summaryrefslogtreecommitdiff
path: root/deps/v8/tools/debug_helper/get-object-properties.cc
blob: 186438d7ac40e601c909aa903d3a7555fab481e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <sstream>

#include "debug-helper-internal.h"
#include "heap-constants.h"
#include "include/v8-internal.h"
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
#include "src/execution/isolate-utils.h"
#include "src/objects/string-inl.h"
#include "src/sandbox/external-pointer.h"
#include "src/strings/unicode-inl.h"
#include "torque-generated/class-debug-readers.h"
#include "torque-generated/debug-macros.h"

namespace i = v8::internal;

namespace v8 {
namespace internal {
namespace debug_helper_internal {

constexpr char kObject[] = "v8::internal::Object";
constexpr char kTaggedValue[] = "v8::internal::TaggedValue";
constexpr char kSmi[] = "v8::internal::Smi";
constexpr char kHeapObject[] = "v8::internal::HeapObject";
#ifdef V8_COMPRESS_POINTERS
constexpr char kObjectAsStoredInHeap[] = "v8::internal::TaggedValue";
#else
constexpr char kObjectAsStoredInHeap[] = "v8::internal::Object";
#endif

std::string AppendAddressAndType(const std::string& brief, uintptr_t address,
                                 const char* type) {
  std::stringstream brief_stream;
  brief_stream << "0x" << std::hex << address << " <" << type << ">";
  return brief.empty() ? brief_stream.str()
                       : brief + " (" + brief_stream.str() + ")";
}

std::string JoinWithSpace(const std::string& a, const std::string& b) {
  return a.empty() || b.empty() ? a + b : a + " " + b;
}

struct TypedObject {
  TypedObject(d::TypeCheckResult type_check_result,
              std::unique_ptr<TqObject> object)
      : type_check_result(type_check_result), object(std::move(object)) {}

  // How we discovered the object's type, or why we failed to do so.
  d::TypeCheckResult type_check_result;

  // Pointer to some TqObject subclass, representing the most specific known
  // type for the object.
  std::unique_ptr<TqObject> object;

  // Collection of other guesses at more specific types than the one represented
  // by |object|.
  std::vector<TypedObject> possible_types;
};

TypedObject GetTypedObjectByHint(uintptr_t address,
                                 std::string type_hint_string) {
#define TYPE_NAME_CASE(ClassName, ...)                   \
  if (type_hint_string == "v8::internal::" #ClassName) { \
    return {d::TypeCheckResult::kUsedTypeHint,           \
            std::make_unique<Tq##ClassName>(address)};   \
  }

  TORQUE_INSTANCE_CHECKERS_SINGLE_FULLY_DEFINED(TYPE_NAME_CASE)
  TORQUE_INSTANCE_CHECKERS_RANGE_FULLY_DEFINED(TYPE_NAME_CASE)
  STRING_CLASS_TYPES(TYPE_NAME_CASE)

#undef TYPE_NAME_CASE

  return {d::TypeCheckResult::kUnknownTypeHint,
          std::make_unique<TqHeapObject>(address)};
}

TypedObject GetTypedObjectForString(uintptr_t address, i::InstanceType type,
                                    d::TypeCheckResult type_source) {
  class StringGetDispatcher : public i::AllStatic {
   public:
#define DEFINE_METHOD(ClassName)                                    \
  static inline TypedObject Handle##ClassName(                      \
      uintptr_t address, d::TypeCheckResult type_source) {          \
    return {type_source, std::make_unique<Tq##ClassName>(address)}; \
  }
    STRING_CLASS_TYPES(DEFINE_METHOD)
#undef DEFINE_METHOD
    static inline TypedObject HandleInvalidString(
        uintptr_t address, d::TypeCheckResult type_source) {
      return {d::TypeCheckResult::kUnknownInstanceType,
              std::make_unique<TqString>(address)};
    }
  };

  return i::StringShape(type)
      .DispatchToSpecificTypeWithoutCast<StringGetDispatcher, TypedObject>(
          address, type_source);
}

TypedObject GetTypedObjectByInstanceType(uintptr_t address,
                                         i::InstanceType type,
                                         d::TypeCheckResult type_source) {
  switch (type) {
#define INSTANCE_TYPE_CASE(ClassName, INSTANCE_TYPE) \
  case i::INSTANCE_TYPE:                             \
    return {type_source, std::make_unique<Tq##ClassName>(address)};
    TORQUE_INSTANCE_CHECKERS_SINGLE_FULLY_DEFINED(INSTANCE_TYPE_CASE)
    TORQUE_INSTANCE_CHECKERS_MULTIPLE_FULLY_DEFINED(INSTANCE_TYPE_CASE)
#undef INSTANCE_TYPE_CASE

    default:

