1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
|
# Crypto
> Stability: 2 - Stable
The `crypto` module provides cryptographic functionality that includes a set of
wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign and verify functions.
Use `require('crypto')` to access this module.
```js
const crypto = require('crypto');
const secret = 'abcdefg';
const hash = crypto.createHmac('sha256', secret)
.update('I love cupcakes')
.digest('hex');
console.log(hash);
// Prints:
// c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e
```
## Determining if crypto support is unavailable
It is possible for Node.js to be built without including support for the
`crypto` module. In such cases, calling `require('crypto')` will result in an
error being thrown.
```js
var crypto;
try {
crypto = require('crypto');
} catch (err) {
console.log('crypto support is disabled!');
}
```
## Class: Certificate
<!-- YAML
added: v0.11.8
-->
SPKAC is a Certificate Signing Request mechanism originally implemented by
Netscape and now specified formally as part of [HTML5's `keygen` element][].
The `crypto` module provides the `Certificate` class for working with SPKAC
data. The most common usage is handling output generated by the HTML5
`<keygen>` element. Node.js uses [OpenSSL's SPKAC implementation][] internally.
### new crypto.Certificate()
Instances of the `Certificate` class can be created using the `new` keyword
or by calling `crypto.Certificate()` as a function:
```js
const crypto = require('crypto');
const cert1 = new crypto.Certificate();
const cert2 = crypto.Certificate();
```
### certificate.exportChallenge(spkac)
<!-- YAML
added: v0.11.8
-->
The `spkac` data structure includes a public key and a challenge. The
`certificate.exportChallenge()` returns the challenge component in the
form of a Node.js [`Buffer`][]. The `spkac` argument can be either a string
or a [`Buffer`][].
```js
const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
const challenge = cert.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints the challenge as a UTF8 string
```
### certificate.exportPublicKey(spkac)
<!-- YAML
added: v0.11.8
-->
The `spkac` data structure includes a public key and a challenge. The
`certificate.exportPublicKey()` returns the public key component in the
form of a Node.js [`Buffer`][]. The `spkac` argument can be either a string
or a [`Buffer`][].
```js
const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
const publicKey = cert.exportPublicKey(spkac);
console.log(publicKey);
// Prints the public key as <Buffer ...>
```
### certificate.verifySpkac(spkac)
<!-- YAML
added: v0.11.8
-->
Returns `true` if the given `spkac` data structure is valid, `false` otherwise.
The `spkac` argument must be a Node.js [`Buffer`][].
```js
const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
console.log(cert.verifySpkac(Buffer.from(spkac)));
// Prints true or false
```
## Class: Cipher
<!-- YAML
added: v0.1.94
-->
Instances of the `Cipher` class are used to encrypt data. The class can be
used in one of two ways:
- As a [stream][] that is both readable and writable, where plain unencrypted
data is written to produce encrypted data on the readable side, or
- Using the [`cipher.update()`][] and [`cipher.final()`][] methods to produce
the encrypted data.
The [`crypto.createCipher()`][] or [`crypto.createCipheriv()`][] methods are
used to create `Cipher` instances. `Cipher` objects are not to be created
directly using the `new` keyword.
Example: Using `Cipher` objects as streams:
```js
const crypto = require('crypto');
const cipher = crypto.createCipher('aes192', 'a password');
var encrypted = '';
cipher.on('readable', () => {
var data = cipher.read();
if (data)
encrypted += data.toString('hex');
});
cipher.on('end', () => {
console.log(encrypted);
// Prints: ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504
});
cipher.write('some clear text data');
cipher.end();
```
Example: Using `Cipher` and piped streams:
```js
const crypto = require('crypto');
const fs = require('fs');
const cipher = crypto.createCipher('aes192', 'a password');
const input = fs.createReadStream('test.js');
const output = fs.createWriteStream('test.enc');
input.pipe(cipher).pipe(output);
```
Example: Using the [`cipher.update()`][] and [`cipher.final()`][] methods:
```js
const crypto = require('crypto');
const cipher = crypto.createCipher('aes192', 'a password');
var encrypted = cipher.update('some clear text data', 'utf8', 'hex');
encrypted += cipher.final('hex');
console.log(encrypted);
// Prints: ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504
```
### cipher.final([output_encoding])
<!-- YAML
added: v0.1.94
-->
Returns any remaining enciphered contents. If `output_encoding`
parameter is one of `'latin1'`, `'base64'` or `'hex'`, a string is returned.
If an `output_encoding` is not provided, a [`Buffer`][] is returned.
Once the `cipher.final()` method has been called, the `Cipher` object can no
longer be used to encrypt data. Attempts to call `cipher.final()` more than
once will result in an error being thrown.
### cipher.setAAD(buffer)
<!-- YAML
added: v1.0.0
-->
When using an authenticated encryption mode (only `GCM` is currently
supported), the `cipher.setAAD()` method sets the value used for the
_additional authenticated data_ (AAD) input parameter.
### cipher.getAuthTag()
<!-- YAML
added: v1.0.0
-->
When using an authenticated encryption mode (only `GCM` is currently
supported), the `cipher.getAuthTag()` method returns a [`Buffer`][] containing
the _authentication tag_ that has been computed from the given data.
The `cipher.getAuthTag()` method should only be called after encryption has
been completed using the [`cipher.final()`][] method.
### cipher.setAutoPadding(auto_padding=true)
<!-- YAML
added: v0.7.1
-->
When using block encryption algorithms, the `Cipher` class will automatically
add padding to the input data to the appropriate block size. To disable the
default padding call `cipher.setAutoPadding(false)`.
When `auto_padding` is `false`, the length of the entire input data must be a
multiple of the cipher's block size or [`cipher.final()`][] will throw an Error.
Disabling automatic padding is useful for non-standard padding, for instance
using `0x0` instead of PKCS padding.
The `cipher.setAutoPadding()` method must be called before [`cipher.final()`][].
### cipher.update(data[, input_encoding][, output_encoding])
<!-- YAML
added: v0.1.94
-->
Updates the cipher with `data`. If the `input_encoding` argument is given,
it's value must be one of `'utf8'`, `'ascii'`, or `'latin1'` and the `data`
argument is a string using the specified encoding. If the `input_encoding`
argument is not given, `data` must be a [`Buffer`][]. If `data` is a
[`Buffer`][] then `input_encoding` is ignored.
The `output_encoding` specifies the output format of the enciphered
data, and can be `'latin1'`, `'base64'` or `'hex'`. If the `output_encoding`
is specified, a string using the specified encoding is returned. If no
`output_encoding` is provided, a [`Buffer`][] is returned.
The `cipher.update()` method can be called multiple times with new data until
[`cipher.final()`][] is called. Calling `cipher.update()` after
[`cipher.final()`][] will result in an error being thrown.
## Class: Decipher
<!-- YAML
added: v0.1.94
-->
Instances of the `Decipher` class are used to decrypt data. The class can be
used in one of two ways:
- As a [stream][] that is both readable and writable, where plain encrypted
data is written to produce unencrypted data on the readable side, or
- Using the [`decipher.update()`][] and [`decipher.final()`][] methods to
produce the unencrypted data.
The [`crypto.createDecipher()`][] or [`crypto.createDecipheriv()`][] methods are
used to create `Decipher` instances. `Decipher` objects are not to be created
directly using the `new` keyword.
