summaryrefslogtreecommitdiff
path: root/deps/v8/test/cctest/wasm/test-run-wasm-simd.cc
blob: 9764545d45c90ed874ce4fbef7a6ca363d249098 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/wasm/wasm-macro-gen.h"

#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/wasm-run-utils.h"

using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
using namespace v8::internal::wasm;

namespace {

typedef float (*FloatUnOp)(float);
typedef float (*FloatBinOp)(float, float);
typedef int32_t (*FloatCompareOp)(float, float);
typedef int32_t (*Int32BinOp)(int32_t, int32_t);

template <typename T>
T Negate(T a) {
  return -a;
}

template <typename T>
T Add(T a, T b) {
  return a + b;
}

template <typename T>
T Sub(T a, T b) {
  return a - b;
}

template <typename T>
int32_t Equal(T a, T b) {
  return a == b ? 0xFFFFFFFF : 0;
}

template <typename T>
int32_t NotEqual(T a, T b) {
  return a != b ? 0xFFFFFFFF : 0;
}

#if V8_TARGET_ARCH_ARM
int32_t Equal(float a, float b) { return a == b ? 0xFFFFFFFF : 0; }

int32_t NotEqual(float a, float b) { return a != b ? 0xFFFFFFFF : 0; }
#endif  // V8_TARGET_ARCH_ARM

}  // namespace

// TODO(gdeepti): These are tests using sample values to verify functional
// correctness of opcodes, add more tests for a range of values and macroize
// tests.

// TODO(bbudge) Figure out how to compare floats in Wasm code that can handle
// NaNs. For now, our tests avoid using NaNs.
#define WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lane_value, lane_index) \
  WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value),                  \
                                WASM_SIMD_##TYPE##_EXTRACT_LANE(             \
                                    lane_index, WASM_GET_LOCAL(value))),     \
          WASM_RETURN1(WASM_ZERO))

#define WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3) \
  WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0)               \
  , WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1),            \
      WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2),          \
      WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3)

#define WASM_SIMD_CHECK_SPLAT4(TYPE, value, LANE_TYPE, lv) \
  WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv, lv, lv, lv)

#define WASM_SIMD_CHECK_F32_LANE(TYPE, value, lane_value, lane_index)       \
  WASM_IF(                                                                  \
      WASM_I32_NE(WASM_I32_REINTERPRET_F32(WASM_GET_LOCAL(lane_value)),     \
                  WASM_I32_REINTERPRET_F32(WASM_SIMD_##TYPE##_EXTRACT_LANE( \
                      lane_index, WASM_GET_LOCAL(value)))),                 \
      WASM_RETURN1(WASM_ZERO))

#define WASM_SIMD_CHECK4_F32(TYPE, value, lv0, lv1, lv2, lv3) \
  WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv0, 0)               \
  , WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv1, 1),            \
      WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv2, 2),          \
      WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv3, 3)

#define WASM_SIMD_CHECK_SPLAT4_F32(TYPE, value, lv) \
  WASM_SIMD_CHECK4_F32(TYPE, value, lv, lv, lv, lv)

#if V8_TARGET_ARCH_ARM
WASM_EXEC_TEST(F32x4Splat) {
  FLAG_wasm_simd_prototype = true;

  WasmRunner<int32_t, float> r(kExecuteCompiled);
  byte lane_val = 0;
  byte simd = r.AllocateLocal(kWasmS128);
  BUILD(r,
        WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(lane_val))),
        WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd, lane_val), WASM_ONE);

  FOR_FLOAT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}

WASM_EXEC_TEST(F32x4ReplaceLane) {
  FLAG_wasm_simd_prototype = true;
  WasmRunner<int32_t, float, float> r(kExecuteCompiled);
  byte old_val = 0;
  byte new_val = 1;
  byte simd = r.AllocateLocal(kWasmS128);
  BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(old_val))),
        WASM_SET_LOCAL(simd,
                       WASM_SIMD_F32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
                                                    WASM_GET_LOCAL(new_val))),
        WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, old_val, old_val, old_val),
        WASM_SET_LOCAL(simd,
                       WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
                                                    WASM_GET_LOCAL(new_val))),
        WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, new_val, old_val, old_val),
        WASM_SET_LOCAL(simd,
                       WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
                                                    WASM_GET_LOCAL(new_val))),
        WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, new_val, new_val, old_val),
        WASM_SET_LOCAL(simd,
                       WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
                                                    WASM_GET_LOCAL(new_val))),
        WASM_SIMD_CHECK_SPLAT4(F32x4, simd, F32, new_val), WASM_ONE);