      // Special case: concrete subtypes of String are not included in the
      // main instance type list because they use the low bits of the instance
      // type enum as flags.
      if (type <= i::LAST_STRING_TYPE) {
        return GetTypedObjectForString(address, type, type_source);
      }

#define INSTANCE_RANGE_CASE(ClassName, FIRST_TYPE, LAST_TYPE)       \
  if (type >= i::FIRST_TYPE && type <= i::LAST_TYPE) {              \
    return {type_source, std::make_unique<Tq##ClassName>(address)}; \
  }
      TORQUE_INSTANCE_CHECKERS_RANGE_FULLY_DEFINED(INSTANCE_RANGE_CASE)
#undef INSTANCE_RANGE_CASE

      return {d::TypeCheckResult::kUnknownInstanceType,
              std::make_unique<TqHeapObject>(address)};
  }
}

bool IsTypedHeapObjectInstanceTypeOf(uintptr_t address,
                                     d::MemoryAccessor accessor,
                                     i::InstanceType instance_type) {
  auto heap_object = std::make_unique<TqHeapObject>(address);
  Value<uintptr_t> map_ptr = heap_object->GetMapValue(accessor);

  if (map_ptr.validity == d::MemoryAccessResult::kOk) {
    Value<i::InstanceType> type =
        TqMap(map_ptr.value).GetInstanceTypeValue(accessor);
    if (type.validity == d::MemoryAccessResult::kOk) {
      return instance_type == type.value;
    }
  }

  return false;
}

TypedObject GetTypedHeapObject(uintptr_t address, d::MemoryAccessor accessor,
                               const char* type_hint,
                               const d::HeapAddresses& heap_addresses) {
  auto heap_object = std::make_unique<TqHeapObject>(address);
  Value<uintptr_t> map_ptr = heap_object->GetMapValue(accessor);

  if (map_ptr.validity != d::MemoryAccessResult::kOk) {
    // If we can't read the Map pointer from the object, then we likely can't
    // read anything else, so there's not any point in attempting to use the
    // type hint. Just return a failure.
    return {map_ptr.validity == d::MemoryAccessResult::kAddressNotValid
                ? d::TypeCheckResult::kObjectPointerInvalid
                : d::TypeCheckResult::kObjectPointerValidButInaccessible,
            std::move(heap_object)};
  }

  Value<i::InstanceType> type =
      TqMap(map_ptr.value).GetInstanceTypeValue(accessor);
  if (type.validity == d::MemoryAccessResult::kOk) {
    return GetTypedObjectByInstanceType(address, type.value,
                                        d::TypeCheckResult::kUsedMap);
  }

  // We can't read the Map, so check whether it is in the list of known Maps,
  // as another way to get its instance type.
  KnownInstanceType known_map_type =
      FindKnownMapInstanceTypes(map_ptr.value, heap_addresses);
  if (known_map_type.confidence == KnownInstanceType::Confidence::kHigh) {
    DCHECK_EQ(known_map_type.types.size(), 1);
    return GetTypedObjectByInstanceType(address, known_map_type.types[0],
                                        d::TypeCheckResult::kKnownMapPointer);
  }

  // Create a basic result that says that the object is a HeapObject and we
  // couldn't read its Map.
  TypedObject result = {
      type.validity == d::MemoryAccessResult::kAddressNotValid
          ? d::TypeCheckResult::kMapPointerInvalid
          : d::TypeCheckResult::kMapPointerValidButInaccessible,
      std::move(heap_object)};

  // If a type hint is available, it may give us something more specific than
  // HeapObject. However, a type hint of Object would be even less specific, so
  // we'll only use the type hint if it's a subclass of HeapObject.
  if (type_hint != nullptr) {
    TypedObject hint_result = GetTypedObjectByHint(address, type_hint);
    if (result.object->IsSuperclassOf(hint_result.object.get())) {
      result = std::move(hint_result);
    }
  }