Example: Using `Decipher` objects as streams:
```js
const crypto = require('crypto');
const decipher = crypto.createDecipher('aes192', 'a password');
var decrypted = '';
decipher.on('readable', () => {
var data = decipher.read();
if (data)
decrypted += data.toString('utf8');
});
decipher.on('end', () => {
console.log(decrypted);
// Prints: some clear text data
});
var encrypted = 'ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504';
decipher.write(encrypted, 'hex');
decipher.end();
```
Example: Using `Decipher` and piped streams:
```js
const crypto = require('crypto');
const fs = require('fs');
const decipher = crypto.createDecipher('aes192', 'a password');
const input = fs.createReadStream('test.enc');
const output = fs.createWriteStream('test.js');
input.pipe(decipher).pipe(output);
```
Example: Using the [`decipher.update()`][] and [`decipher.final()`][] methods:
```js
const crypto = require('crypto');
const decipher = crypto.createDecipher('aes192', 'a password');
var encrypted = 'ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504';
var decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');
console.log(decrypted);
// Prints: some clear text data
```
### decipher.final([output_encoding])
<!-- YAML
added: v0.1.94
-->
Returns any remaining deciphered contents. If `output_encoding`
parameter is one of `'latin1'`, `'base64'` or `'hex'`, a string is returned.
If an `output_encoding` is not provided, a [`Buffer`][] is returned.
Once the `decipher.final()` method has been called, the `Decipher` object can
no longer be used to decrypt data. Attempts to call `decipher.final()` more
than once will result in an error being thrown.
### decipher.setAAD(buffer)
<!-- YAML
added: v1.0.0
-->
When using an authenticated encryption mode (only `GCM` is currently
supported), the `cipher.setAAD()` method sets the value used for the
_additional authenticated data_ (AAD) input parameter.
### decipher.setAuthTag(buffer)
<!-- YAML
added: v1.0.0
-->
When using an authenticated encryption mode (only `GCM` is currently
supported), the `decipher.setAuthTag()` method is used to pass in the
received _authentication tag_. If no tag is provided, or if the cipher text
has been tampered with, [`decipher.final()`][] with throw, indicating that the
cipher text should be discarded due to failed authentication.
### decipher.setAutoPadding(auto_padding=true)
<!-- YAML
added: v0.7.1
-->
When data has been encrypted without standard block padding, calling
`decipher.setAutoPadding(false)` will disable automatic padding to prevent
[`decipher.final()`][] from checking for and removing padding.
Turning auto padding off will only work if the input data's length is a
multiple of the ciphers block size.
The `decipher.setAutoPadding()` method must be called before
[`decipher.update()`][].
### decipher.update(data[, input_encoding][, output_encoding])
<!-- YAML
added: v0.1.94
-->
Updates the decipher with `data`. If the `input_encoding` argument is given,
it's value must be one of `'latin1'`, `'base64'`, or `'hex'` and the `data`
argument is a string using the specified encoding. If the `input_encoding`
argument is not given, `data` must be a [`Buffer`][]. If `data` is a
[`Buffer`][] then `input_encoding` is ignored.
The `output_encoding` specifies the output format of the enciphered
data, and can be `'latin1'`, `'ascii'` or `'utf8'`. If the `output_encoding`
is specified, a string using the specified encoding is returned. If no
`output_encoding` is provided, a [`Buffer`][] is returned.
The `decipher.update()` method can be called multiple times with new data until
[`decipher.final()`][] is called. Calling `decipher.update()` after
[`decipher.final()`][] will result in an error being thrown.
## Class: DiffieHellman
<!-- YAML
added: v0.5.0
-->
The `DiffieHellman` class is a utility for creating Diffie-Hellman key
exchanges.
Instances of the `DiffieHellman` class can be created using the
[`crypto.createDiffieHellman()`][] function.
```js
const crypto = require('crypto');
const assert = require('assert');
// Generate Alice's keys...
const alice = crypto.createDiffieHellman(2048);
const alice_key = alice.generateKeys();
// Generate Bob's keys...
const bob = crypto.createDiffieHellman(alice.getPrime(), alice.getGenerator());
const bob_key = bob.generateKeys();
// Exchange and generate the secret...
const alice_secret = alice.computeSecret(bob_key);
const bob_secret = bob.computeSecret(alice_key);
// OK
assert.equal(alice_secret.toString('hex'), bob_secret.toString('hex'));
```
### diffieHellman.computeSecret(other_public_key[, input_encoding][, output_encoding])
<!-- YAML
added: v0.5.0
-->
Computes the shared secret using `other_public_key` as the other
party's public key and returns the computed shared secret. The supplied
key is interpreted using the specified `input_encoding`, and secret is
encoded using specified `output_encoding`. Encodings can be
`'latin1'`, `'hex'`, or `'base64'`. If the `input_encoding` is not
provided, `other_public_key` is expected to be a [`Buffer`][].
If `output_encoding` is given a string is returned; otherwise, a
[`Buffer`][] is returned.
### diffieHellman.generateKeys([encoding])
<!-- YAML
added: v0.5.0
-->
Generates private and public Diffie-Hellman key values, and returns
the public key in the specified `encoding`. This key should be
transferred to the other party. Encoding can be `'latin1'`, `'hex'`,
or `'base64'`. If `encoding` is provided a string is returned; otherwise a
[`Buffer`][] is returned.
### diffieHellman.getGenerator([encoding])
<!-- YAML
added: v0.5.0
-->
Returns the Diffie-Hellman generator in the specified `encoding`, which can
be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided a string is
returned; otherwise a [`Buffer`][] is returned.
### diffieHellman.getPrime([encoding])
<!-- YAML
added: v0.5.0
-->
Returns the Diffie-Hellman prime in the specified `encoding`, which can
be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided a string is
returned; otherwise a [`Buffer`][] is returned.
### diffieHellman.getPrivateKey([encoding])
<!-- YAML
added: v0.5.0
-->
Returns the Diffie-Hellman private key in the specified `encoding`,
which can be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided a
string is returned; otherwise a [`Buffer`][] is returned.
### diffieHellman.getPublicKey([encoding])
<!-- YAML
added: v0.5.0
-->
Returns the Diffie-Hellman public key in the specified `encoding`, which
can be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided a
string is returned; otherwise a [`Buffer`][] is returned.
### diffieHellman.setPrivateKey(private_key[, encoding])
<!-- YAML
added: v0.5.0
-->
Sets the Diffie-Hellman private key. If the `encoding` argument is provided
and is either `'latin1'`, `'hex'`, or `'base64'`, `private_key` is expected
to be a string. If no `encoding` is provided, `private_key` is expected
to be a [`Buffer`][].
### diffieHellman.setPublicKey(public_key[, encoding])
<!-- YAML
added: v0.5.0
-->
Sets the Diffie-Hellman public key. If the `encoding` argument is provided
and is either `'latin1'`, `'hex'` or `'base64'`, `public_key` is expected
to be a string. If no `encoding` is provided, `public_key` is expected
to be a [`Buffer`][].
### diffieHellman.verifyError
<!-- YAML
added: v0.11.12
-->
A bit field containing any warnings and/or errors resulting from a check
performed during initialization of the `DiffieHellman` object.
The following values are valid for this property (as defined in `constants`
module):
* `DH_CHECK_P_NOT_SAFE_PRIME`
* `DH_CHECK_P_NOT_PRIME`
* `DH_UNABLE_TO_CHECK_GENERATOR`
* `DH_NOT_SUITABLE_GENERATOR`
## Class: ECDH
<!-- YAML
added: v0.11.14
-->
The `ECDH` class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH)
key exchanges.
Instances of the `ECDH` class can be created using the
[`crypto.createECDH()`][] function.