  CHECK_EQ(1, r.Call(3.14159, -1.5));
}

// Tests both signed and unsigned conversion.
WASM_EXEC_TEST(F32x4FromInt32x4) {
  FLAG_wasm_simd_prototype = true;
  WasmRunner<int32_t, int32_t, float, float> r(kExecuteCompiled);
  byte a = 0;
  byte expected_signed = 1;
  byte expected_unsigned = 2;
  byte simd0 = r.AllocateLocal(kWasmS128);
  byte simd1 = r.AllocateLocal(kWasmS128);
  byte simd2 = r.AllocateLocal(kWasmS128);
  BUILD(
      r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
      WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_FROM_I32x4(WASM_GET_LOCAL(simd0))),
      WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd1, expected_signed),
      WASM_SET_LOCAL(simd2, WASM_SIMD_F32x4_FROM_U32x4(WASM_GET_LOCAL(simd0))),
      WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd2, expected_unsigned), WASM_ONE);

  FOR_INT32_INPUTS(i) {
    CHECK_EQ(1, r.Call(*i, static_cast<float>(*i),
                       static_cast<float>(static_cast<uint32_t>(*i))));
  }
}

WASM_EXEC_TEST(S32x4Select) {
  FLAG_wasm_simd_prototype = true;
  WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
  byte val1 = 0;
  byte val2 = 1;
  byte mask = r.AllocateLocal(kWasmS128);
  byte src1 = r.AllocateLocal(kWasmS128);
  byte src2 = r.AllocateLocal(kWasmS128);
  BUILD(r,

        WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_SPLAT(WASM_ZERO)),
        WASM_SET_LOCAL(src1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(val1))),
        WASM_SET_LOCAL(src2, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(val2))),
        WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_REPLACE_LANE(
                                 1, WASM_GET_LOCAL(mask), WASM_I32V(-1))),
        WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_REPLACE_LANE(
                                 2, WASM_GET_LOCAL(mask), WASM_I32V(-1))),
        WASM_SET_LOCAL(mask, WASM_SIMD_S32x4_SELECT(WASM_GET_LOCAL(mask),
                                                    WASM_GET_LOCAL(src1),
                                                    WASM_GET_LOCAL(src2))),
        WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val2, 0),
        WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val1, 1),
        WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val1, 2),
        WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val2, 3), WASM_ONE);

  CHECK_EQ(1, r.Call(0x1234, 0x5678));
}

void RunF32x4UnOpTest(WasmOpcode simd_op, FloatUnOp expected_op) {
  FLAG_wasm_simd_prototype = true;
  WasmRunner<int32_t, float, float> r(kExecuteCompiled);
  byte a = 0;
  byte expected = 1;
  byte simd = r.AllocateLocal(kWasmS128);
  BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
        WASM_SET_LOCAL(simd,
                       WASM_SIMD_UNOP(simd_op & 0xffu, WASM_GET_LOCAL(simd))),
        WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd, expected), WASM_ONE);

  FOR_FLOAT32_INPUTS(i) {
    if (std::isnan(*i)) continue;
    CHECK_EQ(1, r.Call(*i, expected_op(*i)));
  }
}

WASM_EXEC_TEST(F32x4Abs) { RunF32x4UnOpTest(kExprF32x4Abs, std::abs); }
WASM_EXEC_TEST(F32x4Neg) { RunF32x4UnOpTest(kExprF32x4Neg, Negate); }

void RunF32x4BinOpTest(WasmOpcode simd_op, FloatBinOp expected_op) {
  FLAG_wasm_simd_prototype = true;
  WasmRunner<int32_t, float, float, float> r(kExecuteCompiled);
  byte a = 0;
  byte b = 1;
  byte expected = 2;
  byte simd0 = r.AllocateLocal(kWasmS128);
  byte simd1 = r.AllocateLocal(kWasmS128);
  BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
        WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))),
        WASM_SET_LOCAL(simd1,
                       WASM_SIMD_BINOP(simd_op & 0xffu, WASM_GET_LOCAL(simd0),
                                       WASM_GET_LOCAL(simd1))),
        WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd1, expected), WASM_ONE);

