summaryrefslogtreecommitdiff
path: root/deps/v8/test/cctest/test-unwinder-code-pages.cc
blob: fe72a45d894c02676c9c0a4b94cd7e4995009f9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "include/v8-function.h"
#include "include/v8-isolate.h"
#include "include/v8-local-handle.h"
#include "include/v8-unwinder-state.h"
#include "src/api/api-inl.h"
#include "src/builtins/builtins.h"
#include "src/execution/isolate.h"
#include "src/heap/spaces.h"
#include "src/objects/code-inl.h"
#include "test/cctest/cctest.h"

namespace v8 {
namespace internal {
namespace test_unwinder_code_pages {

namespace {

#define CHECK_EQ_VALUE_REGISTER(uiuntptr_value, register_value) \
  CHECK_EQ(reinterpret_cast<void*>(uiuntptr_value), register_value)

#ifdef V8_TARGET_ARCH_X64
// How much the JSEntry frame occupies in the stack.
constexpr int kJSEntryFrameSpace = 3;

// Offset where the FP, PC and SP live from the beginning of the JSEntryFrame.
constexpr int kFPOffset = 0;
constexpr int kPCOffset = 1;
constexpr int kSPOffset = 2;

// Builds the stack from {stack} as x64 expects it.
// TODO(solanes): Build the JSEntry stack in the way the builtin builds it.
void BuildJSEntryStack(uintptr_t* stack) {
  stack[0] = reinterpret_cast<uintptr_t>(stack + 0);  // saved FP.
  stack[1] = 100;  // Return address into C++ code.
  stack[2] = reinterpret_cast<uintptr_t>(stack + 2);  // saved SP.
}

// Dummy method since we don't save callee saved registers in x64.
void CheckCalleeSavedRegisters(const RegisterState& register_state) {}

#elif V8_TARGET_ARCH_ARM
// How much the JSEntry frame occupies in the stack.
constexpr int kJSEntryFrameSpace = 26;

// Offset where the FP, PC and SP live from the beginning of the JSEntryFrame.
constexpr int kFPOffset = 0;
constexpr int kPCOffset = 1;
constexpr int kSPOffset = 25;

// Builds the stack from {stack} as it is explained in frame-constants-arm.h.
void BuildJSEntryStack(uintptr_t* stack) {
  stack[0] = reinterpret_cast<uintptr_t>(stack);  // saved FP.
  stack[1] = 100;  // Return address into C++ code (i.e lr/pc)
  // Set d8 = 150, d9 = 151, ..., d15 = 157.
  for (int i = 0; i < 8; ++i) {
    // Double registers occupy two slots. Therefore, upper bits are zeroed.
    stack[2 + i * 2] = 0;
    stack[2 + i * 2 + 1] = 150 + i;
  }
  // Set r4 = 160, ..., r10 = 166.
  for (int i = 0; i < 7; ++i) {
    stack[18 + i] = 160 + i;
  }
  stack[25] = reinterpret_cast<uintptr_t>(stack + 25);  // saved SP.
}

// Checks that the values in the calee saved registers are the same as the ones
// we saved in BuildJSEntryStack.
void CheckCalleeSavedRegisters(const RegisterState& register_state) {
  CHECK_EQ_VALUE_REGISTER(160, register_state.callee_saved->arm_r4);
  CHECK_EQ_VALUE_REGISTER(161, register_state.callee_saved->arm_r5);
  CHECK_EQ_VALUE_REGISTER(162, register_state.callee_saved->arm_r6);
  CHECK_EQ_VALUE_REGISTER(163, register_state.callee_saved->arm_r7);
  CHECK_EQ_VALUE_REGISTER(164, register_state.callee_saved->arm_r8);
  CHECK_EQ_VALUE_REGISTER(165, register_state.callee_saved->arm_r9);
  CHECK_EQ_VALUE_REGISTER(166, register_state.callee_saved->arm_r10);
}

#elif V8_TARGET_ARCH_ARM64
// How much the JSEntry frame occupies in the stack.
constexpr int kJSEntryFrameSpace = 21;