```js
const crypto = require('crypto');
const assert = require('assert');
// Generate Alice's keys...
const alice = crypto.createECDH('secp521r1');
const alice_key = alice.generateKeys();
// Generate Bob's keys...
const bob = crypto.createECDH('secp521r1');
const bob_key = bob.generateKeys();
// Exchange and generate the secret...
const alice_secret = alice.computeSecret(bob_key);
const bob_secret = bob.computeSecret(alice_key);
assert(alice_secret, bob_secret);
// OK
```
### ecdh.computeSecret(other_public_key[, input_encoding][, output_encoding])
<!-- YAML
added: v0.11.14
-->
Computes the shared secret using `other_public_key` as the other
party's public key and returns the computed shared secret. The supplied
key is interpreted using specified `input_encoding`, and the returned secret
is encoded using the specified `output_encoding`. Encodings can be
`'latin1'`, `'hex'`, or `'base64'`. If the `input_encoding` is not
provided, `other_public_key` is expected to be a [`Buffer`][].
If `output_encoding` is given a string will be returned; otherwise a
[`Buffer`][] is returned.
### ecdh.generateKeys([encoding[, format]])
<!-- YAML
added: v0.11.14
-->
Generates private and public EC Diffie-Hellman key values, and returns
the public key in the specified `format` and `encoding`. This key should be
transferred to the other party.
The `format` argument specifies point encoding and can be `'compressed'` or
`'uncompressed'`. If `format` is not specified, the point will be returned in
`'uncompressed'` format.
The `encoding` argument can be `'latin1'`, `'hex'`, or `'base64'`. If
`encoding` is provided a string is returned; otherwise a [`Buffer`][]
is returned.
### ecdh.getPrivateKey([encoding])
<!-- YAML
added: v0.11.14
-->
Returns the EC Diffie-Hellman private key in the specified `encoding`,
which can be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided
a string is returned; otherwise a [`Buffer`][] is returned.
### ecdh.getPublicKey([encoding[, format]])
<!-- YAML
added: v0.11.14
-->
Returns the EC Diffie-Hellman public key in the specified `encoding` and
`format`.
The `format` argument specifies point encoding and can be `'compressed'` or
`'uncompressed'`. If `format` is not specified the point will be returned in
`'uncompressed'` format.
The `encoding` argument can be `'latin1'`, `'hex'`, or `'base64'`. If
`encoding` is specified, a string is returned; otherwise a [`Buffer`][] is
returned.
### ecdh.setPrivateKey(private_key[, encoding])
<!-- YAML
added: v0.11.14
-->
Sets the EC Diffie-Hellman private key. The `encoding` can be `'latin1'`,
`'hex'` or `'base64'`. If `encoding` is provided, `private_key` is expected
to be a string; otherwise `private_key` is expected to be a [`Buffer`][]. If
`private_key` is not valid for the curve specified when the `ECDH` object was
created, an error is thrown. Upon setting the private key, the associated
public point (key) is also generated and set in the ECDH object.
### ecdh.setPublicKey(public_key[, encoding])
<!-- YAML
added: v0.11.14
deprecated: v5.2.0
-->
> Stability: 0 - Deprecated
Sets the EC Diffie-Hellman public key. Key encoding can be `'latin1'`,
`'hex'` or `'base64'`. If `encoding` is provided `public_key` is expected to
be a string; otherwise a [`Buffer`][] is expected.
Note that there is not normally a reason to call this method because `ECDH`
only requires a private key and the other party's public key to compute the
shared secret. Typically either [`ecdh.generateKeys()`][] or
[`ecdh.setPrivateKey()`][] will be called. The [`ecdh.setPrivateKey()`][] method
attempts to generate the public point/key associated with the private key being
set.
Example (obtaining a shared secret):
```js
const crypto = require('crypto');
const alice = crypto.createECDH('secp256k1');
const bob = crypto.createECDH('secp256k1');
// Note: This is a shortcut way to specify one of Alice's previous private
// keys. It would be unwise to use such a predictable private key in a real
// application.
alice.setPrivateKey(
crypto.createHash('sha256').update('alice', 'utf8').digest()
);
// Bob uses a newly generated cryptographically strong
// pseudorandom key pair bob.generateKeys();
const alice_secret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bob_secret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
// alice_secret and bob_secret should be the same shared secret value
console.log(alice_secret === bob_secret);
```
## Class: Hash
<!-- YAML
added: v0.1.92
-->
The `Hash` class is a utility for creating hash digests of data. It can be
used in one of two ways:
- As a [stream][] that is both readable and writable, where data is written
to produce a computed hash digest on the readable side, or
- Using the [`hash.update()`][] and [`hash.digest()`][] methods to produce the
computed hash.
The [`crypto.createHash()`][] method is used to create `Hash` instances. `Hash`
objects are not to be created directly using the `new` keyword.
Example: Using `Hash` objects as streams:
```js
const crypto = require('crypto');
const hash = crypto.createHash('sha256');
hash.on('readable', () => {
var data = hash.read();
if (data)
console.log(data.toString('hex'));
// Prints:
// 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
});
hash.write('some data to hash');
hash.end();
```
Example: Using `Hash` and piped streams:
```js
const crypto = require('crypto');
const fs = require('fs');
const hash = crypto.createHash('sha256');
const input = fs.createReadStream('test.js');
input.pipe(hash).pipe(process.stdout);
```
Example: Using the [`hash.update()`][] and [`hash.digest()`][] methods:
```js
const crypto = require('crypto');
const hash = crypto.createHash('sha256');
hash.update('some data to hash');
console.log(hash.digest('hex'));
// Prints:
// 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
```
### hash.digest([encoding])
<!-- YAML
added: v0.1.92
-->
Calculates the digest of all of the data passed to be hashed (using the
[`hash.update()`][] method). The `encoding` can be `'hex'`, `'latin1'` or
`'base64'`. If `encoding` is provided a string will be returned; otherwise
a [`Buffer`][] is returned.
The `Hash` object can not be used again after `hash.digest()` method has been
called. Multiple calls will cause an error to be thrown.
### hash.update(data[, input_encoding])
<!-- YAML
added: v0.1.92
-->
Updates the hash content with the given `data`, the encoding of which
is given in `input_encoding` and can be `'utf8'`, `'ascii'` or
`'latin1'`. If `encoding` is not provided, and the `data` is a string, an
encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][] then
`input_encoding` is ignored.
This can be called many times with new data as it is streamed.
## Class: Hmac
<!-- YAML
added: v0.1.94
-->
The `Hmac` Class is a utility for creating cryptographic HMAC digests. It can
be used in one of two ways:
- As a [stream][] that is both readable and writable, where data is written
to produce a computed HMAC digest on the readable side, or
- Using the [`hmac.update()`][] and [`hmac.digest()`][] methods to produce the
computed HMAC digest.
The [`crypto.createHmac()`][] method is used to create `Hmac` instances. `Hmac`
objects are not to be created directly using the `new` keyword.
Example: Using `Hmac` objects as streams:
```js
const crypto = require('crypto');
const hmac = crypto.createHmac('sha256', 'a secret');
hmac.on('readable', () => {
var data = hmac.read();
if (data)
console.log(data.toString('hex'));
// Prints:
// 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
});
hmac.write('some data to hash');
hmac.end();
```
Example: Using `Hmac` and piped streams:
```js
const crypto = require('crypto');
const fs = require('fs');
const hmac = crypto.createHmac('sha256', 'a secret');
const input = fs.createReadStream('test.js');
input.pipe(hmac).pipe(process.stdout);
```
Example: Using the [`hmac.update()`][] and [`hmac.digest()`][] methods:
```js
const crypto = require('crypto');
const hmac = crypto.createHmac('sha256', 'a secret');
hmac.update('some data to hash');
console.log(hmac.digest('hex'));
// Prints:
// 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
```
### hmac.digest([encoding])
<!-- YAML
added: v0.1.94
-->
Calculates the HMAC digest of all of the data passed using [`hmac.update()`][].
The `encoding` can be `'hex'`, `'latin1'` or `'base64'`. If `encoding` is
provided a string is returned; otherwise a [`Buffer`][] is returned;
The `Hmac` object can not be used again after `hmac.digest()` has been
called. Multiple calls to `hmac.digest()` will result in an error being thrown.