  // If low-confidence results are available from known Maps, include them only
  // if they don't contradict the primary type and would provide some additional
  // specificity.
  for (const i::InstanceType type_guess : known_map_type.types) {
    TypedObject guess_result = GetTypedObjectByInstanceType(
        address, type_guess, d::TypeCheckResult::kKnownMapPointer);
    if (result.object->IsSuperclassOf(guess_result.object.get())) {
      result.possible_types.push_back(std::move(guess_result));
    }
  }

  return result;
}

// An object visitor that accumulates the first few characters of a string.
class ReadStringVisitor : public TqObjectVisitor {
 public:
  static v8::base::Optional<std::string> Visit(
      d::MemoryAccessor accessor, const d::HeapAddresses& heap_addresses,
      const TqString* object) {
    ReadStringVisitor visitor(accessor, heap_addresses);
    object->Visit(&visitor);
    return visitor.GetString();
  }

  // Returns the result as UTF-8 once visiting is complete.
  v8::base::Optional<std::string> GetString() {
    if (failed_) return {};
    std::vector<char> result(
        string_.size() * unibrow::Utf16::kMaxExtraUtf8BytesForOneUtf16CodeUnit);
    unsigned write_index = 0;
    int prev_char = unibrow::Utf16::kNoPreviousCharacter;
    for (size_t read_index = 0; read_index < string_.size(); ++read_index) {
      uint16_t character = string_[read_index];
      write_index +=
          unibrow::Utf8::Encode(result.data() + write_index, character,
                                prev_char, /*replace_invalid=*/true);
      prev_char = character;
    }
    return std::string(result.data(), write_index);
  }

  template <typename T>
  Value<T> ReadValue(uintptr_t data_address, int32_t index = 0) {
    T value{};
    d::MemoryAccessResult validity =
        accessor_(data_address + index * sizeof(T),
                  reinterpret_cast<uint8_t*>(&value), sizeof(value));
    return {validity, value};
  }

  template <typename TChar>
  void ReadStringCharacters(const TqString* object, uintptr_t data_address) {
    int32_t length = GetOrFinish(object->GetLengthValue(accessor_));
    for (; index_ < length && index_ < limit_ && !done_; ++index_) {
      static_assert(sizeof(TChar) <= sizeof(char16_t));
      char16_t c = static_cast<char16_t>(
          GetOrFinish(ReadValue<TChar>(data_address, index_)));
      if (!done_) AddCharacter(c);
    }
  }

  template <typename TChar, typename TString>
  void ReadSeqString(const TString* object) {
    ReadStringCharacters<TChar>(object, object->GetCharsAddress());
  }

  void VisitSeqOneByteString(const TqSeqOneByteString* object) override {
    ReadSeqString<char>(object);
  }

  void VisitSeqTwoByteString(const TqSeqTwoByteString* object) override {
    ReadSeqString<char16_t>(object);
  }

  void VisitConsString(const TqConsString* object) override {
    uintptr_t first_address = GetOrFinish(object->GetFirstValue(accessor_));
    if (done_) return;
    auto first =
        GetTypedHeapObject(first_address, accessor_, nullptr, heap_addresses_)
            .object;
    first->Visit(this);
    if (done_) return;
    int32_t first_length = GetOrFinish(
        static_cast<TqString*>(first.get())->GetLengthValue(accessor_));
    uintptr_t second = GetOrFinish(object->GetSecondValue(accessor_));
    if (done_) return;
    IndexModifier modifier(this, -first_length, -first_length);
    GetTypedHeapObject(second, accessor_, nullptr, heap_addresses_)
        .object->Visit(this);
  }

  void VisitSlicedString(const TqSlicedString* object) override {
    uintptr_t parent = GetOrFinish(object->GetParentValue(accessor_));
    int32_t length = GetOrFinish(object->GetLengthValue(accessor_));
    int32_t offset = i::PlatformSmiTagging::SmiToInt(
        GetOrFinish(object->GetOffsetValue(accessor_)));
    if (done_) return;
    int32_t limit_adjust = offset + length - limit_;
    IndexModifier modifier(this, offset, limit_adjust < 0 ? limit_adjust : 0);
    GetTypedHeapObject(parent, accessor_, nullptr, heap_addresses_)
        .object->Visit(this);
  }

  void VisitThinString(const TqThinString* object) override {
    uintptr_t actual = GetOrFinish(object->GetActualValue(accessor_));
    if (done_) return;
    GetTypedHeapObject(actual, accessor_, nullptr, heap_addresses_)
        .object->Visit(this);
  }

