1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/api/api-inl.h"
#include "src/execution/frames-inl.h"
#include "src/flags/flags.h"
#include "src/heap/read-only-spaces.h"
#include "src/heap/spaces.h"
#include "test/cctest/cctest.h"
#include "tools/debug_helper/debug-helper.h"
namespace v8 {
namespace internal {
namespace {
namespace d = v8::debug_helper;
uintptr_t memory_fail_start = 0;
uintptr_t memory_fail_end = 0;
class MemoryFailureRegion {
public:
MemoryFailureRegion(uintptr_t start, uintptr_t end) {
memory_fail_start = start;
memory_fail_end = end;
}
~MemoryFailureRegion() {
memory_fail_start = 0;
memory_fail_end = 0;
}
};
// Implement the memory-reading callback. This one just fetches memory from the
// current process, but a real implementation for a debugging extension would
// fetch memory from the debuggee process or crash dump.
d::MemoryAccessResult ReadMemory(uintptr_t address, void* destination,
size_t byte_count) {
if (address >= memory_fail_start && address <= memory_fail_end) {
// Simulate failure to read debuggee memory.
return d::MemoryAccessResult::kAddressValidButInaccessible;
}
memcpy(destination, reinterpret_cast<void*>(address), byte_count);
return d::MemoryAccessResult::kOk;
}
void CheckPropBase(const d::PropertyBase& property, const char* expected_type,
const char* expected_name) {
CHECK(property.type == std::string("v8::internal::TaggedValue") ||
property.type == std::string(expected_type));
CHECK(property.decompressed_type == std::string(expected_type));
CHECK(property.name == std::string(expected_name));
}
void CheckProp(const d::ObjectProperty& property, const char* expected_type,
const char* expected_name,
d::PropertyKind expected_kind = d::PropertyKind::kSingle,
size_t expected_num_values = 1) {
CheckPropBase(property, expected_type, expected_name);
CHECK_EQ(property.num_values, expected_num_values);
CHECK(property.kind == expected_kind);
}
template <typename TValue>
void CheckProp(const d::ObjectProperty& property, const char* expected_type,
const char* expected_name, TValue expected_value) {
CheckProp(property, expected_type, expected_name);
CHECK(*reinterpret_cast<TValue*>(property.address) == expected_value);
}
bool StartsWith(const std::string& full_string, const std::string& prefix) {
return full_string.substr(0, prefix.size()) == prefix;
}
bool Contains(const std::string& full_string, const std::string& substr) {
return full_string.find(substr) != std::string::npos;
}
void CheckStructProp(const d::StructProperty& property,
const char* expected_type, const char* expected_name,
size_t expected_offset, uint8_t expected_num_bits = 0,
uint8_t expected_shift_bits = 0) {
CheckPropBase(property, expected_type, expected_name);
CHECK_EQ(property.offset, expected_offset);
CHECK_EQ(property.num_bits, expected_num_bits);
CHECK_EQ(property.shift_bits, expected_shift_bits);
}
const d::ObjectProperty& FindProp(const d::ObjectPropertiesResult& props,
std::string name) {
for (size_t i = 0; i < props.num_properties; ++i) {
if (name == props.properties[i]->name) {
return *props.properties[i];
}
}
CHECK_WITH_MSG(false, ("property '" + name + "' not found").c_str());
UNREACHABLE();
}
template <typename TValue>
TValue ReadProp(const d::ObjectPropertiesResult& props, std::string name) {
const d::ObjectProperty& prop = FindProp(props, name);
return *reinterpret_cast<TValue*>(prop.address);
}
// A simple implementation of ExternalStringResource that lets us control the
// result of IsCacheable().
class StringResource : public v8::String::ExternalStringResource {
public:
explicit StringResource(bool cacheable) : cacheable_(cacheable) {}
const uint16_t* data() const override {
return reinterpret_cast<const uint16_t*>(u"abcde");
}
size_t length() const override { return 5; }
bool IsCacheable() const override { return cacheable_; }
private:
bool cacheable_;
};
} // namespace
TEST(GetObjectProperties) {
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
v8::HandleScope scope(isolate);
LocalContext context;
// Claim we don't know anything about the heap layout.