### hmac.update(data[, input_encoding])
<!-- YAML
added: v0.1.94
-->
Updates the `Hmac` content with the given `data`, the encoding of which
is given in `input_encoding` and can be `'utf8'`, `'ascii'` or
`'latin1'`. If `encoding` is not provided, and the `data` is a string, an
encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][] then
`input_encoding` is ignored.
This can be called many times with new data as it is streamed.
## Class: Sign
<!-- YAML
added: v0.1.92
-->
The `Sign` Class is a utility for generating signatures. It can be used in one
of two ways:
- As a writable [stream][], where data to be signed is written and the
[`sign.sign()`][] method is used to generate and return the signature, or
- Using the [`sign.update()`][] and [`sign.sign()`][] methods to produce the
signature.
The [`crypto.createSign()`][] method is used to create `Sign` instances. `Sign`
objects are not to be created directly using the `new` keyword.
Example: Using `Sign` objects as streams:
```js
const crypto = require('crypto');
const sign = crypto.createSign('RSA-SHA256');
sign.write('some data to sign');
sign.end();
const private_key = getPrivateKeySomehow();
console.log(sign.sign(private_key, 'hex'));
// Prints the calculated signature
```
Example: Using the [`sign.update()`][] and [`sign.sign()`][] methods:
```js
const crypto = require('crypto');
const sign = crypto.createSign('RSA-SHA256');
sign.update('some data to sign');
const private_key = getPrivateKeySomehow();
console.log(sign.sign(private_key, 'hex'));
// Prints the calculated signature
```
A `Sign` instance can also be created by just passing in the digest
algorithm name, in which case OpenSSL will infer the full signature algorithm
from the type of the PEM-formatted private key, including algorithms that
do not have directly exposed name constants, e.g. 'ecdsa-with-SHA256'.
Example: signing using ECDSA with SHA256
```js
const crypto = require('crypto');
const sign = crypto.createSign('sha256');
sign.update('some data to sign');
const private_key = '-----BEGIN EC PRIVATE KEY-----\n' +
'MHcCAQEEIF+jnWY1D5kbVYDNvxxo/Y+ku2uJPDwS0r/VuPZQrjjVoAoGCCqGSM49\n' +
'AwEHoUQDQgAEurOxfSxmqIRYzJVagdZfMMSjRNNhB8i3mXyIMq704m2m52FdfKZ2\n' +
'pQhByd5eyj3lgZ7m7jbchtdgyOF8Io/1ng==\n' +
'-----END EC PRIVATE KEY-----\n';
console.log(sign.sign(private_key).toString('hex'));
```
### sign.sign(private_key[, output_format])
<!-- YAML
added: v0.1.92
-->
Calculates the signature on all the data passed through using either
[`sign.update()`][] or [`sign.write()`][stream-writable-write].
The `private_key` argument can be an object or a string. If `private_key` is a
string, it is treated as a raw key with no passphrase. If `private_key` is an
object, it is interpreted as a hash containing two properties:
* `key` : {String} - PEM encoded private key
* `passphrase` : {String} - passphrase for the private key
The `output_format` can specify one of `'latin1'`, `'hex'` or `'base64'`. If
`output_format` is provided a string is returned; otherwise a [`Buffer`][] is
returned.
The `Sign` object can not be again used after `sign.sign()` method has been
called. Multiple calls to `sign.sign()` will result in an error being thrown.
### sign.update(data[, input_encoding])
<!-- YAML
added: v0.1.92
-->
Updates the `Sign` content with the given `data`, the encoding of which
is given in `input_encoding` and can be `'utf8'`, `'ascii'` or
`'latin1'`. If `encoding` is not provided, and the `data` is a string, an
encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][] then
`input_encoding` is ignored.
This can be called many times with new data as it is streamed.
## Class: Verify
<!-- YAML
added: v0.1.92
-->
The `Verify` class is a utility for verifying signatures. It can be used in one
of two ways:
- As a writable [stream][] where written data is used to validate against the
supplied signature, or
- Using the [`verify.update()`][] and [`verify.verify()`][] methods to verify
the signature.
The [`crypto.createSign()`][] method is used to create `Sign` instances.
`Sign` objects are not to be created directly using the `new` keyword.
Example: Using `Verify` objects as streams:
```js
const crypto = require('crypto');
const verify = crypto.createVerify('RSA-SHA256');
verify.write('some data to sign');
verify.end();
const public_key = getPublicKeySomehow();
const signature = getSignatureToVerify();
console.log(verify.verify(public_key, signature));
// Prints true or false
```
Example: Using the [`verify.update()`][] and [`verify.verify()`][] methods:
```js
const crypto = require('crypto');
const verify = crypto.createVerify('RSA-SHA256');
verify.update('some data to sign');
const public_key = getPublicKeySomehow();
const signature = getSignatureToVerify();
console.log(verify.verify(public_key, signature));
// Prints true or false
```
### verifier.update(data[, input_encoding])
<!-- YAML
added: v0.1.92
-->
Updates the `Verify` content with the given `data`, the encoding of which
is given in `input_encoding` and can be `'utf8'`, `'ascii'` or
`'latin1'`. If `encoding` is not provided, and the `data` is a string, an
encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][] then
`input_encoding` is ignored.
This can be called many times with new data as it is streamed.
### verifier.verify(object, signature[, signature_format])
<!-- YAML
added: v0.1.92
-->
Verifies the provided data using the given `object` and `signature`.
The `object` argument is a string containing a PEM encoded object, which can be
one an RSA public key, a DSA public key, or an X.509 certificate.
The `signature` argument is the previously calculated signature for the data, in
the `signature_format` which can be `'latin1'`, `'hex'` or `'base64'`.
If a `signature_format` is specified, the `signature` is expected to be a
string; otherwise `signature` is expected to be a [`Buffer`][].
Returns `true` or `false` depending on the validity of the signature for
the data and public key.
The `verifier` object can not be used again after `verify.verify()` has been
called. Multiple calls to `verify.verify()` will result in an error being
thrown.
## `crypto` module methods and properties
### crypto.constants
<!-- YAML
added: v6.3.0
-->
Returns an object containing commonly used constants for crypto and security
related operations. The specific constants currently defined are described in
[Crypto Constants][].
### crypto.DEFAULT_ENCODING
<!-- YAML
added: v0.9.3
-->
The default encoding to use for functions that can take either strings
or [buffers][`Buffer`]. The default value is `'buffer'`, which makes methods
default to [`Buffer`][] objects.
The `crypto.DEFAULT_ENCODING` mechanism is provided for backwards compatibility
with legacy programs that expect `'latin1'` to be the default encoding.
New applications should expect the default to be `'buffer'`. This property may
become deprecated in a future Node.js release.
### crypto.fips
<!-- YAML
added: v6.0.0
-->
Property for checking and controlling whether a FIPS compliant crypto provider is
currently in use. Setting to true requires a FIPS build of Node.js.
### crypto.createCipher(algorithm, password)
<!-- YAML
added: v0.1.94
-->
Creates and returns a `Cipher` object that uses the given `algorithm` and
`password`.
The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
recent OpenSSL releases, `openssl list-cipher-algorithms` will display the
available cipher algorithms.
The `password` is used to derive the cipher key and initialization vector (IV).
The value must be either a `'latin1'` encoded string or a [`Buffer`][].
The implementation of `crypto.createCipher()` derives keys using the OpenSSL
function [`EVP_BytesToKey`][] with the digest algorithm set to MD5, one
iteration, and no salt. The lack of salt allows dictionary attacks as the same
password always creates the same key. The low iteration count and
non-cryptographically secure hash algorithm allow passwords to be tested very
rapidly.