  bool IsExternalStringCached(const TqExternalString* object) {
    // The safest way to get the instance type is to use known map pointers, in
    // case the map data is not available.
    Value<uintptr_t> map_ptr = object->GetMapValue(accessor_);
    DCHECK_IMPLIES(map_ptr.validity == d::MemoryAccessResult::kOk,
                   !v8::internal::MapWord::IsPacked(map_ptr.value));
    uintptr_t map = GetOrFinish(map_ptr);
    if (done_) return false;
    auto instance_types = FindKnownMapInstanceTypes(map, heap_addresses_);
    // Exactly one of the matched instance types should be a string type,
    // because all maps for string types are in the same space (read-only
    // space). The "uncached" flag on that instance type tells us whether it's
    // safe to read the cached data.
    for (const auto& type : instance_types.types) {
      if ((type & i::kIsNotStringMask) == i::kStringTag &&
          (type & i::kStringRepresentationMask) == i::kExternalStringTag) {
        return (type & i::kUncachedExternalStringMask) !=
               i::kUncachedExternalStringTag;
      }
    }

    // If for some reason we can't find an external string type here (maybe the
    // caller provided an external string type as the type hint, but it doesn't
    // actually match the in-memory map pointer), then we can't safely use the
    // cached data.
    return false;
  }

  template <typename TChar>
  void ReadExternalString(const TqExternalString* object) {
    // Cached external strings are easy to read; uncached external strings
    // require knowledge of the embedder. For now, we only read cached external
    // strings.
    if (IsExternalStringCached(object)) {
      ExternalPointer_t resource_data =
          GetOrFinish(object->GetResourceDataValue(accessor_));
#ifdef V8_ENABLE_SANDBOX
      Address memory_chunk =
          BasicMemoryChunk::BaseAddress(object->GetMapAddress());
      Address heap = GetOrFinish(
          ReadValue<Address>(memory_chunk + BasicMemoryChunk::kHeapOffset));
      Isolate* isolate = Isolate::FromHeap(reinterpret_cast<Heap*>(heap));
      Address external_pointer_table_address_address =
          isolate->shared_external_pointer_table_address_address();
      Address external_pointer_table_address = GetOrFinish(
          ReadValue<Address>(external_pointer_table_address_address));
      Address external_pointer_table =
          GetOrFinish(ReadValue<Address>(external_pointer_table_address));
      int32_t index =
          static_cast<int32_t>(resource_data >> kExternalPointerIndexShift);
      Address tagged_data =
          GetOrFinish(ReadValue<Address>(external_pointer_table, index));
      Address data_address = tagged_data & ~kExternalStringResourceDataTag;
#else
      uintptr_t data_address = static_cast<uintptr_t>(resource_data);
#endif  // V8_ENABLE_SANDBOX
      if (done_) return;
      ReadStringCharacters<TChar>(object, data_address);
    } else {
      // TODO(v8:9376): Come up with some way that a caller with full knowledge
      // of a particular embedder could provide a callback function for getting
      // uncached string data.
      AddEllipsisAndFinish();
    }
  }

  void VisitExternalOneByteString(
      const TqExternalOneByteString* object) override {
    ReadExternalString<char>(object);
  }

  void VisitExternalTwoByteString(
      const TqExternalTwoByteString* object) override {
    ReadExternalString<char16_t>(object);
  }

  void VisitObject(const TqObject* object) override {
    // If we fail to find a specific type for a sub-object within a cons string,
    // sliced string, or thin string, we will end up here.
    AddEllipsisAndFinish();
  }

 private:
  ReadStringVisitor(d::MemoryAccessor accessor,
                    const d::HeapAddresses& heap_addresses)
      : accessor_(accessor),
        heap_addresses_(heap_addresses),
        index_(0),
        limit_(INT32_MAX),
        done_(false),
        failed_(false) {}

  // Unpacks a value that was fetched from the debuggee. If the value indicates
  // that it couldn't successfully fetch memory, then prevents further work.
  template <typename T>
  T GetOrFinish(Value<T> value) {
    if (value.validity != d::MemoryAccessResult::kOk) {
      AddEllipsisAndFinish();
    }
    return value.value;
  }

  void AddEllipsisAndFinish() {
    if (!done_) {
      done_ = true;
      if (string_.empty()) {
        failed_ = true;
      } else {
        string_ += u"...";
      }
    }
  }

  void AddCharacter(char16_t c) {
    if (string_.size() >= kMaxCharacters) {
      AddEllipsisAndFinish();
    } else {
      string_.push_back(c);
    }
  }