  FOR_FLOAT32_INPUTS(i) {
    if (std::isnan(*i)) continue;
    FOR_FLOAT32_INPUTS(j) {
      if (std::isnan(*j)) continue;
      float expected = expected_op(*i, *j);
      // SIMD on some platforms may handle denormalized numbers differently.
      // TODO(bbudge) On platforms that flush denorms to zero, test with
      // expected == 0.
      if (std::fpclassify(expected) == FP_SUBNORMAL) continue;
      CHECK_EQ(1, r.Call(*i, *j, expected));
    }
  }
}

WASM_EXEC_TEST(F32x4Add) { RunF32x4BinOpTest(kExprF32x4Add, Add); }
WASM_EXEC_TEST(F32x4Sub) { RunF32x4BinOpTest(kExprF32x4Sub, Sub); }

void RunF32x4CompareOpTest(WasmOpcode simd_op, FloatCompareOp expected_op) {
  FLAG_wasm_simd_prototype = true;
  WasmRunner<int32_t, float, float, int32_t> r(kExecuteCompiled);
  byte a = 0;
  byte b = 1;
  byte expected = 2;
  byte simd0 = r.AllocateLocal(kWasmS128);
  byte simd1 = r.AllocateLocal(kWasmS128);
  BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
        WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))),
        WASM_SET_LOCAL(simd1,
                       WASM_SIMD_BINOP(simd_op & 0xffu, WASM_GET_LOCAL(simd0),
                                       WASM_GET_LOCAL(simd1))),
        WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE);

  FOR_FLOAT32_INPUTS(i) {
    if (std::isnan(*i)) continue;
    FOR_FLOAT32_INPUTS(j) {
      if (std::isnan(*j)) continue;
      // SIMD on some platforms may handle denormalized numbers differently.
      // Check for number pairs that are very close together.
      if (std::fpclassify(*i - *j) == FP_SUBNORMAL) continue;
      CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j)));
    }
  }
}

WASM_EXEC_TEST(F32x4Equal) { RunF32x4CompareOpTest(kExprF32x4Eq, Equal); }
WASM_EXEC_TEST(F32x4NotEqual) { RunF32x4CompareOpTest(kExprF32x4Ne, NotEqual); }
#endif  // V8_TARGET_ARCH_ARM

WASM_EXEC_TEST(I32x4Splat) {
  FLAG_wasm_simd_prototype = true;

  // Store SIMD value in a local variable, use extract lane to check lane values
  // This test is not a test for ExtractLane as Splat does not create
  // interesting SIMD values.
  //
  // SetLocal(1, I32x4Splat(Local(0)));
  // For each lane index
  // if(Local(0) != I32x4ExtractLane(Local(1), index)
  //   return 0
  //
  // return 1
  WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
  byte lane_val = 0;
  byte simd = r.AllocateLocal(kWasmS128);
  BUILD(r,
        WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(lane_val))),
        WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, lane_val), WASM_ONE);

  FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}

WASM_EXEC_TEST(I32x4ReplaceLane) {
  FLAG_wasm_simd_prototype = true;
  WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
  byte old_val = 0;
  byte new_val = 1;
  byte simd = r.AllocateLocal(kWasmS128);
  BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(old_val))),
        WASM_SET_LOCAL(simd,
                       WASM_SIMD_I32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
                                                    WASM_GET_LOCAL(new_val))),
        WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, old_val, old_val, old_val),
        WASM_SET_LOCAL(simd,
                       WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
                                                    WASM_GET_LOCAL(new_val))),
        WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, old_val, old_val),
        WASM_SET_LOCAL(simd,
                       WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
                                                    WASM_GET_LOCAL(new_val))),
        WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, new_val, old_val),
        WASM_SET_LOCAL(simd,
                       WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
                                                    WASM_GET_LOCAL(new_val))),
        WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, new_val), WASM_ONE);

