinearAllocationArea();

  size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
  CHECK_EQ(0u, shrunk);
}

TEST(ShrinkPageToHighWaterMarkOneWordFiller) {
  FLAG_stress_concurrent_allocation = false;  // For SealCurrentObjects.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  heap::SealCurrentObjects(CcTest::heap());

  const int kFillerSize = kTaggedSize;
  std::vector<Handle<FixedArray>> arrays =
      heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
  Handle<FixedArray> array = arrays.back();
  Page* page = Page::FromHeapObject(*array);
  CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);

  // Reset space so high water mark and fillers are consistent.
  PagedSpace* old_space = CcTest::heap()->old_space();
  old_space->FreeLinearAllocationArea();
  old_space->ResetFreeList();

  HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
  CHECK_EQ(filler.map(),
           ReadOnlyRoots(CcTest::heap()).one_pointer_filler_map());

  size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
  CHECK_EQ(0u, shrunk);
}

TEST(ShrinkPageToHighWaterMarkTwoWordFiller) {
  FLAG_stress_concurrent_allocation = false;  // For SealCurrentObjects.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  heap::SealCurrentObjects(CcTest::heap());

  const int kFillerSize = 2 * kTaggedSize;
  std::vector<Handle<FixedArray>> arrays =
      heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
  Handle<FixedArray> array = arrays.back();
  Page* page = Page::FromHeapObject(*array);
  CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);

  // Reset space so high water mark and fillers are consistent.
  PagedSpace* old_space = CcTest::heap()->old_space();
  old_space->FreeLinearAllocationArea();
  old_space->ResetFreeList();

  HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
  CHECK_EQ(filler.map(),
           ReadOnlyRoots(CcTest::heap()).two_pointer_filler_map());

  size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
  CHECK_EQ(0u, shrunk);
}

namespace {
// PageAllocator that always fails.
class FailingPageAllocator : public v8::PageAllocator {
 public:
  size_t AllocatePageSize() override { return 1024; }
  size_t CommitPageSize() override { return 1024; }
  void SetRandomMmapSeed(int64_t seed) override {}
  void* GetRandomMmapAddr() override { return nullptr; }
  void* AllocatePages(void* address, size_t length, size_t alignment,
                      Permission permissions) override {
    return nullptr;
  }
  bool FreePages(void* address, size_t length) override { return false; }
  bool ReleasePages(void* address, size_t length, size_t new_length) override {
    return false;
  }
  bool SetPermissions(void* address, size_t length,
                      Permission permissions) override {
    return false;
  }
};
}  // namespace

TEST(NoMemoryForNewPage) {
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();

  // Memory allocator that will fail to allocate any pages.
  FailingPageAllocator failing_allocator;
  TestMemoryAllocatorScope test_allocator_scope(isolate, 0, &failing_allocator);
  MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
  OldSpace faked_space(heap);
  Page* page = memory_allocator->AllocatePage(
      faked_space.AreaSize(), static_cast<PagedSpace*>(&faked_space),
      NOT_EXECUTABLE);

  CHECK_NULL(page);
}

namespace {
// ReadOnlySpace cannot be torn down by a destructor because the destructor
// cannot take an argument. Since these tests create ReadOnlySpaces not attached
// to the Heap directly, they need to be destroyed to ensure the
// MemoryAllocator's stats are all 0 at exit.
class V8_NODISCARD ReadOnlySpaceScope {
 public:
  explicit ReadOnlySpaceScope(Heap* heap) : ro_space_(heap) {}
  ~ReadOnlySpaceScope() {
    ro_space_.TearDown(CcTest::heap()->memory_allocator());
  }

  ReadOnlySpace* space() { return &ro_space_; }

 private:
  ReadOnlySpace ro_space_;
};
}  // namespace

TEST(ReadOnlySpaceMetrics_OnePage) {
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();

  // Create a read-only space and allocate some memory, shrink the pages and
  // check the allocated object size is as expected.

  ReadOnlySpaceScope scope(heap);
  ReadOnlySpace* faked_space = scope.space();

  // Initially no memory.
  CHECK_EQ(faked_space->Size(), 0);
  CHECK_EQ(faked_space->Capacity(), 0);
  CHECK_EQ(faked_space->CommittedMemory(), 0);
  CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);

  faked_space->AllocateRaw(16, kWordAligned);

  faked_space->ShrinkPages();
  faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);

  MemoryAllocator* allocator = heap->memory_allocator();

  // Allocated objects size.
  CHECK_EQ(faked_space->Size(), 16);

  size_t committed_memory = RoundUp(
      MemoryChunkLayout::ObjectStartOffsetInDataPage() + faked_space->Size(),
      allocator->GetCommitPageSize());

  // Amount of OS allocated memory.
  CHECK_EQ(faked_space->CommittedMemory(), committed_memory);
  CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory);

  // Capacity will be one OS page minus the page header.
  CHECK_EQ(faked_space->Capacity(),
           committed_memory - MemoryChunkLayout::ObjectStartOffsetInDataPage());
}

TEST(ReadOnlySpaceMetrics_AlignedAllocations) {
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();

  // Create a read-only space and allocate some memory, shrink the pages and
  // check the allocated object size is as expected.