d::HeapAddresses heap_addresses{0, 0, 0, 0};
v8::Local<v8::Value> v = CompileRun("42");
Handle<Object> o = v8::Utils::OpenHandle(*v);
d::ObjectPropertiesResultPtr props =
d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(props->type_check_result == d::TypeCheckResult::kSmi);
CHECK(props->brief == std::string("42 (0x2a)"));
CHECK(props->type == std::string("v8::internal::Smi"));
CHECK_EQ(props->num_properties, 0);
v = CompileRun("[\"a\", \"bc\"]");
o = v8::Utils::OpenHandle(*v);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(props->type_check_result == d::TypeCheckResult::kUsedMap);
CHECK(props->type == std::string("v8::internal::JSArray"));
CHECK_EQ(props->num_properties, 4);
CheckProp(*props->properties[0], "v8::internal::Map", "map");
CheckProp(*props->properties[1], "v8::internal::Object",
"properties_or_hash");
CheckProp(*props->properties[2], "v8::internal::FixedArrayBase", "elements");
CheckProp(*props->properties[3], "v8::internal::Object", "length",
static_cast<i::Tagged_t>(IntToSmi(2)));
// We need to supply some valid address for decompression before reading the
// elements from the JSArray.
heap_addresses.any_heap_pointer = o->ptr();
i::Tagged_t properties_or_hash =
*reinterpret_cast<i::Tagged_t*>(props->properties[1]->address);
i::Tagged_t elements =
*reinterpret_cast<i::Tagged_t*>(props->properties[2]->address);
// The properties_or_hash_code field should be an empty fixed array. Since
// that is at a known offset, we should be able to detect it even without
// any ability to read memory.
{
MemoryFailureRegion failure(0, UINTPTR_MAX);
props =
d::GetObjectProperties(properties_or_hash, &ReadMemory, heap_addresses);
CHECK(props->type_check_result ==
d::TypeCheckResult::kObjectPointerValidButInaccessible);
CHECK(props->type == std::string("v8::internal::HeapObject"));
CHECK_EQ(props->num_properties, 1);
CheckProp(*props->properties[0], "v8::internal::Map", "map");
// "maybe" prefix indicates that GetObjectProperties recognized the offset
// within the page as matching a known object, but didn't know whether the
// object is on the right page. This response can only happen in builds
// without pointer compression, because otherwise heap addresses would be at
// deterministic locations within the heap reservation.
CHECK(COMPRESS_POINTERS_BOOL
? StartsWith(props->brief, "EmptyFixedArray")
: Contains(props->brief, "maybe EmptyFixedArray"));
// Provide a heap first page so the API can be more sure.
heap_addresses.read_only_space_first_page =
i_isolate->heap()->read_only_space()->FirstPageAddress();
props =
d::GetObjectProperties(properties_or_hash, &ReadMemory, heap_addresses);
CHECK(props->type_check_result ==
d::TypeCheckResult::kObjectPointerValidButInaccessible);
CHECK(props->type == std::string("v8::internal::HeapObject"));
CHECK_EQ(props->num_properties, 1);
CheckProp(*props->properties[0], "v8::internal::Map", "map");
CHECK(StartsWith(props->brief, "EmptyFixedArray"));
}
props = d::GetObjectProperties(elements, &ReadMemory, heap_addresses);
CHECK(props->type_check_result == d::TypeCheckResult::kUsedMap);
CHECK(props->type == std::string("v8::internal::FixedArray"));
CHECK_EQ(props->num_properties, 3);
CheckProp(*props->properties[0], "v8::internal::Map", "map");
CheckProp(*props->properties[1], "v8::internal::Object", "length",
static_cast<i::Tagged_t>(IntToSmi(2)));
CheckProp(*props->properties[2], "v8::internal::Object", "objects",
d::PropertyKind::kArrayOfKnownSize, 2);
// Get the second string value from the FixedArray.
i::Tagged_t second_string_address =
reinterpret_cast<i::Tagged_t*>(props->properties[2]->address)[1];
props = d::GetObjectProperties(second_string_address, &ReadMemory,
heap_addresses);
CHECK(props->type_check_result == d::TypeCheckResult::kUsedMap);
CHECK(props->type == std::string("v8::internal::SeqOneByteString"));
CHECK_EQ(props->num_properties, 4);
CheckProp(*props->properties[0], "v8::internal::Map", "map");
CheckProp(*props->properties[1], "uint32_t", "raw_hash_field");
CheckProp(*props->properties[2], "int32_t", "length", 2);
CheckProp(*props->properties[3], "char", "chars",
d::PropertyKind::kArrayOfKnownSize, 2);
CHECK_EQ(
strncmp("bc",
reinterpret_cast<const char*>(props->properties[3]->address), 2),
0);
// Read the second string again, using a type hint instead of the map. All of
// its properties should match what we read last time.
