summaryrefslogtreecommitdiff
path: root/test/cctest/test_dataqueue.cc
blob: 73488fcab0a4d11133663eb0bffc67c144d10f86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
#include <dataqueue/queue.h>
#include <gtest/gtest.h>
#include <node_bob-inl.h>
#include <util-inl.h>
#include <v8.h>
#include <memory>
#include <vector>

using node::DataQueue;
using v8::ArrayBuffer;
using v8::BackingStore;

TEST(DataQueue, InMemoryEntry) {
  char buffer[] = "hello world";
  size_t len = strlen(buffer);

  std::shared_ptr<BackingStore> store = ArrayBuffer::NewBackingStore(
      &buffer, len, [](void*, size_t, void*) {}, nullptr);

  // We can create an InMemoryEntry from a v8::BackingStore.
  std::unique_ptr<DataQueue::Entry> entry =
      DataQueue::CreateInMemoryEntryFromBackingStore(store, 0, len);

  // The entry is idempotent.
  CHECK(entry->is_idempotent());

  // The size is known.
  CHECK_EQ(entry->size().value(), len);

  // We can slice it.
  // slice: "llo world"
  std::unique_ptr<DataQueue::Entry> slice1 = entry->slice(2);

  // The slice is idempotent.
  CHECK(slice1->is_idempotent());

  // The slice size is known.
  CHECK_EQ(slice1->size().value(), len - 2);

  // We can slice the slice with a length.
  // slice: "o w"
  uint64_t end = 5;
  std::unique_ptr<DataQueue::Entry> slice2 = slice1->slice(2, end);

  // That slice is idempotent.
  CHECK(slice2->is_idempotent());

  // That slice size is known.
  CHECK_EQ(slice2->size().value(), 3);

  // The slice end can extend beyond the actual size and will be adjusted.
  // slice: "orld"
  end = 100;
  std::unique_ptr<DataQueue::Entry> slice3 = slice1->slice(5, end);
  CHECK_NOT_NULL(slice3);

  // The slice size is known.
  CHECK_EQ(slice3->size().value(), 4);

  // If the slice start is greater than the length, we get a zero length slice.
  std::unique_ptr<DataQueue::Entry> slice4 = entry->slice(100);
  CHECK_NOT_NULL(slice4);
  CHECK_EQ(slice4->size().value(), 0);

  // If the slice end is less than the start, we get a zero length slice.
  end = 1;
  std::unique_ptr<DataQueue::Entry> slice5 = entry->slice(2, end);
  CHECK_NOT_NULL(slice5);
  CHECK_EQ(slice5->size().value(), 0);

  // If the slice end equal to the start, we get a zero length slice.
  end = 2;
  std::unique_ptr<DataQueue::Entry> slice6 = entry->slice(2, end);
  CHECK_NOT_NULL(slice6);
  CHECK_EQ(slice6->size().value(), 0);

  // The shared_ptr for the BackingStore should show only 5 uses because
  // the zero-length slices do not maintain a reference to it.
  CHECK_EQ(store.use_count(), 5);
}

TEST(DataQueue, IdempotentDataQueue) {
  char buffer1[] = "hello world";
  char buffer2[] = "what fun this is";
  char buffer3[] = "not added";
  size_t len1 = strlen(buffer1);
  size_t len2 = strlen(buffer2);
  size_t len3 = strlen(buffer3);

  std::shared_ptr<BackingStore> store1 = ArrayBuffer::NewBackingStore(
      &buffer1, len1, [](void*, size_t, void*) {}, nullptr);

  std::shared_ptr<BackingStore> store2 = ArrayBuffer::NewBackingStore(
      &buffer2, len2, [](void*, size_t, void*) {}, nullptr);

  std::vector<std::unique_ptr<DataQueue::Entry>> list;
  list.push_back(
      DataQueue::CreateInMemoryEntryFromBackingStore(store1, 0, len1));
  list.push_back(
      DataQueue::CreateInMemoryEntryFromBackingStore(store2, 0, len2));

  // We can create an idempotent DataQueue from a list of entries.
  std::shared_ptr<DataQueue> data_queue =
      DataQueue::CreateIdempotent(std::move(list));

  CHECK_NOT_NULL(data_queue);

  // The data_queue is idempotent.
  CHECK(data_queue->is_idempotent());

  // The data_queue is capped.
  CHECK(data_queue->is_capped());