  // Temporarily adds offsets to both index_ and limit_, to handle ConsString
  // and SlicedString.
  class IndexModifier {
   public:
    IndexModifier(ReadStringVisitor* that, int32_t index_adjust,
                  int32_t limit_adjust)
        : that_(that),
          index_adjust_(index_adjust),
          limit_adjust_(limit_adjust) {
      that_->index_ += index_adjust_;
      that_->limit_ += limit_adjust_;
    }
    IndexModifier(const IndexModifier&) = delete;
    IndexModifier& operator=(const IndexModifier&) = delete;
    ~IndexModifier() {
      that_->index_ -= index_adjust_;
      that_->limit_ -= limit_adjust_;
    }

   private:
    ReadStringVisitor* that_;
    int32_t index_adjust_;
    int32_t limit_adjust_;
  };

  static constexpr int kMaxCharacters = 80;  // How many characters to print.

  std::u16string string_;  // Result string.
  d::MemoryAccessor accessor_;
  const d::HeapAddresses& heap_addresses_;
  int32_t index_;  // Index of next char to read.
  int32_t limit_;  // Don't read past this index (set by SlicedString).
  bool done_;      // Whether to stop further work.
  bool failed_;    // Whether an error was encountered before any valid data.
};

// An object visitor that supplies extra information for some types.
class AddInfoVisitor : public TqObjectVisitor {
 public:
  // Returns a descriptive string and a list of properties for the given object.
  // Both may be empty, and are meant as an addition or a replacement for,
  // the Torque-generated data about the object.
  static std::pair<std::string, std::vector<std::unique_ptr<ObjectProperty>>>
  Visit(const TqObject* object, d::MemoryAccessor accessor,
        const d::HeapAddresses& heap_addresses) {
    AddInfoVisitor visitor(accessor, heap_addresses);
    object->Visit(&visitor);
    return {std::move(visitor.brief_), std::move(visitor.properties_)};
  }

  void VisitString(const TqString* object) override {
    auto str = ReadStringVisitor::Visit(accessor_, heap_addresses_, object);
    if (str.has_value()) {
      brief_ = "\"" + *str + "\"";
    }
  }

  void VisitExternalString(const TqExternalString* object) override {
    VisitString(object);
    // Cast resource field to v8::String::ExternalStringResourceBase* would add
    // more info.
    properties_.push_back(std::make_unique<ObjectProperty>(
        "resource",
        CheckTypeName<v8::String::ExternalStringResourceBase*>(
            "v8::String::ExternalStringResourceBase*"),
        CheckTypeName<v8::String::ExternalStringResourceBase*>(
            "v8::String::ExternalStringResourceBase*"),
        object->GetResourceAddress(), 1,
        sizeof(v8::String::ExternalStringResourceBase*),
        std::vector<std::unique_ptr<StructProperty>>(),
        d::PropertyKind::kSingle));
  }

  void VisitJSObject(const TqJSObject* object) override {
    // JSObject and its subclasses can be followed directly by an array of
    // property values. The start and end offsets of those values are described
    // by a pair of values in its Map.
    auto map_ptr = object->GetMapValue(accessor_);
    if (map_ptr.validity != d::MemoryAccessResult::kOk) {
      return;  // Can't read the JSObject. Nothing useful to do.
    }
    DCHECK(!v8::internal::MapWord::IsPacked(map_ptr.value));
    TqMap map(map_ptr.value);

    // On JSObject instances, this value is the start of in-object properties.
    // The constructor function index option is only for primitives.
    auto start_offset =
        map.GetInobjectPropertiesStartOrConstructorFunctionIndexValue(
            accessor_);

    // The total size of the object in memory. This may include over-allocated
    // expansion space that doesn't correspond to any user-accessible property.
    auto instance_size = map.GetInstanceSizeInWordsValue(accessor_);

    if (start_offset.validity != d::MemoryAccessResult::kOk ||
        instance_size.validity != d::MemoryAccessResult::kOk) {
      return;  // Can't read the Map. Nothing useful to do.
    }
    int num_properties = instance_size.value - start_offset.value;
    if (num_properties > 0) {
      properties_.push_back(std::make_unique<ObjectProperty>(
          "in-object properties", kObjectAsStoredInHeap, kObject,
          object->GetMapAddress() + start_offset.value * i::kTaggedSize,
          num_properties, i::kTaggedSize,
          std::vector<std::unique_ptr<StructProperty>>(),
          d::PropertyKind::kArrayOfKnownSize));
    }
  }

 private:
  AddInfoVisitor(d::MemoryAccessor accessor,
                 const d::HeapAddresses& heap_addresses)
      : accessor_(accessor), heap_addresses_(heap_addresses) {}