// Offset where the FP, PC and SP live from the beginning of the JSEntryFrame.
constexpr int kFPOffset = 0;
constexpr int kPCOffset = 1;
constexpr int kSPOffset = 20;

// Builds the stack from {stack} as it is explained in frame-constants-arm64.h.
void BuildJSEntryStack(uintptr_t* stack) {
  stack[0] = reinterpret_cast<uintptr_t>(stack);  // saved FP.
  stack[1] = 100;  // Return address into C++ code (i.e lr/pc)
  // Set x19 = 150, ..., x28 = 159.
  for (int i = 0; i < 10; ++i) {
    stack[2 + i] = 150 + i;
  }
  // Set d8 = 160, ..., d15 = 167.
  for (int i = 0; i < 8; ++i) {
    stack[12 + i] = 160 + i;
  }
  stack[20] = reinterpret_cast<uintptr_t>(stack + 20);  // saved SP.
}

// Dummy method since we don't save callee saved registers in arm64.
void CheckCalleeSavedRegisters(const RegisterState& register_state) {}

#else
// Dummy constants for the rest of the archs which are not supported.
constexpr int kJSEntryFrameSpace = 1;
constexpr int kFPOffset = 0;
constexpr int kPCOffset = 0;
constexpr int kSPOffset = 0;

// Dummy methods to be able to compile.
void BuildJSEntryStack(uintptr_t* stack) { UNREACHABLE(); }
void CheckCalleeSavedRegisters(const RegisterState& register_state) {
  UNREACHABLE();
}
#endif  // V8_TARGET_ARCH_X64

}  // namespace

static const void* fake_stack_base = nullptr;

TEST(Unwind_BadState_Fail_CodePagesAPI) {
  JSEntryStubs entry_stubs;  // Fields are initialized to nullptr.
  RegisterState register_state;
  size_t pages_length = 0;
  MemoryRange* code_pages = nullptr;

  bool unwound = v8::Unwinder::TryUnwindV8Frames(
      entry_stubs, pages_length, code_pages, &register_state, fake_stack_base);
  CHECK(!unwound);
  // The register state should not change when unwinding fails.
  CHECK_NULL(register_state.fp);
  CHECK_NULL(register_state.sp);
  CHECK_NULL(register_state.pc);
}

// Unwind a middle JS frame (i.e not the JSEntry one).
TEST(Unwind_BuiltinPCInMiddle_Success_CodePagesAPI) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);

  JSEntryStubs entry_stubs = isolate->GetJSEntryStubs();
  MemoryRange code_pages[v8::Isolate::kMinCodePagesBufferSize];
  size_t pages_length =
      isolate->CopyCodePages(arraysize(code_pages), code_pages);
  CHECK_LE(pages_length, arraysize(code_pages));
  RegisterState register_state;

  // {stack} here mocks the stack, where the top of the stack (i.e the lowest
  // addresses) are represented by lower indices.
  uintptr_t stack[3];
  void* stack_base = stack + arraysize(stack);
  // Index on the stack for the topmost fp (i.e the one right before the C++
  // frame).
  const int topmost_fp_index = 0;
  stack[0] = reinterpret_cast<uintptr_t>(stack + 2);  // saved FP.
  stack[1] = 202;  // Return address into C++ code.
  stack[2] = reinterpret_cast<uintptr_t>(stack + 2);  // saved SP.

  register_state.sp = stack;
  register_state.fp = stack;

  // Put the current PC inside of a valid builtin.
  Code builtin = *BUILTIN_CODE(i_isolate, StringEqual);
  const uintptr_t offset = 40;
  CHECK_LT(offset, builtin.InstructionSize());
  register_state.pc =
      reinterpret_cast<void*>(builtin.InstructionStart() + offset);

  bool unwound = v8::Unwinder::TryUnwindV8Frames(
      entry_stubs, pages_length, code_pages, &register_state, stack_base);
  CHECK(unwound);
  CHECK_EQ_VALUE_REGISTER(stack[topmost_fp_index], register_state.fp);
  CHECK_EQ_VALUE_REGISTER(stack[topmost_fp_index + 1], register_state.pc);
  CHECK_EQ_VALUE_REGISTER(stack[topmost_fp_index + 2], register_state.sp);
}