  // maybeCapRemaining() returns zero.
  CHECK_EQ(data_queue->maybeCapRemaining().value(), 0);

  // Calling cap() is a nonop but doesn't crash or error.
  data_queue->cap();
  data_queue->cap(100);

  // maybeCapRemaining() still returns zero.
  CHECK_EQ(data_queue->maybeCapRemaining().value(), 0);

  // The size is known to be the sum of the in memory-entries.
  CHECK_EQ(data_queue->size().value(), len1 + len2);

  std::shared_ptr<BackingStore> store3 = ArrayBuffer::NewBackingStore(
      &buffer3, len3, [](void*, size_t, void*) {}, nullptr);

  // Trying to append a new entry does not crash, but returns std::nullopt.
  CHECK(!data_queue
             ->append(DataQueue::CreateInMemoryEntryFromBackingStore(
                 store3, 0, len3))
             .has_value());

  // The size has not changed after the append.
  CHECK_EQ(data_queue->size().value(), len1 + len2);

  // We can acquire multiple readers from the data_queue.
  std::shared_ptr<DataQueue::Reader> reader1 = data_queue->get_reader();
  std::shared_ptr<DataQueue::Reader> reader2 = data_queue->get_reader();

  CHECK_NOT_NULL(reader1);
  CHECK_NOT_NULL(reader2);

  const auto testRead = [&](auto& reader) {
    // We can read the expected data from reader. Because the entries are
    // InMemoryEntry instances, reads will be fully synchronous here.
    bool waitingForPull = true;

    // The first read produces buffer1
    int status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 1);
          CHECK_EQ(vecs[0].len, len1);
          CHECK_EQ(memcmp(vecs[0].base, buffer1, len1), 0);
          std::move(done)(0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    // We can read the expected data from reader1. Because the entries are
    // InMemoryEntry instances, reads will be fully synchronous here.
    waitingForPull = true;

    // The second read should have status CONTINUE but no buffer.
    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    // The third read produces buffer2, and should be the end.
    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 1);
          CHECK_EQ(vecs[0].len, len2);
          CHECK_EQ(memcmp(vecs[0].base, buffer2, len2), 0);
          std::move(done)(0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_EOS);
          CHECK_EQ(count, 0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_EOS);
  };

  // Both reader1 and reader2 should pass identical tests.
  testRead(reader1);
  testRead(reader2);

  // We can slice the data queue.
  std::shared_ptr<DataQueue> slice1 = data_queue->slice(2);

  CHECK_NOT_NULL(slice1);

  // The slice is idempotent.
  CHECK(slice1->is_idempotent());

  // And capped.
  CHECK(slice1->is_capped());

  // The size is two-bytes less than the original.
  CHECK_EQ(slice1->size().value(), data_queue->size().value() - 2);

  const auto testSlice = [&](auto& reader) {
    // We can read the expected data from reader. Because the entries are
    // InMemoryEntry instances, reads will be fully synchronous here.
    bool waitingForPull = true;

    // The first read produces a slice of buffer1
    int status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 1);
          CHECK_EQ(vecs[0].len, len1 - 2);
          CHECK_EQ(memcmp(vecs[0].base, buffer1 + 2, len1 - 2), 0);
          std::move(done)(0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    // We can read the expected data from reader1. Because the entries are
    // InMemoryEntry instances, reads will be fully synchronous here.
    waitingForPull = true;

    // The second read should have status CONTINUE but no buffer.
    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    // The second read produces buffer2, and should be the end.
    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 1);
          CHECK_EQ(vecs[0].len, len2);
          CHECK_EQ(memcmp(vecs[0].base, buffer2, len2), 0);
          std::move(done)(0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    // The third read produces EOS
    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_EOS);
          CHECK_EQ(count, 0);
          CHECK_NULL(vecs);
          std::move(done)(0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_EOS);
  };

  // We can read the expected slice data.
  std::shared_ptr<DataQueue::Reader> reader3 = slice1->get_reader();
  testSlice(reader3);

  // We can slice correctly across boundaries.
  uint64_t end = 20;
  std::shared_ptr<DataQueue> slice2 = data_queue->slice(5, end);

  // The size is known.
  CHECK_EQ(slice2->size().value(), 15);

  const auto testSlice2 = [&](auto& reader) {
    // We can read the expected data from reader. Because the entries are
    // InMemoryEntry instances, reads will be fully synchronous here.
    bool waitingForPull = true;