In line with OpenSSL's recommendation to use pbkdf2 instead of
[`EVP_BytesToKey`][] it is recommended that developers derive a key and IV on
their own using [`crypto.pbkdf2()`][] and to use [`crypto.createCipheriv()`][]
to create the `Cipher` object.
### crypto.createCipheriv(algorithm, key, iv)
Creates and returns a `Cipher` object, with the given `algorithm`, `key` and
initialization vector (`iv`).
The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
recent OpenSSL releases, `openssl list-cipher-algorithms` will display the
available cipher algorithms.
The `key` is the raw key used by the `algorithm` and `iv` is an
[initialization vector][]. Both arguments must be `'utf8'` encoded strings or
[buffers][`Buffer`].
### crypto.createCredentials(details)
<!-- YAML
added: v0.1.92
deprecated: v0.11.13
-->
> Stability: 0 - Deprecated: Use [`tls.createSecureContext()`][] instead.
The `crypto.createCredentials()` method is a deprecated alias for creating
and returning a `tls.SecureContext` object. The `crypto.createCredentials()`
method should not be used.
The optional `details` argument is a hash object with keys:
* `pfx` : {String|Buffer} - PFX or PKCS12 encoded private
key, certificate and CA certificates
* `key` : {String} - PEM encoded private key
* `passphrase` : {String} - passphrase for the private key or PFX
* `cert` : {String} - PEM encoded certificate
* `ca` : {String|Array} - Either a string or array of strings of PEM encoded CA
certificates to trust.
* `crl` : {String|Array} - Either a string or array of strings of PEM encoded CRLs
(Certificate Revocation List)
* `ciphers`: {String} using the [OpenSSL cipher list format][] describing the
cipher algorithms to use or exclude.
If no 'ca' details are given, Node.js will use Mozilla's default
[publicly trusted list of CAs][].
### crypto.createDecipher(algorithm, password)
<!-- YAML
added: v0.1.94
-->
Creates and returns a `Decipher` object that uses the given `algorithm` and
`password` (key).
The implementation of `crypto.createDecipher()` derives keys using the OpenSSL
function [`EVP_BytesToKey`][] with the digest algorithm set to MD5, one
iteration, and no salt. The lack of salt allows dictionary attacks as the same
password always creates the same key. The low iteration count and
non-cryptographically secure hash algorithm allow passwords to be tested very
rapidly.
In line with OpenSSL's recommendation to use pbkdf2 instead of
[`EVP_BytesToKey`][] it is recommended that developers derive a key and IV on
their own using [`crypto.pbkdf2()`][] and to use [`crypto.createDecipheriv()`][]
to create the `Decipher` object.
### crypto.createDecipheriv(algorithm, key, iv)
<!-- YAML
added: v0.1.94
-->
Creates and returns a `Decipher` object that uses the given `algorithm`, `key`
and initialization vector (`iv`).
The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
recent OpenSSL releases, `openssl list-cipher-algorithms` will display the
available cipher algorithms.
The `key` is the raw key used by the `algorithm` and `iv` is an
[initialization vector][]. Both arguments must be `'utf8'` encoded strings or
[buffers][`Buffer`].
### crypto.createDiffieHellman(prime[, prime_encoding][, generator][, generator_encoding])
<!-- YAML
added: v0.11.12
-->
Creates a `DiffieHellman` key exchange object using the supplied `prime` and an
optional specific `generator`.
The `generator` argument can be a number, string, or [`Buffer`][]. If
`generator` is not specified, the value `2` is used.
The `prime_encoding` and `generator_encoding` arguments can be `'latin1'`,
`'hex'`, or `'base64'`.
If `prime_encoding` is specified, `prime` is expected to be a string; otherwise
a [`Buffer`][] is expected.
If `generator_encoding` is specified, `generator` is expected to be a string;
otherwise either a number or [`Buffer`][] is expected.
### crypto.createDiffieHellman(prime_length[, generator])
<!-- YAML
added: v0.5.0
-->
Creates a `DiffieHellman` key exchange object and generates a prime of
`prime_length` bits using an optional specific numeric `generator`.
If `generator` is not specified, the value `2` is used.
### crypto.createECDH(curve_name)
<!-- YAML
added: v0.11.14
-->
Creates an Elliptic Curve Diffie-Hellman (`ECDH`) key exchange object using a
predefined curve specified by the `curve_name` string. Use
[`crypto.getCurves()`][] to obtain a list of available curve names. On recent
OpenSSL releases, `openssl ecparam -list_curves` will also display the name
and description of each available elliptic curve.
### crypto.createHash(algorithm)
<!-- YAML
added: v0.1.92
-->
Creates and returns a `Hash` object that can be used to generate hash digests
using the given `algorithm`.
The `algorithm` is dependent on the available algorithms supported by the
version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc.
On recent releases of OpenSSL, `openssl list-message-digest-algorithms` will
display the available digest algorithms.
Example: generating the sha256 sum of a file
```js
const filename = process.argv[2];
const crypto = require('crypto');
const fs = require('fs');
const hash = crypto.createHash('sha256');
const input = fs.createReadStream(filename);
input.on('readable', () => {
var data = input.read();
if (data)
hash.update(data);
else {
console.log(`${hash.digest('hex')} ${filename}`);
}
});
```
### crypto.createHmac(algorithm, key)
<!-- YAML
added: v0.1.94
-->
Creates and returns an `Hmac` object that uses the given `algorithm` and `key`.
The `algorithm` is dependent on the available algorithms supported by the
version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc.
On recent releases of OpenSSL, `openssl list-message-digest-algorithms` will
display the available digest algorithms.
The `key` is the HMAC key used to generate the cryptographic HMAC hash.
Example: generating the sha256 HMAC of a file
```js
const filename = process.argv[2];
const crypto = require('crypto');
const fs = require('fs');
const hmac = crypto.createHmac('sha256', 'a secret');
const input = fs.createReadStream(filename);
input.on('readable', () => {
var data = input.read();
if (data)
hmac.update(data);
else {
console.log(`${hmac.digest('hex')} ${filename}`);
}
});
```
### crypto.createSign(algorithm)
<!-- YAML
added: v0.1.92
-->
Creates and returns a `Sign` object that uses the given `algorithm`.
Use [`crypto.getHashes()`][] to obtain an array of names of the available
signing algorithms.
### crypto.createVerify(algorithm)
<!-- YAML
added: v0.1.92
-->
Creates and returns a `Verify` object that uses the given algorithm.
Use [`crypto.getHashes()`][] to obtain an array of names of the available
signing algorithms.
### crypto.getCiphers()
<!-- YAML
added: v0.9.3
-->
Returns an array with the names of the supported cipher algorithms.
Example:
```js
const ciphers = crypto.getCiphers();
console.log(ciphers); // ['aes-128-cbc', 'aes-128-ccm', ...]
```
### crypto.getCurves()
<!-- YAML
added: v2.3.0
-->
Returns an array with the names of the supported elliptic curves.
Example:
```js
const curves = crypto.getCurves();
console.log(curves); // ['secp256k1', 'secp384r1', ...]
```
### crypto.getDiffieHellman(group_name)
<!-- YAML
added: v0.7.5
-->
Creates a predefined `DiffieHellman` key exchange object. The
supported groups are: `'modp1'`, `'modp2'`, `'modp5'` (defined in
[RFC 2412][], but see [Caveats][]) and `'modp14'`, `'modp15'`,
`'modp16'`, `'modp17'`, `'modp18'` (defined in [RFC 3526][]). The
returned object mimics the interface of objects created by
[`crypto.createDiffieHellman()`][], but will not allow changing
the keys (with [`diffieHellman.setPublicKey()`][] for example). The
advantage of using this method is that the parties do not have to
generate nor exchange a group modulus beforehand, saving both processor
and communication time.