  // Inputs used by this visitor:

  d::MemoryAccessor accessor_;
  const d::HeapAddresses& heap_addresses_;

  // Outputs generated by this visitor:

  // A brief description of the object.
  std::string brief_;
  // A list of extra properties to append after the automatic ones that are
  // created for all Torque-defined class fields.
  std::vector<std::unique_ptr<ObjectProperty>> properties_;
};

std::unique_ptr<ObjectPropertiesResult> GetHeapObjectPropertiesNotCompressed(
    uintptr_t address, d::MemoryAccessor accessor, const char* type_hint,
    const d::HeapAddresses& heap_addresses) {
  // Regardless of whether we can read the object itself, maybe we can find its
  // pointer in the list of known objects.
  std::string brief = FindKnownObject(address, heap_addresses);

  TypedObject typed =
      GetTypedHeapObject(address, accessor, type_hint, heap_addresses);
  auto props = typed.object->GetProperties(accessor);

  // Use the AddInfoVisitor to get any extra properties or descriptive text that
  // can't be directly derived from Torque class definitions.
  auto extra_info =
      AddInfoVisitor::Visit(typed.object.get(), accessor, heap_addresses);
  brief = JoinWithSpace(brief, extra_info.first);

  // Overwrite existing properties if they have the same name.
  for (size_t i = 0; i < extra_info.second.size(); i++) {
    bool overwrite = false;
    for (size_t j = 0; j < props.size(); j++) {
      if (strcmp(props[j]->GetPublicView()->name,
                 extra_info.second[i]->GetPublicView()->name) == 0) {
        props[j] = std::move(extra_info.second[i]);
        overwrite = true;
        break;
      }
    }
    if (overwrite) continue;
    props.push_back(std::move(extra_info.second[i]));
  }

  brief = AppendAddressAndType(brief, address, typed.object->GetName());

  // Convert the low-confidence guessed types to a list of strings as expected
  // for the response.
  std::vector<std::string> guessed_types;
  for (const auto& guess : typed.possible_types) {
    guessed_types.push_back(guess.object->GetName());
  }

  return std::make_unique<ObjectPropertiesResult>(
      typed.type_check_result, brief, typed.object->GetName(), std::move(props),
      std::move(guessed_types));
}

std::unique_ptr<ObjectPropertiesResult> GetHeapObjectPropertiesMaybeCompressed(
    uintptr_t address, d::MemoryAccessor memory_accessor,
    d::HeapAddresses heap_addresses, const char* type_hint) {
  // Try to figure out the heap range, for pointer compression (this is unused
  // if pointer compression is disabled).
  uintptr_t any_uncompressed_ptr = 0;
  if (!IsPointerCompressed(address)) any_uncompressed_ptr = address;
  if (any_uncompressed_ptr == 0)
    any_uncompressed_ptr = heap_addresses.any_heap_pointer;
  if (any_uncompressed_ptr == 0)
    any_uncompressed_ptr = heap_addresses.map_space_first_page;
  if (any_uncompressed_ptr == 0)
    any_uncompressed_ptr = heap_addresses.old_space_first_page;
  if (any_uncompressed_ptr == 0)
    any_uncompressed_ptr = heap_addresses.read_only_space_first_page;
#ifdef V8_COMPRESS_POINTERS_IN_SHARED_CAGE
  Address base =
      V8HeapCompressionScheme::GetPtrComprCageBaseAddress(any_uncompressed_ptr);
  if (base != V8HeapCompressionScheme::base()) {
    V8HeapCompressionScheme::InitBase(base);
  }
#endif
  FillInUnknownHeapAddresses(&heap_addresses, any_uncompressed_ptr);
  if (any_uncompressed_ptr == 0) {
    // We can't figure out the heap range. Just check for known objects.
    std::string brief = FindKnownObject(address, heap_addresses);
    brief = AppendAddressAndType(brief, address, kTaggedValue);
    return std::make_unique<ObjectPropertiesResult>(
        d::TypeCheckResult::kUnableToDecompress, brief, kTaggedValue);
  }