    // The first read produces a slice of buffer1
    int status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;

          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 1);
          CHECK_EQ(vecs[0].len, len1 - 5);
          CHECK_EQ(memcmp(vecs[0].base, buffer1 + 5, len1 - 5), 0);
          std::move(done)(0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    // We can read the expected data from reader1. Because the entries are
    // InMemoryEntry instances, reads will be fully synchronous here.
    waitingForPull = true;

    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    // The next read produces buffer2, and should be the end.
    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 1);
          CHECK_EQ(vecs[0].len, len2 - 7);
          CHECK_EQ(memcmp(vecs[0].base, buffer2, len2 - 7), 0);
          std::move(done)(0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    // The next read produces EOS
    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_EOS);
          CHECK_EQ(count, 0);
          CHECK_NULL(vecs);
          std::move(done)(0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_EOS);
  };

  // We can read the expected slice data.
  std::shared_ptr<DataQueue::Reader> reader4 = slice2->get_reader();
  testSlice2(reader4);
}

TEST(DataQueue, NonIdempotentDataQueue) {
  char buffer1[] = "hello world";
  char buffer2[] = "what fun this is";
  char buffer3[] = "not added";
  size_t len1 = strlen(buffer1);
  size_t len2 = strlen(buffer2);
  size_t len3 = strlen(buffer3);

  std::shared_ptr<BackingStore> store1 = ArrayBuffer::NewBackingStore(
      &buffer1, len1, [](void*, size_t, void*) {}, nullptr);

  std::shared_ptr<BackingStore> store2 = ArrayBuffer::NewBackingStore(
      &buffer2, len2, [](void*, size_t, void*) {}, nullptr);

  std::shared_ptr<BackingStore> store3 = ArrayBuffer::NewBackingStore(
      &buffer3, len3, [](void*, size_t, void*) {}, nullptr);

  // We can create an non-idempotent DataQueue from a list of entries.
  std::shared_ptr<DataQueue> data_queue = DataQueue::Create();

  CHECK(!data_queue->is_idempotent());
  CHECK_EQ(data_queue->size().value(), 0);

  data_queue->append(
      DataQueue::CreateInMemoryEntryFromBackingStore(store1, 0, len1));
  CHECK_EQ(data_queue->size().value(), len1);

  data_queue->append(
      DataQueue::CreateInMemoryEntryFromBackingStore(store2, 0, len2));
  CHECK_EQ(data_queue->size().value(), len1 + len2);

  CHECK(!data_queue->is_capped());
  CHECK(!data_queue->maybeCapRemaining().has_value());

  data_queue->cap(100);
  CHECK(data_queue->is_capped());
  CHECK_EQ(data_queue->maybeCapRemaining().value(), 100 - (len1 + len2));

  data_queue->cap(101);
  CHECK(data_queue->is_capped());
  CHECK_EQ(data_queue->maybeCapRemaining().value(), 100 - (len1 + len2));

  data_queue->cap();
  CHECK(data_queue->is_capped());
  CHECK_EQ(data_queue->maybeCapRemaining().value(), 0);

  // We can't add any more because the data queue is capped.
  CHECK_EQ(data_queue
               ->append(DataQueue::CreateInMemoryEntryFromBackingStore(
                   store3, 0, len3))
               .value(),
           false);

  // We cannot slice a non-idempotent data queue
  std::shared_ptr<DataQueue> slice1 = data_queue->slice(2);
  CHECK_NULL(slice1);

  // We can acquire only a single reader for a non-idempotent data queue
  std::shared_ptr<DataQueue::Reader> reader1 = data_queue->get_reader();
  std::shared_ptr<DataQueue::Reader> reader2 = data_queue->get_reader();

  CHECK_NOT_NULL(reader1);
  CHECK_NULL(reader2);

  const auto testRead = [&](auto& reader) {
    // We can read the expected data from reader. Because the entries are
    // InMemoryEntry instances, reads will be fully synchronous here.
    bool waitingForPull = true;

    // The first read produces buffer1
    int status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 1);
          CHECK_EQ(vecs[0].len, len1);
          CHECK_EQ(memcmp(vecs[0].base, buffer1, len1), 0);
          std::move(done)(0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    // We can read the expected data from reader1. Because the entries are
    // InMemoryEntry instances, reads will be fully synchronous here.
    waitingForPull = true;