  ReadOnlySpaceScope scope(heap);
  ReadOnlySpace* faked_space = scope.space();

  // Initially no memory.
  CHECK_EQ(faked_space->Size(), 0);
  CHECK_EQ(faked_space->Capacity(), 0);
  CHECK_EQ(faked_space->CommittedMemory(), 0);
  CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);

  MemoryAllocator* allocator = heap->memory_allocator();
  // Allocate an object just under an OS page in size.
  int object_size =
      static_cast<int>(allocator->GetCommitPageSize() - kApiTaggedSize);

// TODO(v8:8875): Pointer compression does not enable aligned memory allocation
// yet.
#ifdef V8_COMPRESS_POINTERS
  int alignment = kInt32Size;
#else
  int alignment = kDoubleSize;
#endif

  HeapObject object =
      faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked();
  CHECK_EQ(object.address() % alignment, 0);
  object =
      faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked();
  CHECK_EQ(object.address() % alignment, 0);

  // Calculate size of allocations based on area_start.
  Address area_start = faked_space->pages().back()->GetAreaStart();
  Address top = RoundUp(area_start, alignment) + object_size;
  top = RoundUp(top, alignment) + object_size;
  size_t expected_size = top - area_start;

  faked_space->ShrinkPages();
  faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);

  // Allocated objects size may will contain 4 bytes of padding on 32-bit or
  // with pointer compression.
  CHECK_EQ(faked_space->Size(), expected_size);

  size_t committed_memory = RoundUp(
      MemoryChunkLayout::ObjectStartOffsetInDataPage() + faked_space->Size(),
      allocator->GetCommitPageSize());

  CHECK_EQ(faked_space->CommittedMemory(), committed_memory);
  CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory);

  // Capacity will be 3 OS pages minus the page header.
  CHECK_EQ(faked_space->Capacity(),
           committed_memory - MemoryChunkLayout::ObjectStartOffsetInDataPage());
}

TEST(ReadOnlySpaceMetrics_TwoPages) {
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();

  // Create a read-only space and allocate some memory, shrink the pages and
  // check the allocated object size is as expected.

  ReadOnlySpaceScope scope(heap);
  ReadOnlySpace* faked_space = scope.space();

  // Initially no memory.
  CHECK_EQ(faked_space->Size(), 0);
  CHECK_EQ(faked_space->Capacity(), 0);
  CHECK_EQ(faked_space->CommittedMemory(), 0);
  CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);

  MemoryAllocator* allocator = heap->memory_allocator();

  // Allocate an object that's too big to have more than one on a page.

  int object_size = RoundUp(
      static_cast<int>(
          MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE) / 2 + 16),
      kTaggedSize);
  CHECK_GT(object_size * 2,
           MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE));
  faked_space->AllocateRaw(object_size, kWordAligned);

  // Then allocate another so it expands the space to two pages.
  faked_space->AllocateRaw(object_size, kWordAligned);

  faked_space->ShrinkPages();
  faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);

  // Allocated objects size.
  CHECK_EQ(faked_space->Size(), object_size * 2);

  // Amount of OS allocated memory.
  size_t committed_memory_per_page =
      RoundUp(MemoryChunkLayout::ObjectStartOffsetInDataPage() + object_size,
              allocator->GetCommitPageSize());
  CHECK_EQ(faked_space->CommittedMemory(), 2 * committed_memory_per_page);
  CHECK_EQ(faked_space->CommittedPhysicalMemory(),
           2 * committed_memory_per_page);

  // Capacity will be the space up to the amount of committed memory minus the
  // page headers.
  size_t capacity_per_page =
      RoundUp(MemoryChunkLayout::ObjectStartOffsetInDataPage() + object_size,
              allocator->GetCommitPageSize()) -
      MemoryChunkLayout::ObjectStartOffsetInDataPage();
  CHECK_EQ(faked_space->Capacity(), 2 * capacity_per_page);
}

}  // namespace heap
}  // namespace internal
}  // namespace v8