  CHECK_EQ(1, r.Call(1, 2));
}

#if V8_TARGET_ARCH_ARM

// Determines if conversion from float to int will be valid.
bool CanRoundToZeroAndConvert(double val, bool unsigned_integer) {
  const double max_uint = static_cast<double>(0xffffffffu);
  const double max_int = static_cast<double>(kMaxInt);
  const double min_int = static_cast<double>(kMinInt);

  // Check for NaN.
  if (val != val) {
    return false;
  }

  // Round to zero and check for overflow. This code works because 32 bit
  // integers can be exactly represented by ieee-754 64bit floating-point
  // values.
  return unsigned_integer ? (val < (max_uint + 1.0)) && (val > -1)
                          : (val < (max_int + 1.0)) && (val > (min_int - 1.0));
}

int ConvertInvalidValue(double val, bool unsigned_integer) {
  if (val != val) {
    return 0;
  } else {
    if (unsigned_integer) {
      return (val < 0) ? 0 : 0xffffffffu;
    } else {
      return (val < 0) ? kMinInt : kMaxInt;
    }
  }
}

int32_t ConvertToInt(double val, bool unsigned_integer) {
  int32_t result =
      unsigned_integer ? static_cast<uint32_t>(val) : static_cast<int32_t>(val);

  if (!CanRoundToZeroAndConvert(val, unsigned_integer)) {
    result = ConvertInvalidValue(val, unsigned_integer);
  }
  return result;
}

// Tests both signed and unsigned conversion.
WASM_EXEC_TEST(I32x4FromFloat32x4) {
  FLAG_wasm_simd_prototype = true;
  WasmRunner<int32_t, float, int32_t, int32_t> r(kExecuteCompiled);
  byte a = 0;
  byte expected_signed = 1;
  byte expected_unsigned = 2;
  byte simd0 = r.AllocateLocal(kWasmS128);
  byte simd1 = r.AllocateLocal(kWasmS128);
  byte simd2 = r.AllocateLocal(kWasmS128);
  BUILD(
      r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
      WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_FROM_F32x4(WASM_GET_LOCAL(simd0))),
      WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected_signed),
      WASM_SET_LOCAL(simd2, WASM_SIMD_U32x4_FROM_F32x4(WASM_GET_LOCAL(simd0))),
      WASM_SIMD_CHECK_SPLAT4(I32x4, simd2, I32, expected_unsigned), WASM_ONE);

  FOR_FLOAT32_INPUTS(i) {
    int32_t signed_value = ConvertToInt(*i, false);
    int32_t unsigned_value = ConvertToInt(*i, true);
    CHECK_EQ(1, r.Call(*i, signed_value, unsigned_value));
  }
}
#endif  // V8_TARGET_ARCH_ARM

void RunI32x4BinOpTest(WasmOpcode simd_op, Int32BinOp expected_op) {
  FLAG_wasm_simd_prototype = true;
  WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
  byte a = 0;
  byte b = 1;
  byte expected = 2;
  byte simd0 = r.AllocateLocal(kWasmS128);
  byte simd1 = r.AllocateLocal(kWasmS128);
  BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
        WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(b))),
        WASM_SET_LOCAL(simd1,
                       WASM_SIMD_BINOP(simd_op & 0xffu, WASM_GET_LOCAL(simd0),
                                       WASM_GET_LOCAL(simd1))),
        WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE);

  FOR_INT32_INPUTS(i) {
    FOR_INT32_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
  }
}

WASM_EXEC_TEST(I32x4Add) { RunI32x4BinOpTest(kExprI32x4Add, Add); }

WASM_EXEC_TEST(I32x4Sub) { RunI32x4BinOpTest(kExprI32x4Sub, Sub); }

#if V8_TARGET_ARCH_ARM
WASM_EXEC_TEST(I32x4Equal) { RunI32x4BinOpTest(kExprI32x4Eq, Equal); }

WASM_EXEC_TEST(I32x4NotEqual) { RunI32x4BinOpTest(kExprI32x4Ne, NotEqual); }
#endif  // V8_TARGET_ARCH_ARM