// The unwinder should be able to unwind even if we haven't properly set up the
// current frame, as long as there is another JS frame underneath us (i.e. as
// long as the PC isn't in JSEntry). This test puts the PC at the start
// of a JS builtin and creates a fake JSEntry frame before it on the stack. The
// unwinder should be able to unwind to the C++ frame before the JSEntry frame.
TEST(Unwind_BuiltinPCAtStart_Success_CodePagesAPI) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);

  JSEntryStubs entry_stubs = isolate->GetJSEntryStubs();
  MemoryRange code_pages[v8::Isolate::kMinCodePagesBufferSize];
  RegisterState register_state;

  const size_t code_length = 40;
  uintptr_t code[code_length] = {0};

  // We use AddCodeRange so that |code| is inserted in order.
  i_isolate->AddCodeRange(reinterpret_cast<Address>(code),
                          code_length * sizeof(uintptr_t));
  size_t pages_length =
      isolate->CopyCodePages(arraysize(code_pages), code_pages);
  CHECK_LE(pages_length, arraysize(code_pages));

  uintptr_t stack[6];
  void* stack_base = stack + arraysize(stack);
  stack[0] = 101;
  // Return address into JS code. It doesn't matter that this is not actually in
  // JSEntry, because we only check that for the top frame.
  stack[1] = reinterpret_cast<uintptr_t>(code + 10);
  // Index on the stack for the topmost fp (i.e the one right before the C++
  // frame).
  const int topmost_fp_index = 2;
  stack[2] = reinterpret_cast<uintptr_t>(stack + 5);  // saved FP.
  stack[3] = 303;  // Return address into C++ code.
  stack[4] = reinterpret_cast<uintptr_t>(stack + 4);
  stack[5] = 505;

  register_state.sp = stack;
  register_state.fp = stack + 2;  // FP to the JSEntry frame.

  // Put the current PC at the start of a valid builtin, so that we are setting
  // up the frame.
  Code builtin = *BUILTIN_CODE(i_isolate, StringEqual);
  register_state.pc = reinterpret_cast<void*>(builtin.InstructionStart());

  bool unwound = v8::Unwinder::TryUnwindV8Frames(
      entry_stubs, pages_length, code_pages, &register_state, stack_base);

  CHECK(unwound);
  CHECK_EQ_VALUE_REGISTER(stack[topmost_fp_index], register_state.fp);
  CHECK_EQ_VALUE_REGISTER(stack[topmost_fp_index + 1], register_state.pc);
  CHECK_EQ_VALUE_REGISTER(stack[topmost_fp_index + 2], register_state.sp);
}

const char* foo_source = R"(
  function foo(a, b) {
    let x = a * b;
    let y = x ^ b;
    let z = y / a;
    return x + y - z;
  };
  %PrepareFunctionForOptimization(foo);
  foo(1, 2);
  foo(1, 2);
  %OptimizeFunctionOnNextCall(foo);
  foo(1, 2);
)";

bool PagesContainsAddress(size_t length, MemoryRange* pages,
                          Address search_address) {
  byte* addr = reinterpret_cast<byte*>(search_address);
  auto it = std::find_if(pages, pages + length, [addr](const MemoryRange& r) {
    const byte* page_start = reinterpret_cast<const byte*>(r.start);
    const byte* page_end = page_start + r.length_in_bytes;
    return addr >= page_start && addr < page_end;
  });
  return it != pages + length;
}

// Check that we can unwind when the pc is within an optimized code object on
// the V8 heap.
TEST(Unwind_CodeObjectPCInMiddle_Success_CodePagesAPI) {
  v8_flags.allow_natives_syntax = true;
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
  HandleScope scope(i_isolate);