Example (obtaining a shared secret):
```js
const crypto = require('crypto');
const alice = crypto.getDiffieHellman('modp14');
const bob = crypto.getDiffieHellman('modp14');
alice.generateKeys();
bob.generateKeys();
const alice_secret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bob_secret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
/* alice_secret and bob_secret should be the same */
console.log(alice_secret == bob_secret);
```
### crypto.getHashes()
<!-- YAML
added: v0.9.3
-->
Returns an array of the names of the supported hash algorithms,
such as `RSA-SHA256`.
Example:
```js
const hashes = crypto.getHashes();
console.log(hashes); // ['sha', 'sha1', 'sha1WithRSAEncryption', ...]
```
### crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)
<!-- YAML
added: v0.5.5
-->
Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2)
implementation. A selected HMAC digest algorithm specified by `digest` is
applied to derive a key of the requested byte length (`keylen`) from the
`password`, `salt` and `iterations`.
The supplied `callback` function is called with two arguments: `err` and
`derivedKey`. If an error occurs, `err` will be set; otherwise `err` will be
null. The successfully generated `derivedKey` will be passed as a [`Buffer`][].
The `iterations` argument must be a number set as high as possible. The
higher the number of iterations, the more secure the derived key will be,
but will take a longer amount of time to complete.
The `salt` should also be as unique as possible. It is recommended that the
salts are random and their lengths are greater than 16 bytes. See
[NIST SP 800-132][] for details.
Example:
```js
const crypto = require('crypto');
crypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', (err, key) => {
if (err) throw err;
console.log(key.toString('hex')); // 'c5e478d...1469e50'
});
```
An array of supported digest functions can be retrieved using
[`crypto.getHashes()`][].
### crypto.pbkdf2Sync(password, salt, iterations, keylen, digest)
<!-- YAML
added: v0.9.3
-->
Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2)
implementation. A selected HMAC digest algorithm specified by `digest` is
applied to derive a key of the requested byte length (`keylen`) from the
`password`, `salt` and `iterations`.
If an error occurs an Error will be thrown, otherwise the derived key will be
returned as a [`Buffer`][].
The `iterations` argument must be a number set as high as possible. The
higher the number of iterations, the more secure the derived key will be,
but will take a longer amount of time to complete.
The `salt` should also be as unique as possible. It is recommended that the
salts are random and their lengths are greater than 16 bytes. See
[NIST SP 800-132][] for details.
Example:
```js
const crypto = require('crypto');
const key = crypto.pbkdf2Sync('secret', 'salt', 100000, 512, 'sha512');
console.log(key.toString('hex')); // 'c5e478d...1469e50'
```
An array of supported digest functions can be retrieved using
[`crypto.getHashes()`][].
### crypto.privateDecrypt(private_key, buffer)
<!-- YAML
added: v0.11.14
-->
Decrypts `buffer` with `private_key`.
`private_key` can be an object or a string. If `private_key` is a string, it is
treated as the key with no passphrase and will use `RSA_PKCS1_OAEP_PADDING`.
If `private_key` is an object, it is interpreted as a hash object with the
keys:
* `key` : {String} - PEM encoded private key
* `passphrase` : {String} - Optional passphrase for the private key
* `padding` : An optional padding value, one of the following:
* `crypto.constants.RSA_NO_PADDING`
* `crypto.constants.RSA_PKCS1_PADDING`
* `crypto.constants.RSA_PKCS1_OAEP_PADDING`
All paddings are defined in `crypto.constants`.
### crypto.timingSafeEqual(a, b)
<!-- YAML
added: v6.6.0
-->
Returns true if `a` is equal to `b`, without leaking timing information that
would allow an attacker to guess one of the values. This is suitable for
comparing HMAC digests or secret values like authentication cookies or
[capability urls](https://www.w3.org/TR/capability-urls/).
`a` and `b` must both be `Buffer`s, and they must have the same length.
**Note**: Use of `crypto.timingSafeEqual` does not guarantee that the
*surrounding* code is timing-safe. Care should be taken to ensure that the
surrounding code does not introduce timing vulnerabilities.
### crypto.privateEncrypt(private_key, buffer)
<!-- YAML
added: v1.1.0
-->
Encrypts `buffer` with `private_key`.
`private_key` can be an object or a string. If `private_key` is a string, it is
treated as the key with no passphrase and will use `RSA_PKCS1_PADDING`.
If `private_key` is an object, it is interpreted as a hash object with the
keys:
* `key` : {String} - PEM encoded private key
* `passphrase` : {String} - Optional passphrase for the private key
* `padding` : An optional padding value, one of the following:
* `crypto.constants.RSA_NO_PADDING`
* `crypto.constants.RSA_PKCS1_PADDING`
* `crypto.constants.RSA_PKCS1_OAEP_PADDING`
All paddings are defined in `crypto.constants`.
### crypto.publicDecrypt(public_key, buffer)
<!-- YAML
added: v1.1.0
-->
Decrypts `buffer` with `public_key`.
`public_key` can be an object or a string. If `public_key` is a string, it is
treated as the key with no passphrase and will use `RSA_PKCS1_PADDING`.
If `public_key` is an object, it is interpreted as a hash object with the
keys:
* `key` : {String} - PEM encoded public key
* `passphrase` : {String} - Optional passphrase for the private key
* `padding` : An optional padding value, one of the following:
* `crypto.constants.RSA_NO_PADDING`
* `crypto.constants.RSA_PKCS1_PADDING`
* `crypto.constants.RSA_PKCS1_OAEP_PADDING`
Because RSA public keys can be derived from private keys, a private key may
be passed instead of a public key.
All paddings are defined in `crypto.constants`.
### crypto.publicEncrypt(public_key, buffer)
<!-- YAML
added: v0.11.14
-->
Encrypts `buffer` with `public_key`.
`public_key` can be an object or a string. If `public_key` is a string, it is
treated as the key with no passphrase and will use `RSA_PKCS1_OAEP_PADDING`.
If `public_key` is an object, it is interpreted as a hash object with the
keys:
* `key` : {String} - PEM encoded public key
* `passphrase` : {String} - Optional passphrase for the private key
* `padding` : An optional padding value, one of the following:
* `crypto.constants.RSA_NO_PADDING`
* `crypto.constants.RSA_PKCS1_PADDING`
* `crypto.constants.RSA_PKCS1_OAEP_PADDING`
Because RSA public keys can be derived from private keys, a private key may
be passed instead of a public key.
All paddings are defined in `crypto.constants`.
### crypto.randomBytes(size[, callback])
<!-- YAML
added: v0.5.8
-->
Generates cryptographically strong pseudo-random data. The `size` argument
is a number indicating the number of bytes to generate.
If a `callback` function is provided, the bytes are generated asynchronously
and the `callback` function is invoked with two arguments: `err` and `buf`.
If an error occurs, `err` will be an Error object; otherwise it is null. The
`buf` argument is a [`Buffer`][] containing the generated bytes.
```js
// Asynchronous
const crypto = require('crypto');
crypto.randomBytes(256, (err, buf) => {
if (err) throw err;
console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`);
});
```
If the `callback` function is not provided, the random bytes are generated
synchronously and returned as a [`Buffer`][]. An error will be thrown if
there is a problem generating the bytes.
```js
// Synchronous
const buf = crypto.randomBytes(256);
console.log(
`${buf.length} bytes of random data: ${buf.toString('hex')}`);
```
The `crypto.randomBytes()` method will block until there is sufficient entropy.
This should normally never take longer than a few milliseconds. The only time
when generating the random bytes may conceivably block for a longer period of
time is right after boot, when the whole system is still low on entropy.