d::ObjectPropertiesResultPtr props2;
{
heap_addresses.read_only_space_first_page = 0;
uintptr_t map_address =
d::GetObjectProperties(
*reinterpret_cast<i::Tagged_t*>(props->properties[0]->address),
&ReadMemory, heap_addresses)
->properties[0]
->address;
MemoryFailureRegion failure(map_address, map_address + i::Map::kSize);
props2 = d::GetObjectProperties(second_string_address, &ReadMemory,
heap_addresses, "v8::internal::String");
if (COMPRESS_POINTERS_BOOL) {
// The first page of each heap space can be automatically detected when
// pointer compression is active, so we expect to use known maps instead
// of the type hint.
CHECK_EQ(props2->type_check_result, d::TypeCheckResult::kKnownMapPointer);
CHECK(props2->type == std::string("v8::internal::SeqOneByteString"));
CHECK_EQ(props2->num_properties, 4);
CheckProp(*props2->properties[3], "char", "chars",
d::PropertyKind::kArrayOfKnownSize, 2);
CHECK_EQ(props2->num_guessed_types, 0);
} else {
CHECK_EQ(props2->type_check_result, d::TypeCheckResult::kUsedTypeHint);
CHECK(props2->type == std::string("v8::internal::String"));
CHECK_EQ(props2->num_properties, 3);
// The type hint we provided was the abstract class String, but
// GetObjectProperties should have recognized that the Map pointer looked
// like the right value for a SeqOneByteString.
CHECK_EQ(props2->num_guessed_types, 1);
CHECK(std::string(props2->guessed_types[0]) ==
std::string("v8::internal::SeqOneByteString"));
}
CheckProp(*props2->properties[0], "v8::internal::Map", "map",
*reinterpret_cast<i::Tagged_t*>(props->properties[0]->address));
CheckProp(*props2->properties[1], "uint32_t", "raw_hash_field",
*reinterpret_cast<int32_t*>(props->properties[1]->address));
CheckProp(*props2->properties[2], "int32_t", "length", 2);
}
// Try a weak reference.
props2 = d::GetObjectProperties(second_string_address | kWeakHeapObjectMask,
&ReadMemory, heap_addresses);
std::string weak_ref_prefix = "weak ref to ";
CHECK(weak_ref_prefix + props->brief == props2->brief);
CHECK(props2->type_check_result == d::TypeCheckResult::kUsedMap);
CHECK(props2->type == std::string("v8::internal::SeqOneByteString"));
CHECK_EQ(props2->num_properties, 4);
CheckProp(*props2->properties[0], "v8::internal::Map", "map",
*reinterpret_cast<i::Tagged_t*>(props->properties[0]->address));
CheckProp(*props2->properties[1], "uint32_t", "raw_hash_field",
*reinterpret_cast<i::Tagged_t*>(props->properties[1]->address));
CheckProp(*props2->properties[2], "int32_t", "length", 2);
// Build a complicated string (multi-level cons with slices inside) to test
// string printing.
v = CompileRun(R"(
const alphabet = "abcdefghijklmnopqrstuvwxyz";
alphabet.substr(3,20) + alphabet.toUpperCase().substr(5,15) + "7")");
o = v8::Utils::OpenHandle(*v);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(Contains(props->brief, "\"defghijklmnopqrstuvwFGHIJKLMNOPQRST7\""));
// Cause a failure when reading the "second" pointer within the top-level
// ConsString.
{
CheckProp(*props->properties[4], "v8::internal::String", "second");
uintptr_t second_address = props->properties[4]->address;
MemoryFailureRegion failure(second_address, second_address + 4);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(Contains(props->brief, "\"defghijklmnopqrstuvwFGHIJKLMNOPQRST...\""));
}
// Build a very long string.
v = CompileRun("'a'.repeat(1000)");
o = v8::Utils::OpenHandle(*v);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(Contains(props->brief, "\"" + std::string(80, 'a') + "...\""));
// GetObjectProperties can read cacheable external strings.
auto external_string =
v8::String::NewExternalTwoByte(isolate, new StringResource(true));
o = v8::Utils::OpenHandle(*external_string.ToLocalChecked());
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(Contains(props->brief, "\"abcde\""));
// GetObjectProperties cannot read uncacheable external strings.