  JSEntryStubs entry_stubs = isolate->GetJSEntryStubs();
  MemoryRange code_pages[v8::Isolate::kMinCodePagesBufferSize];
  RegisterState register_state;

  uintptr_t stack[3];
  void* stack_base = stack + arraysize(stack);
  // Index on the stack for the topmost fp (i.e the one right before the C++
  // frame).
  const int topmost_fp_index = 0;
  stack[0] = reinterpret_cast<uintptr_t>(stack + 2);  // saved FP.
  stack[1] = 202;  // Return address into C++ code.
  stack[2] = reinterpret_cast<uintptr_t>(stack + 2);  // saved SP.

  register_state.sp = stack;
  register_state.fp = stack;

  // Create an on-heap code object. Make sure we run the function so that it is
  // compiled and not just marked for lazy compilation.
  CompileRun(foo_source);
  v8::Local<v8::Function> local_foo = v8::Local<v8::Function>::Cast(
      env.local()->Global()->Get(env.local(), v8_str("foo")).ToLocalChecked());
  Handle<JSFunction> foo =
      Handle<JSFunction>::cast(v8::Utils::OpenHandle(*local_foo));

  // Put the current PC inside of the created code object.
  Code code = foo->code();
  // We don't produce optimized code when run with --no-turbofan and
  // --no-maglev.
  if (!code.is_optimized_code()) return;

  // We don't want the offset too early or it could be the `push rbp`
  // instruction (which is not at the start of generated code, because the lazy
  // deopt check happens before frame setup).
  const uintptr_t offset = code.instruction_size() - 20;
  CHECK_LT(offset, code.instruction_size());
  Address pc = code.InstructionStart() + offset;
  register_state.pc = reinterpret_cast<void*>(pc);

  // Get code pages from the API now that the code obejct exists and check that
  // our code objects is on one of the pages.
  size_t pages_length =
      isolate->CopyCodePages(arraysize(code_pages), code_pages);
  CHECK_LE(pages_length, arraysize(code_pages));
  CHECK(PagesContainsAddress(pages_length, code_pages, pc));

  bool unwound = v8::Unwinder::TryUnwindV8Frames(
      entry_stubs, pages_length, code_pages, &register_state, stack_base);
  CHECK(unwound);
  CHECK_EQ_VALUE_REGISTER(stack[topmost_fp_index], register_state.fp);
  CHECK_EQ_VALUE_REGISTER(stack[topmost_fp_index + 1], register_state.pc);
  CHECK_EQ_VALUE_REGISTER(stack[topmost_fp_index + 2], register_state.sp);
}

// If the PC is within JSEntry but we haven't set up the frame yet, then we
// cannot unwind.
TEST(Unwind_JSEntryBeforeFrame_Fail_CodePagesAPI) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  JSEntryStubs entry_stubs = isolate->GetJSEntryStubs();
  MemoryRange code_pages[1];
  size_t pages_length = 1;
  RegisterState register_state;

  const size_t code_length = 40;
  uintptr_t code[code_length] = {0};
  code_pages[0].start = code;
  code_pages[0].length_in_bytes = code_length * sizeof(uintptr_t);

  // Pretend that it takes 5 instructions to set up the frame in JSEntry.
  entry_stubs.js_entry_stub.code.start = code + 10;
  entry_stubs.js_entry_stub.code.length_in_bytes = 10 * sizeof(uintptr_t);

  uintptr_t stack[10];
  void* stack_base = stack + arraysize(stack);
  stack[0] = 101;
  stack[1] = 111;
  stack[2] = 121;
  stack[3] = 131;
  stack[4] = 141;
  stack[5] = 151;  // Here's where the saved fp would be. We are not going to be
                   // unwinding so we do not need to set it up correctly.
  stack[6] = 100;  // Return address into C++ code.
  stack[7] = 303;  // Here's where the saved SP would be.
  stack[8] = 404;
  stack[9] = 505;

  register_state.sp = &stack[5];
  register_state.fp = &stack[9];