### crypto.setEngine(engine[, flags])
<!-- YAML
added: v0.11.11
-->
Load and set the `engine` for some or all OpenSSL functions (selected by flags).
`engine` could be either an id or a path to the engine's shared library.
The optional `flags` argument uses `ENGINE_METHOD_ALL` by default. The `flags`
is a bit field taking one of or a mix of the following flags (defined in
`crypto.constants`):
* `crypto.constants.ENGINE_METHOD_RSA`
* `crypto.constants.ENGINE_METHOD_DSA`
* `crypto.constants.ENGINE_METHOD_DH`
* `crypto.constants.ENGINE_METHOD_RAND`
* `crypto.constants.ENGINE_METHOD_ECDH`
* `crypto.constants.ENGINE_METHOD_ECDSA`
* `crypto.constants.ENGINE_METHOD_CIPHERS`
* `crypto.constants.ENGINE_METHOD_DIGESTS`
* `crypto.constants.ENGINE_METHOD_STORE`
* `crypto.constants.ENGINE_METHOD_PKEY_METHS`
* `crypto.constants.ENGINE_METHOD_PKEY_ASN1_METHS`
* `crypto.constants.ENGINE_METHOD_ALL`
* `crypto.constants.ENGINE_METHOD_NONE`
## Notes
### Legacy Streams API (pre Node.js v0.10)
The Crypto module was added to Node.js before there was the concept of a
unified Stream API, and before there were [`Buffer`][] objects for handling
binary data. As such, the many of the `crypto` defined classes have methods not
typically found on other Node.js classes that implement the [streams][stream]
API (e.g. `update()`, `final()`, or `digest()`). Also, many methods accepted
and returned `'latin1'` encoded strings by default rather than Buffers. This
default was changed after Node.js v0.8 to use [`Buffer`][] objects by default
instead.
### Recent ECDH Changes
Usage of `ECDH` with non-dynamically generated key pairs has been simplified.
Now, [`ecdh.setPrivateKey()`][] can be called with a preselected private key
and the associated public point (key) will be computed and stored in the object.
This allows code to only store and provide the private part of the EC key pair.
[`ecdh.setPrivateKey()`][] now also validates that the private key is valid for
the selected curve.
The [`ecdh.setPublicKey()`][] method is now deprecated as its inclusion in the
API is not useful. Either a previously stored private key should be set, which
automatically generates the associated public key, or [`ecdh.generateKeys()`][]
should be called. The main drawback of using [`ecdh.setPublicKey()`][] is that
it can be used to put the ECDH key pair into an inconsistent state.
### Support for weak or compromised algorithms
The `crypto` module still supports some algorithms which are already
compromised and are not currently recommended for use. The API also allows
the use of ciphers and hashes with a small key size that are considered to be
too weak for safe use.
Users should take full responsibility for selecting the crypto
algorithm and key size according to their security requirements.
Based on the recommendations of [NIST SP 800-131A][]:
- MD5 and SHA-1 are no longer acceptable where collision resistance is
required such as digital signatures.
- The key used with RSA, DSA and DH algorithms is recommended to have
at least 2048 bits and that of the curve of ECDSA and ECDH at least
224 bits, to be safe to use for several years.
- The DH groups of `modp1`, `modp2` and `modp5` have a key size
smaller than 2048 bits and are not recommended.
See the reference for other recommendations and details.
## Crypto Constants
The following constants exported by `crypto.constants` apply to various uses of
the `crypto`, `tls`, and `https` modules and are generally specific to OpenSSL.
### OpenSSL Options
<table>
<tr>
<th>Constant</th>
<th>Description</th>
</tr>
<tr>
<td><code>SSL_OP_ALL</code></td>
<td>Applies multiple bug workarounds within OpenSSL. See
https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html for
detail.</td>
</tr>
<tr>
<td><code>SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION</code></td>
<td>Allows legacy insecure renegotiation between OpenSSL and unpatched
clients or servers. See
https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html.</td>
</tr>
<tr>
<td><code>SSL_OP_CIPHER_SERVER_PREFERENCE</code></td>
<td>Uses the server's preferences instead of the clients when selecting a
cipher. See
https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html.</td>
</tr>
<tr>
<td><code>SSL_OP_CISCO_ANYCONNECT</code></td>
<td>Instructs OpenSSL to use Cisco's "speshul" version of DTLS_BAD_VER.</td>
</tr>
<tr>
<td><code>SSL_OP_COOKIE_EXCHANGE</code></td>
<td>Instructs OpenSSL to turn on cookie exchange.</td>
</tr>
<tr>
<td><code>SSL_OP_CRYPTOPRO_TLSEXT_BUG</code></td>
<td>Instructs OpenSSL to add server-hello extension from an early version
of the cryptopro draft.</td>
</tr>
<tr>
<td><code>SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS</code></td>
<td>Instructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability
workaround added in OpenSSL 0.9.6d.</td>
</tr>
<tr>
<td><code>SSL_OP_EPHEMERAL_RSA</code></td>
<td>Instructs OpenSSL to always use the tmp_rsa key when performing RSA
operations.</td>
</tr>
<tr>
<td><code>SSL_OP_LEGACY_SERVER_CONNECT</code></td>
<td>Allow initial connection to servers that do not support RI.</td>
</tr>
<tr>
<td><code>SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_MICROSOFT_SESS_ID_BUG</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_MSIE_SSLV2_RSA_PADDING</code></td>
<td>Instructs OpenSSL to disable the workaround for a man-in-the-middle
protocol-version vulnerability in the SSL 2.0 server implementation.</td>
</tr>
<tr>
<td><code>SSL_OP_NETSCAPE_CA_DN_BUG</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_NETSCAPE_CHALLENGE_BUG</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_NO_COMPRESSION</code></td>
<td>Instructs OpenSSL to disable support for SSL/TLS compression.</td>
</tr>
<tr>
<td><code>SSL_OP_NO_QUERY_MTU</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION</code></td>
<td>Instructs OpenSSL to always start a new session when performing
renegotiation.</td>
</tr>
<tr>
<td><code>SSL_OP_NO_SSLv2</code></td>
<td>Instructs OpenSSL to turn off SSL v2</td>
</tr>
<tr>
<td><code>SSL_OP_NO_SSLv3</code></td>
<td>Instructs OpenSSL to turn off SSL v3</td>
</tr>
<tr>
<td><code>SSL_OP_NO_TICKET</code></td>
<td>Instructs OpenSSL to disable use of RFC4507bis tickets.</td>
</tr>
<tr>
<td><code>SSL_OP_NO_TLSv1</code></td>
<td>Instructs OpenSSL to turn off TLS v1</td>
</tr>
<tr>
<td><code>SSL_OP_NO_TLSv1_1</code></td>
<td>Instructs OpenSSL to turn off TLS v1.1</td>
</tr>
<tr>
<td><code>SSL_OP_NO_TLSv1_2</code></td>
<td>Instructs OpenSSL to turn off TLS v1.2</td>