  address = EnsureDecompressed(address, any_uncompressed_ptr);

  return GetHeapObjectPropertiesNotCompressed(address, memory_accessor,
                                              type_hint, heap_addresses);
}

std::unique_ptr<ObjectPropertiesResult> GetObjectProperties(
    uintptr_t address, d::MemoryAccessor memory_accessor,
    const d::HeapAddresses& heap_addresses, const char* type_hint) {
  if (static_cast<uint32_t>(address) == i::kClearedWeakHeapObjectLower32) {
    return std::make_unique<ObjectPropertiesResult>(
        d::TypeCheckResult::kWeakRef, "cleared weak ref", kHeapObject);
  }
  bool is_weak = (address & i::kHeapObjectTagMask) == i::kWeakHeapObjectTag;
  if (is_weak) {
    address &= ~i::kWeakHeapObjectMask;
  }
  if (i::Internals::HasHeapObjectTag(address)) {
    std::unique_ptr<ObjectPropertiesResult> result =
        GetHeapObjectPropertiesMaybeCompressed(address, memory_accessor,
                                               heap_addresses, type_hint);
    if (is_weak) {
      result->Prepend("weak ref to ");
    }
    return result;
  }

  // For smi values, construct a response with a description representing the
  // untagged value.
  int32_t value = i::PlatformSmiTagging::SmiToInt(address);
  std::stringstream stream;
  stream << value << " (0x" << std::hex << value << ")";
  return std::make_unique<ObjectPropertiesResult>(d::TypeCheckResult::kSmi,
                                                  stream.str(), kSmi);
}

std::unique_ptr<StackFrameResult> GetStackFrame(
    uintptr_t frame_pointer, d::MemoryAccessor memory_accessor) {
  // Read the data at frame_pointer + kContextOrFrameTypeOffset.
  intptr_t context_or_frame_type = 0;
  d::MemoryAccessResult validity = memory_accessor(
      frame_pointer + CommonFrameConstants::kContextOrFrameTypeOffset,
      reinterpret_cast<void*>(&context_or_frame_type), sizeof(intptr_t));
  auto props = std::vector<std::unique_ptr<ObjectProperty>>();
  if (validity == d::MemoryAccessResult::kOk) {
    // If it is context, not frame marker then add new property
    // "currently_executing_function".
    if (!StackFrame::IsTypeMarker(context_or_frame_type)) {
      props.push_back(std::make_unique<ObjectProperty>(
          "currently_executing_jsfunction",
          CheckTypeName<v8::internal::JSFunction>("v8::internal::JSFunction"),
          CheckTypeName<v8::internal::JSFunction*>("v8::internal::JSFunction"),
          frame_pointer + StandardFrameConstants::kFunctionOffset, 1,
          sizeof(v8::internal::JSFunction),
          std::vector<std::unique_ptr<StructProperty>>(),
          d::PropertyKind::kSingle));
      // Add more items in the Locals pane representing the JS function name,
      // source file name, and line & column numbers within the source file, so
      // that the user doesn’t need to dig through the shared_function_info to
      // find them.
      intptr_t js_function_ptr = 0;
      validity = memory_accessor(
          frame_pointer + StandardFrameConstants::kFunctionOffset,
          reinterpret_cast<void*>(&js_function_ptr), sizeof(intptr_t));
      if (validity == d::MemoryAccessResult::kOk) {
        TqJSFunction js_function(js_function_ptr);
        auto shared_function_info_ptr =
            js_function.GetSharedFunctionInfoValue(memory_accessor);
        if (shared_function_info_ptr.validity == d::MemoryAccessResult::kOk) {
          TqSharedFunctionInfo shared_function_info(
              shared_function_info_ptr.value);
          auto script_or_debug_info_ptr =
              shared_function_info.GetScriptOrDebugInfoValue(memory_accessor);
          if (script_or_debug_info_ptr.validity == d::MemoryAccessResult::kOk) {
            // Make sure script_or_debug_info_ptr is script.
            auto address = script_or_debug_info_ptr.value;
            if (IsTypedHeapObjectInstanceTypeOf(address, memory_accessor,
                                                i::InstanceType::SCRIPT_TYPE)) {
              TqScript script(script_or_debug_info_ptr.value);
              props.push_back(std::make_unique<ObjectProperty>(
                  "script_name", kObjectAsStoredInHeap, kObject,
                  script.GetNameAddress(), 1, i::kTaggedSize,
                  std::vector<std::unique_ptr<StructProperty>>(),
                  d::PropertyKind::kSingle));
              props.push_back(std::make_unique<ObjectProperty>(
                  "script_source", kObjectAsStoredInHeap, kObject,
                  script.GetSourceAddress(), 1, i::kTaggedSize,
                  std::vector<std::unique_ptr<StructProperty>>(),
                  d::PropertyKind::kSingle));
            }
          }
          auto name_or_scope_info_ptr =
              shared_function_info.GetNameOrScopeInfoValue(memory_accessor);
          if (name_or_scope_info_ptr.validity == d::MemoryAccessResult::kOk) {
            auto scope_info_address = name_or_scope_info_ptr.value;
            // Make sure name_or_scope_info_ptr is scope info.
            if (IsTypedHeapObjectInstanceTypeOf(
                    scope_info_address, memory_accessor,
                    i::InstanceType::SCOPE_INFO_TYPE)) {
              auto indexed_field_slice_function_variable_info =
                  TqDebugFieldSliceScopeInfoFunctionVariableInfo(
                      memory_accessor, scope_info_address);
              if (indexed_field_slice_function_variable_info.validity ==
                  d::MemoryAccessResult::kOk) {
                props.push_back(std::make_unique<ObjectProperty>(
                    "function_name", kObjectAsStoredInHeap, kObject,
                    scope_info_address - i::kHeapObjectTag +
                        std::get<1>(
                            indexed_field_slice_function_variable_info.value),
                    std::get<2>(
                        indexed_field_slice_function_variable_info.value),
                    i::kTaggedSize,
                    std::vector<std::unique_ptr<StructProperty>>(),
                    d::PropertyKind::kSingle));
              }
              std::vector<std::unique_ptr<StructProperty>>
                  position_info_struct_field_list;
              position_info_struct_field_list.push_back(
                  std::make_unique<StructProperty>(
                      "start", kObjectAsStoredInHeap, kObject, 0, 0, 0));
              position_info_struct_field_list.push_back(
                  std::make_unique<StructProperty>("end", kObjectAsStoredInHeap,
                                                   kObject, 4, 0, 0));
              auto indexed_field_slice_position_info =
                  TqDebugFieldSliceScopeInfoPositionInfo(memory_accessor,
                                                         scope_info_address);
              if (indexed_field_slice_position_info.validity ==
                  d::MemoryAccessResult::kOk) {
                props.push_back(std::make_unique<ObjectProperty>(
                    "function_character_offset", "", "",
                    scope_info_address - i::kHeapObjectTag +
                        std::get<1>(indexed_field_slice_position_info.value),
                    std::get<2>(indexed_field_slice_position_info.value),
                    i::kTaggedSize, std::move(position_info_struct_field_list),
                    d::PropertyKind::kSingle));
              }
            }
          }
        }
      }
    }
  }