  // Put the current PC inside of JSEntry, before the frame is set up.
  uintptr_t* jsentry_pc_value = code + 12;
  register_state.pc = jsentry_pc_value;
  bool unwound = v8::Unwinder::TryUnwindV8Frames(
      entry_stubs, pages_length, code_pages, &register_state, stack_base);
  CHECK(!unwound);
  // The register state should not change when unwinding fails.
  CHECK_EQ_VALUE_REGISTER(&stack[9], register_state.fp);
  CHECK_EQ_VALUE_REGISTER(&stack[5], register_state.sp);
  CHECK_EQ(jsentry_pc_value, register_state.pc);

  // Change the PC to a few instructions later, after the frame is set up.
  jsentry_pc_value = code + 16;
  register_state.pc = jsentry_pc_value;
  unwound = v8::Unwinder::TryUnwindV8Frames(
      entry_stubs, pages_length, code_pages, &register_state, stack_base);
  // TODO(petermarshall): More precisely check position within JSEntry rather
  // than just assuming the frame is unreadable.
  CHECK(!unwound);
  // The register state should not change when unwinding fails.
  CHECK_EQ_VALUE_REGISTER(&stack[9], register_state.fp);
  CHECK_EQ_VALUE_REGISTER(&stack[5], register_state.sp);
  CHECK_EQ(jsentry_pc_value, register_state.pc);
}

// Creates a fake stack with two JS frames on top of a C++ frame and checks that
// the unwinder correctly unwinds past the JS frames and returns the C++ frame's
// details.
TEST(Unwind_TwoJSFrames_Success_CodePagesAPI) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  JSEntryStubs entry_stubs = isolate->GetJSEntryStubs();
  MemoryRange code_pages[1];
  size_t pages_length = 1;
  RegisterState register_state;

  // Use a fake code range so that we can initialize it to 0s.
  const size_t code_length = 40;
  uintptr_t code[code_length] = {0};
  code_pages[0].start = code;
  code_pages[0].length_in_bytes = code_length * sizeof(uintptr_t);

  // Our fake stack has three frames - one C++ frame and two JS frames (on top).
  // The stack grows from high addresses to low addresses.
  uintptr_t stack[5 + kJSEntryFrameSpace];
  void* stack_base = stack + arraysize(stack);
  stack[0] = 101;
  stack[1] = 111;
  stack[2] = reinterpret_cast<uintptr_t>(stack + 5);  // saved FP.
  // The fake return address is in the JS code range.
  const void* jsentry_pc = code + 10;
  stack[3] = reinterpret_cast<uintptr_t>(jsentry_pc);
  stack[4] = 141;
  const int top_of_js_entry = 5;
  BuildJSEntryStack(&stack[top_of_js_entry]);

  register_state.sp = stack;
  register_state.fp = stack + 2;

  // Put the current PC inside of the code range so it looks valid.
  register_state.pc = code + 30;

  // Put the PC in the JSEntryRange.
  entry_stubs.js_entry_stub.code.start = jsentry_pc;
  entry_stubs.js_entry_stub.code.length_in_bytes = sizeof(uintptr_t);

  bool unwound = v8::Unwinder::TryUnwindV8Frames(
      entry_stubs, pages_length, code_pages, &register_state, stack_base);

  CHECK(unwound);
  CHECK_EQ_VALUE_REGISTER(stack[top_of_js_entry + kFPOffset],
                          register_state.fp);
  CHECK_EQ_VALUE_REGISTER(stack[top_of_js_entry + kPCOffset],
                          register_state.pc);
  CHECK_EQ_VALUE_REGISTER(stack[top_of_js_entry + kSPOffset],
                          register_state.sp);
  CheckCalleeSavedRegisters(register_state);
}

// If the PC is in JSEntry then the frame might not be set up correctly, meaning
// we can't unwind the stack properly.
TEST(Unwind_JSEntry_Fail_CodePagesAPI) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);

  JSEntryStubs entry_stubs = isolate->GetJSEntryStubs();
  MemoryRange code_pages[v8::Isolate::kMinCodePagesBufferSize];
  size_t pages_length =
      isolate->CopyCodePages(arraysize(code_pages), code_pages);
  CHECK_LE(pages_length, arraysize(code_pages));
  RegisterState register_state;