external_string =
v8::String::NewExternalTwoByte(isolate, new StringResource(false));
o = v8::Utils::OpenHandle(*external_string.ToLocalChecked());
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK_EQ(std::string(props->brief).find("\""), std::string::npos);
// Build a basic JS object and get its properties.
v = CompileRun("({a: 1, b: 2})");
o = v8::Utils::OpenHandle(*v);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
// Objects constructed from literals get their properties placed inline, so
// the GetObjectProperties response should include an array.
const d::ObjectProperty& prop = FindProp(*props, "in-object properties");
CheckProp(prop, "v8::internal::Object", "in-object properties",
d::PropertyKind::kArrayOfKnownSize, 2);
// The second item in that array is the SMI value 2 from the object literal.
props2 =
d::GetObjectProperties(reinterpret_cast<i::Tagged_t*>(prop.address)[1],
&ReadMemory, heap_addresses);
CHECK(props2->brief == std::string("2 (0x2)"));
// Verify the result for a heap object field which is itself a struct: the
// "descriptors" field on a DescriptorArray.
// Start by getting the object's map and the map's descriptor array.
props = d::GetObjectProperties(ReadProp<i::Tagged_t>(*props, "map"),
&ReadMemory, heap_addresses);
props = d::GetObjectProperties(
ReadProp<i::Tagged_t>(*props, "instance_descriptors"), &ReadMemory,
heap_addresses);
// It should have at least two descriptors (possibly plus slack).
CheckProp(*props->properties[1], "uint16_t", "number_of_all_descriptors");
uint16_t number_of_all_descriptors =
*reinterpret_cast<uint16_t*>(props->properties[1]->address);
CHECK_GE(number_of_all_descriptors, 2);
// The "descriptors" property should describe the struct layout for each
// element in the array.
const d::ObjectProperty& descriptors = *props->properties[6];
// No C++ type is reported directly because there may not be an actual C++
// struct with this layout, hence the empty string in this check.
CheckProp(descriptors, /*type=*/"", "descriptors",
d::PropertyKind::kArrayOfKnownSize, number_of_all_descriptors);
CHECK_EQ(descriptors.size, 3 * i::kTaggedSize);
CHECK_EQ(descriptors.num_struct_fields, 3);
CheckStructProp(*descriptors.struct_fields[0],
"v8::internal::PrimitiveHeapObject", "key",
0 * i::kTaggedSize);
CheckStructProp(*descriptors.struct_fields[1], "v8::internal::Object",
"details", 1 * i::kTaggedSize);
CheckStructProp(*descriptors.struct_fields[2], "v8::internal::Object",
"value", 2 * i::kTaggedSize);
// Build a basic JS function and get its properties. This will allow us to
// exercise bitfield functionality.
v = CompileRun("(function () {})");
o = v8::Utils::OpenHandle(*v);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
props = d::GetObjectProperties(
ReadProp<i::Tagged_t>(*props, "shared_function_info"), &ReadMemory,
heap_addresses);
const d::ObjectProperty& flags = FindProp(*props, "flags");
CHECK_GE(flags.num_struct_fields, 3);
CheckStructProp(*flags.struct_fields[0], "FunctionKind", "function_kind", 0,
5, 0);
CheckStructProp(*flags.struct_fields[1], "bool", "is_native", 0, 1, 5);
CheckStructProp(*flags.struct_fields[2], "bool", "is_strict", 0, 1, 6);
// Get data about a different bitfield struct which is contained within a smi.
Handle<i::JSFunction> function = Handle<i::JSFunction>::cast(o);
Handle<i::SharedFunctionInfo> shared(function->shared(), i_isolate);
Handle<i::DebugInfo> debug_info =
i_isolate->debug()->GetOrCreateDebugInfo(shared);
props =
d::GetObjectProperties(debug_info->ptr(), &ReadMemory, heap_addresses);
const d::ObjectProperty& debug_flags = FindProp(*props, "flags");
CHECK_GE(debug_flags.num_struct_fields, 5);
CheckStructProp(*debug_flags.struct_fields[0], "bool", "has_break_info", 0, 1,
i::kSmiTagSize + i::kSmiShiftSize);
CheckStructProp(*debug_flags.struct_fields[4], "bool", "can_break_at_entry",
0, 1, i::kSmiTagSize + i::kSmiShiftSize + 4);
}
TEST(ListObjectClasses) {
CcTest::InitializeVM();
// The ListObjectClasses result will change as classes are added, removed, or
// renamed. Just check that a few expected classes are included in the list,
// and that there are no duplicates.