  return std::make_unique<StackFrameResult>(std::move(props));
}

}  // namespace debug_helper_internal
}  // namespace internal
}  // namespace v8

namespace di = v8::internal::debug_helper_internal;

extern "C" {
V8_DEBUG_HELPER_EXPORT d::ObjectPropertiesResult*
_v8_debug_helper_GetObjectProperties(uintptr_t object,
                                     d::MemoryAccessor memory_accessor,
                                     const d::HeapAddresses& heap_addresses,
                                     const char* type_hint) {
  return di::GetObjectProperties(object, memory_accessor, heap_addresses,
                                 type_hint)
      .release()
      ->GetPublicView();
}
V8_DEBUG_HELPER_EXPORT void _v8_debug_helper_Free_ObjectPropertiesResult(
    d::ObjectPropertiesResult* result) {
  std::unique_ptr<di::ObjectPropertiesResult> ptr(
      static_cast<di::ObjectPropertiesResultExtended*>(result)->base);
}

V8_DEBUG_HELPER_EXPORT d::StackFrameResult* _v8_debug_helper_GetStackFrame(
    uintptr_t frame_pointer, d::MemoryAccessor memory_accessor) {
  return di::GetStackFrame(frame_pointer, memory_accessor)
      .release()
      ->GetPublicView();
}
V8_DEBUG_HELPER_EXPORT void _v8_debug_helper_Free_StackFrameResult(
    d::StackFrameResult* result) {
  std::unique_ptr<di::StackFrameResult> ptr(
      static_cast<di::StackFrameResultExtended*>(result)->base);
}
}