  Code js_entry = *BUILTIN_CODE(i_isolate, JSEntry);
  byte* start = reinterpret_cast<byte*>(js_entry.InstructionStart());
  register_state.pc = start + 10;

  bool unwound = v8::Unwinder::TryUnwindV8Frames(
      entry_stubs, pages_length, code_pages, &register_state, fake_stack_base);
  CHECK(!unwound);
  // The register state should not change when unwinding fails.
  CHECK_NULL(register_state.fp);
  CHECK_NULL(register_state.sp);
  CHECK_EQ(start + 10, register_state.pc);
}

// Tries to unwind a middle frame (i.e not a JSEntry frame) first with a wrong
// stack base, and then with the correct one.
TEST(Unwind_StackBounds_Basic_CodePagesAPI) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  JSEntryStubs entry_stubs = isolate->GetJSEntryStubs();
  MemoryRange code_pages[1];
  size_t pages_length = 1;
  RegisterState register_state;

  const size_t code_length = 10;
  uintptr_t code[code_length] = {0};
  code_pages[0].start = code;
  code_pages[0].length_in_bytes = code_length * sizeof(uintptr_t);

  uintptr_t stack[3];
  stack[0] = reinterpret_cast<uintptr_t>(stack + 2);  // saved FP.
  stack[1] = 202;                                     // saved PC.
  stack[2] = 303;  // saved SP.

  register_state.sp = stack;
  register_state.fp = stack;
  register_state.pc = code;

  void* wrong_stack_base = reinterpret_cast<void*>(
      reinterpret_cast<uintptr_t>(stack) - sizeof(uintptr_t));
  bool unwound = v8::Unwinder::TryUnwindV8Frames(
      entry_stubs, pages_length, code_pages, &register_state, wrong_stack_base);
  CHECK(!unwound);

  // Correct the stack base and unwinding should succeed.
  void* correct_stack_base = stack + arraysize(stack);
  unwound =
      v8::Unwinder::TryUnwindV8Frames(entry_stubs, pages_length, code_pages,
                                      &register_state, correct_stack_base);
  CHECK(unwound);
}

TEST(Unwind_StackBounds_WithUnwinding_CodePagesAPI) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  JSEntryStubs entry_stubs = isolate->GetJSEntryStubs();
  MemoryRange code_pages[1];
  size_t pages_length = 1;
  RegisterState register_state;

  // Use a fake code range so that we can initialize it to 0s.
  const size_t code_length = 40;
  uintptr_t code[code_length] = {0};
  code_pages[0].start = code;
  code_pages[0].length_in_bytes = code_length * sizeof(uintptr_t);

  // Our fake stack has two frames - one C++ frame and one JS frame (on top).
  // The stack grows from high addresses to low addresses.
  uintptr_t stack[9 + kJSEntryFrameSpace];
  void* stack_base = stack + arraysize(stack);
  stack[0] = 101;
  stack[1] = 111;
  stack[2] = 121;
  stack[3] = 131;
  stack[4] = 141;
  stack[5] = reinterpret_cast<uintptr_t>(stack + 9);  // saved FP.
  const void* jsentry_pc = code + 20;
  stack[6] = reinterpret_cast<uintptr_t>(jsentry_pc);  // JS code.
  stack[7] = 303;                                      // saved SP.
  stack[8] = 404;
  const int top_of_js_entry = 9;
  BuildJSEntryStack(&stack[top_of_js_entry]);
  // Override FP and PC
  stack[top_of_js_entry + kFPOffset] =
      reinterpret_cast<uintptr_t>(stack) +
      (9 + kJSEntryFrameSpace + 1) * sizeof(uintptr_t);  // saved FP (OOB).
  stack[top_of_js_entry + kPCOffset] =
      reinterpret_cast<uintptr_t>(code + 20);  // JS code.

  register_state.sp = stack;
  register_state.fp = stack + 5;

  // Put the current PC inside of the code range so it looks valid.
  register_state.pc = code + 30;