const d::ClassList* class_list = d::ListObjectClasses();
std::unordered_set<std::string> class_set;
for (size_t i = 0; i < class_list->num_class_names; ++i) {
CHECK_WITH_MSG(class_set.insert(class_list->class_names[i]).second,
"there should be no duplicate entries");
}
CHECK_NE(class_set.find("v8::internal::HeapObject"), class_set.end());
CHECK_NE(class_set.find("v8::internal::String"), class_set.end());
CHECK_NE(class_set.find("v8::internal::JSRegExp"), class_set.end());
}
static void FrameIterationCheck(
v8::Local<v8::String> name,
const v8::PropertyCallbackInfo<v8::Value>& info) {
i::StackFrameIterator iter(reinterpret_cast<i::Isolate*>(info.GetIsolate()));
for (int i = 0; !iter.done(); i++) {
i::StackFrame* frame = iter.frame();
CHECK(i != 0 || (frame->type() == i::StackFrame::EXIT));
d::StackFrameResultPtr props = d::GetStackFrame(frame->fp(), &ReadMemory);
if (frame->is_java_script()) {
JavaScriptFrame* js_frame = JavaScriptFrame::cast(frame);
CHECK_EQ(props->num_properties, 1);
CheckProp(*props->properties[0], "v8::internal::JSFunction",
"currently_executing_jsfunction", js_frame->function().ptr());
} else {
CHECK_EQ(props->num_properties, 0);
}
iter.Advance();
}
}
THREADED_TEST(GetFrameStack) {
LocalContext env;
v8::Isolate* isolate = env->GetIsolate();
v8::HandleScope scope(isolate);
v8::Local<v8::ObjectTemplate> obj = v8::ObjectTemplate::New(isolate);
obj->SetAccessor(v8_str("xxx"), FrameIterationCheck);
CHECK(env->Global()
->Set(env.local(), v8_str("obj"),
obj->NewInstance(env.local()).ToLocalChecked())
.FromJust());
v8::Script::Compile(env.local(), v8_str("function foo() {"
" return obj.xxx;"
"}"
"foo();"))
.ToLocalChecked()
->Run(env.local())
.ToLocalChecked();
}
TEST(SmallOrderedHashSetGetObjectProperties) {
LocalContext context;
Isolate* isolate = reinterpret_cast<Isolate*>((*context)->GetIsolate());
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<SmallOrderedHashSet> set = factory->NewSmallOrderedHashSet();
const size_t number_of_buckets = 2;
CHECK_EQ(number_of_buckets, set->NumberOfBuckets());
CHECK_EQ(0, set->NumberOfElements());
// Verify with the definition of SmallOrderedHashSet in
// src\objects\ordered-hash-table.tq.
d::HeapAddresses heap_addresses{0, 0, 0, 0};
d::ObjectPropertiesResultPtr props =
d::GetObjectProperties(set->ptr(), &ReadMemory, heap_addresses);
CHECK_EQ(props->type_check_result, d::TypeCheckResult::kUsedMap);
CHECK_EQ(props->type, std::string("v8::internal::SmallOrderedHashSet"));
CHECK_EQ(props->num_properties, 8);
CheckProp(*props->properties[0], "v8::internal::Map", "map");
CheckProp(*props->properties[1], "uint8_t", "number_of_elements");
CheckProp(*props->properties[2], "uint8_t", "number_of_deleted_elements");
CheckProp(*props->properties[3], "uint8_t", "number_of_buckets");
#if TAGGED_SIZE_8_BYTES
CheckProp(*props->properties[4], "uint8_t", "padding",
d::PropertyKind::kArrayOfKnownSize, 5);
#else
CheckProp(*props->properties[4], "uint8_t", "padding",
d::PropertyKind::kArrayOfKnownSize, 1);
#endif
CheckProp(*props->properties[5], "v8::internal::Object", "data_table",
d::PropertyKind::kArrayOfKnownSize,
number_of_buckets * OrderedHashMap::kLoadFactor);
CheckProp(*props->properties[6], "uint8_t", "hash_table",
d::PropertyKind::kArrayOfKnownSize, number_of_buckets);
CheckProp(*props->properties[7], "uint8_t", "chain_table",
d::PropertyKind::kArrayOfKnownSize,
number_of_buckets * OrderedHashMap::kLoadFactor);
}
} // namespace internal
} // namespace v8
|