</tr>
<td><code>SSL_OP_PKCS1_CHECK_1</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_PKCS1_CHECK_2</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_SINGLE_DH_USE</code></td>
<td>Instructs OpenSSL to always create a new key when using
temporary/ephemeral DH parameters.</td>
</tr>
<tr>
<td><code>SSL_OP_SINGLE_ECDH_USE</code></td>
<td>Instructs OpenSSL to always create a new key when using
temporary/ephemeral ECDH parameters.</td>
</tr>
<td><code>SSL_OP_SSLEAY_080_CLIENT_DH_BUG</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_TLS_BLOCK_PADDING_BUG</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_TLS_D5_BUG</code></td>
<td></td>
</tr>
<tr>
<td><code>SSL_OP_TLS_ROLLBACK_BUG</code></td>
<td>Instructs OpenSSL to disable version rollback attack detection.</td>
</tr>
</table>
### OpenSSL Engine Constants
<table>
<tr>
<th>Constant</th>
<th>Description</th>
</tr>
<tr>
<td><code>ENGINE_METHOD_RSA</code></td>
<td>Limit engine usage to RSA</td>
</tr>
<tr>
<td><code>ENGINE_METHOD_DSA</code></td>
<td>Limit engine usage to DSA</td>
</tr>
<tr>
<td><code>ENGINE_METHOD_DH</code></td>
<td>Limit engine usage to DH</td>
</tr>
<tr>
<td><code>ENGINE_METHOD_RAND</code></td>
<td>Limit engine usage to RAND</td>
</tr>
<tr>
<td><code>ENGINE_METHOD_ECDH</code></td>
<td>Limit engine usage to ECDH</td>
</tr>
<tr>
<td><code>ENGINE_METHOD_ECDSA</code></td>
<td>Limit engine usage to ECDSA</td>
</tr>
<tr>
<td><code>ENGINE_METHOD_CIPHERS</code></td>
<td>Limit engine usage to CIPHERS</td>
</tr>
<tr>
<td><code>ENGINE_METHOD_DIGESTS</code></td>
<td>Limit engine usage to DIGESTS</td>
</tr>
<tr>
<td><code>ENGINE_METHOD_STORE</code></td>
<td>Limit engine usage to STORE</td>
</tr>
<tr>
<td><code>ENGINE_METHOD_PKEY_METHS</code></td>
<td>Limit engine usage to PKEY_METHDS</td>
</tr>
<tr>
<td><code>ENGINE_METHOD_PKEY_ASN1_METHS</code></td>
<td>Limit engine usage to PKEY_ASN1_METHS</td>
</tr>
<tr>
<td><code>ENGINE_METHOD_ALL</code></td>
<td></td>
</tr>
<tr>
<td><code>ENGINE_METHOD_NONE</code></td>
<td></td>
</tr>
</table>
### Other OpenSSL Constants
<table>
<tr>
<th>Constant</th>
<th>Description</th>
</tr>
<tr>
<td><code>DH_CHECK_P_NOT_SAFE_PRIME</code></td>
<td></td>
</tr>
<tr>
<td><code>DH_CHECK_P_NOT_PRIME</code></td>
<td></td>
</tr>
<tr>
<td><code>DH_UNABLE_TO_CHECK_GENERATOR</code></td>
<td></td>
</tr>
<tr>
<td><code>DH_NOT_SUITABLE_GENERATOR</code></td>
<td></td>
</tr>
<tr>
<td><code>NPN_ENABLED</code></td>
<td></td>
</tr>
<tr>
<td><code>ALPN_ENABLED</code></td>
<td></td>
</tr>
<tr>
<td><code>RSA_PKCS1_PADDING</code></td>
<td></td>
</tr>
<tr>
<td><code>RSA_SSLV23_PADDING</code></td>
<td></td>
</tr>
<tr>
<td><code>RSA_NO_PADDING</code></td>
<td></td>
</tr>
<tr>
<td><code>RSA_PKCS1_OAEP_PADDING</code></td>
<td></td>
</tr>
<tr>
<td><code>RSA_X931_PADDING</code></td>
<td></td>
</tr>
<tr>
<td><code>RSA_PKCS1_PSS_PADDING</code></td>
<td></td>
</tr>
<tr>
<td><code>POINT_CONVERSION_COMPRESSED</code></td>
<td></td>
</tr>
<tr>
<td><code>POINT_CONVERSION_UNCOMPRESSED</code></td>
<td></td>
</tr>
<tr>
<td><code>POINT_CONVERSION_HYBRID</code></td>
<td></td>
</tr>
</table>
### Node.js Crypto Constants
<table>
<tr>
<th>Constant</th>
<th>Description</th>
</tr>
<tr>
<td><code>defaultCoreCipherList</code></td>
<td>Specifies the built-in default cipher list used by Node.js.</td>
</tr>
<tr>
<td><code>defaultCipherList</code></td>
<td>Specifies the active default cipher list used by the current Node.js
process.</td>
</tr>
</table>
[`Buffer`]: buffer.html
[`cipher.final()`]: #crypto_cipher_final_output_encoding
[`cipher.update()`]: #crypto_cipher_update_data_input_encoding_output_encoding
[`crypto.createCipher()`]: #crypto_crypto_createcipher_algorithm_password
[`crypto.createCipheriv()`]: #crypto_crypto_createcipheriv_algorithm_key_iv
[`crypto.createDecipher()`]: #crypto_crypto_createdecipher_algorithm_password
[`crypto.createDecipheriv()`]: #crypto_crypto_createdecipheriv_algorithm_key_iv
[`crypto.createDiffieHellman()`]: #crypto_crypto_creatediffiehellman_prime_prime_encoding_generator_generator_encoding
[`crypto.createECDH()`]: #crypto_crypto_createecdh_curve_name
[`crypto.createHash()`]: #crypto_crypto_createhash_algorithm
[`crypto.createHmac()`]: #crypto_crypto_createhmac_algorithm_key
[`crypto.createSign()`]: #crypto_crypto_createsign_algorithm
[`crypto.getCurves()`]: #crypto_crypto_getcurves
[`crypto.getHashes()`]: #crypto_crypto_gethashes
[`crypto.pbkdf2()`]: #crypto_crypto_pbkdf2_password_salt_iterations_keylen_digest_callback
[`decipher.final()`]: #crypto_decipher_final_output_encoding
[`decipher.update()`]: #crypto_decipher_update_data_input_encoding_output_encoding
[`diffieHellman.setPublicKey()`]: #crypto_diffiehellman_setpublickey_public_key_encoding
[`ecdh.generateKeys()`]: #crypto_ecdh_generatekeys_encoding_format
[`ecdh.setPrivateKey()`]: #crypto_ecdh_setprivatekey_private_key_encoding
[`ecdh.setPublicKey()`]: #crypto_ecdh_setpublickey_public_key_encoding
[`EVP_BytesToKey`]: https://www.openssl.org/docs/man1.0.2/crypto/EVP_BytesToKey.html
[`hash.digest()`]: #crypto_hash_digest_encoding
[`hash.update()`]: #crypto_hash_update_data_input_encoding
[`hmac.digest()`]: #crypto_hmac_digest_encoding
[`hmac.update()`]: #crypto_hmac_update_data_input_encoding
[`sign.sign()`]: #crypto_sign_sign_private_key_output_format
[`sign.update()`]: #crypto_sign_update_data_input_encoding
[`tls.createSecureContext()`]: tls.html#tls_tls_createsecurecontext_options
[`verify.update()`]: #crypto_verifier_update_data_input_encoding
[`verify.verify()`]: #crypto_verifier_verify_object_signature_signature_format
[Caveats]: #crypto_support_for_weak_or_compromised_algorithms
[HTML5's `keygen` element]: http://www.w3.org/TR/html5/forms.html#the-keygen-element
[initialization vector]: https://en.wikipedia.org/wiki/Initialization_vector
[NIST SP 800-131A]: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
[NIST SP 800-132]: http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
[OpenSSL cipher list format]: https://www.openssl.org/docs/man1.0.2/apps/ciphers.html#CIPHER-LIST-FORMAT
[OpenSSL's SPKAC implementation]: https://www.openssl.org/docs/man1.0.2/apps/spkac.html
[publicly trusted list of CAs]: https://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt
[RFC 2412]: https://www.rfc-editor.org/rfc/rfc2412.txt
[RFC 3526]: https://www.rfc-editor.org/rfc/rfc3526.txt
[stream]: stream.html
[stream-writable-write]: stream.html#stream_writable_write_chunk_encoding_callback
[Crypto Constants]: #crypto_crypto_constants
|