  // Put the PC in the JSEntryRange.
  entry_stubs.js_entry_stub.code.start = jsentry_pc;
  entry_stubs.js_entry_stub.code.length_in_bytes = sizeof(uintptr_t);

  // Unwind will fail because stack[9] FP points outside of the stack.
  bool unwound = v8::Unwinder::TryUnwindV8Frames(
      entry_stubs, pages_length, code_pages, &register_state, stack_base);
  CHECK(!unwound);

  // Change the return address so that it is not in range. We will not range
  // check the stack's FP value because we have finished unwinding and the
  // contents of rbp does not necessarily have to be the FP in this case.
  stack[top_of_js_entry + kPCOffset] = 202;
  unwound = v8::Unwinder::TryUnwindV8Frames(
      entry_stubs, pages_length, code_pages, &register_state, stack_base);
  CHECK(unwound);
  CheckCalleeSavedRegisters(register_state);
}

TEST(PCIsInV8_BadState_Fail_CodePagesAPI) {
  void* pc = nullptr;
  size_t pages_length = 0;
  MemoryRange* code_pages = nullptr;

  CHECK(!v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
}

TEST(PCIsInV8_ValidStateNullPC_Fail_CodePagesAPI) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  void* pc = nullptr;

  MemoryRange code_pages[v8::Isolate::kMinCodePagesBufferSize];
  size_t pages_length =
      isolate->CopyCodePages(arraysize(code_pages), code_pages);
  CHECK_LE(pages_length, arraysize(code_pages));

  CHECK(!v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
}

void TestRangeBoundaries(size_t pages_length, MemoryRange* code_pages,
                         byte* range_start, size_t range_length) {
  void* pc = range_start - 1;
  CHECK(!v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
  pc = range_start;
  CHECK(v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
  pc = range_start + 1;
  CHECK(v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
  pc = range_start + range_length - 1;
  CHECK(v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
  pc = range_start + range_length;
  CHECK(!v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
  pc = range_start + range_length + 1;
  CHECK(!v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
}

TEST(PCIsInV8_InAllCodePages_CodePagesAPI) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  MemoryRange code_pages[v8::Isolate::kMinCodePagesBufferSize];
  size_t pages_length =
      isolate->CopyCodePages(arraysize(code_pages), code_pages);
  CHECK_LE(pages_length, arraysize(code_pages));

  for (size_t i = 0; i < pages_length; i++) {
    byte* range_start =
        const_cast<byte*>(reinterpret_cast<const byte*>(code_pages[i].start));
    size_t range_length = code_pages[i].length_in_bytes;
    TestRangeBoundaries(pages_length, code_pages, range_start, range_length);
  }
}

// PCIsInV8 doesn't check if the PC is in JSEntry directly. It's assumed that
// the CodeRange or EmbeddedCodeRange contain JSEntry.
TEST(PCIsInV8_InJSEntryRange_CodePagesAPI) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);

  MemoryRange code_pages[v8::Isolate::kMinCodePagesBufferSize];
  size_t pages_length =
      isolate->CopyCodePages(arraysize(code_pages), code_pages);
  CHECK_LE(pages_length, arraysize(code_pages));

  Code js_entry = *BUILTIN_CODE(i_isolate, JSEntry);
  byte* start = reinterpret_cast<byte*>(js_entry.InstructionStart());
  size_t length = js_entry.InstructionSize();

  void* pc = start;
  CHECK(v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
  pc = start + 1;
  CHECK(v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
  pc = start + length - 1;
  CHECK(v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
}

// Large code objects can be allocated in large object space. Check that this is
// inside the CodeRange.
TEST(PCIsInV8_LargeCodeObject_CodePagesAPI) {
  v8_flags.allow_natives_syntax = true;
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
  HandleScope scope(i_isolate);

  // Create a big function that ends up in CODE_LO_SPACE.
  const int instruction_size = Page::kPageSize + 1;
  CHECK_GT(instruction_size, MemoryChunkLayout::MaxRegularCodeObjectSize());
  std::unique_ptr<byte[]> instructions(new byte[instruction_size]);

  CodeDesc desc;
  desc.buffer = instructions.get();
  desc.buffer_size = instruction_size;
  desc.instr_size = instruction_size;
  desc.reloc_size = 0;
  desc.constant_pool_size = 0;
  desc.unwinding_info = nullptr;
  desc.unwinding_info_size = 0;
  desc.origin = nullptr;
  Handle<Code> foo_code =
      Factory::CodeBuilder(i_isolate, desc, CodeKind::WASM_FUNCTION).Build();

  CHECK(i_isolate->heap()->InSpace(foo_code->instruction_stream(),
                                   CODE_LO_SPACE));
  byte* start = reinterpret_cast<byte*>(foo_code->InstructionStart());

  MemoryRange code_pages[v8::Isolate::kMinCodePagesBufferSize];
  size_t pages_length =
      isolate->CopyCodePages(arraysize(code_pages), code_pages);
  CHECK_LE(pages_length, arraysize(code_pages));

  void* pc = start;
  CHECK(v8::Unwinder::PCIsInV8(pages_length, code_pages, pc));
}

#ifdef USE_SIMULATOR
// TODO(v8:10026): Make this also work without the simulator. The part that
// needs modifications is getting the RegisterState.
class UnwinderTestHelper {
 public:
  explicit UnwinderTestHelper(const std::string& test_function)
      : isolate_(CcTest::isolate()) {
    CHECK(!instance_);
    instance_ = this;
    v8::HandleScope scope(isolate_);
    v8::Local<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate_);
    global->Set(v8_str("TryUnwind"),
                v8::FunctionTemplate::New(isolate_, TryUnwind));
    LocalContext env(isolate_, nullptr, global);
    CompileRun(v8_str(test_function.c_str()));
  }

  ~UnwinderTestHelper() { instance_ = nullptr; }

 private:
  static void TryUnwind(const v8::FunctionCallbackInfo<v8::Value>& args) {
    instance_->DoTryUnwind();
  }

  void DoTryUnwind() {
    // Set up RegisterState.
    v8::RegisterState register_state;
    SimulatorHelper simulator_helper;
    if (!simulator_helper.Init(isolate_)) return;
    simulator_helper.FillRegisters(&register_state);
    // At this point, the PC will point to a Redirection object, which is not
    // in V8 as far as the unwinder is concerned. To make this work, point to
    // the return address, which is in V8, instead.
    register_state.pc = register_state.lr;

    JSEntryStubs entry_stubs = isolate_->GetJSEntryStubs();
    MemoryRange code_pages[v8::Isolate::kMinCodePagesBufferSize];
    size_t pages_length =
        isolate_->CopyCodePages(arraysize(code_pages), code_pages);
    CHECK_LE(pages_length, arraysize(code_pages));

    void* stack_base = reinterpret_cast<void*>(0xffffffffffffffffL);
    bool unwound = v8::Unwinder::TryUnwindV8Frames(
        entry_stubs, pages_length, code_pages, &register_state, stack_base);
    // Check that we have successfully unwound past js_entry_sp.
    CHECK(unwound);
    CHECK_GT(register_state.sp,
             reinterpret_cast<void*>(CcTest::i_isolate()->js_entry_sp()));
  }

  v8::Isolate* isolate_;

  static UnwinderTestHelper* instance_;
};

UnwinderTestHelper* UnwinderTestHelper::instance_;

TEST(Unwind_TwoNestedFunctions_CodePagesAPI) {
  i::v8_flags.allow_natives_syntax = true;
  const char* test_script =
      "function test_unwinder_api_inner() {"
      "  TryUnwind();"
      "  return 0;"
      "}"
      "function test_unwinder_api_outer() {"
      "  return test_unwinder_api_inner();"
      "}"
      "%NeverOptimizeFunction(test_unwinder_api_inner);"
      "%NeverOptimizeFunction(test_unwinder_api_outer);"
      "test_unwinder_api_outer();";

  UnwinderTestHelper helper(test_script);
}
#endif

#undef CHECK_EQ_VALUE_REGISTER
}  // namespace test_unwinder_code_pages
}  // namespace internal
}  // namespace v8