    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    // The next read produces buffer2, and should be the end.
    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_CONTINUE);
          CHECK_EQ(count, 1);
          CHECK_EQ(vecs[0].len, len2);
          CHECK_EQ(memcmp(vecs[0].base, buffer2, len2), 0);
          std::move(done)(0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_CONTINUE);

    // The next read produces EOS
    status = reader->Pull(
        [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
          waitingForPull = false;
          CHECK_EQ(status, node::bob::STATUS_EOS);
          CHECK_EQ(count, 0);
          CHECK_NULL(vecs);
          std::move(done)(0);
        },
        node::bob::OPTIONS_SYNC,
        nullptr,
        0,
        node::bob::kMaxCountHint);

    CHECK(!waitingForPull);
    CHECK_EQ(status, node::bob::STATUS_EOS);
  };

  // Reading produces the expected results.
  testRead(reader1);

  // We still cannot acquire another reader.
  std::shared_ptr<DataQueue::Reader> reader3 = data_queue->get_reader();
  CHECK_NULL(reader3);

  CHECK_NOT_NULL(data_queue);
}

TEST(DataQueue, DataQueueEntry) {
  char buffer1[] = "hello world";
  char buffer2[] = "what fun this is";
  size_t len1 = strlen(buffer1);
  size_t len2 = strlen(buffer2);

  std::shared_ptr<BackingStore> store1 = ArrayBuffer::NewBackingStore(
      &buffer1, len1, [](void*, size_t, void*) {}, nullptr);

  std::shared_ptr<BackingStore> store2 = ArrayBuffer::NewBackingStore(
      &buffer2, len2, [](void*, size_t, void*) {}, nullptr);

  std::vector<std::unique_ptr<DataQueue::Entry>> list;
  list.push_back(
      DataQueue::CreateInMemoryEntryFromBackingStore(store1, 0, len1));
  list.push_back(
      DataQueue::CreateInMemoryEntryFromBackingStore(store2, 0, len2));

  // We can create an idempotent DataQueue from a list of entries.
  std::shared_ptr<DataQueue> data_queue =
      DataQueue::CreateIdempotent(std::move(list));

  CHECK_NOT_NULL(data_queue);

  // We can create an Entry from a data queue.
  std::unique_ptr<DataQueue::Entry> entry =
      DataQueue::CreateDataQueueEntry(data_queue);

  // The entry should be idempotent since the data queue is idempotent.
  CHECK(entry->is_idempotent());

  // The entry size should match the data queue size.
  CHECK_EQ(entry->size().value(), data_queue->size().value());

  // We can slice it since it is idempotent.
  uint64_t end = 20;
  std::unique_ptr<DataQueue::Entry> slice = entry->slice(5, end);

  // The slice has the expected length.
  CHECK_EQ(slice->size().value(), 15);

  // We can add it to another data queue, even if the new one is not
  // idempotent.

  std::shared_ptr<DataQueue> data_queue2 = DataQueue::Create();
  CHECK(data_queue2->append(std::move(slice)).value());

  // Our original data queue should have a use count of 2.
  CHECK_EQ(data_queue.use_count(), 2);

  std::shared_ptr<DataQueue::Reader> reader = data_queue2->get_reader();

  bool pullIsPending = true;

  int status = reader->Pull(
      [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
        pullIsPending = false;
        CHECK_EQ(count, 1);
        CHECK_EQ(memcmp(vecs[0].base, buffer1 + 5, len1 - 5), 0);
        CHECK_EQ(status, node::bob::STATUS_CONTINUE);
      },
      node::bob::OPTIONS_SYNC,
      nullptr,
      0);

  // All of the actual entries are in-memory entries so reads should be sync.
  CHECK(!pullIsPending);
  CHECK_EQ(status, node::bob::STATUS_CONTINUE);

  // Read to completion...
  while (status != node::bob::STATUS_EOS) {
    status = reader->Pull(
        [&](auto, auto, auto, auto) {}, node::bob::OPTIONS_SYNC, nullptr, 0);
  }

  // Because the original data queue is idempotent, we can still read from it,
  // even though we have already consumed the non-idempotent data queue that
  // contained it.

  std::shared_ptr<DataQueue::Reader> reader2 = data_queue->get_reader();
  CHECK_NOT_NULL(reader2);

  pullIsPending = true;

  status = reader2->Pull(
      [&](int status, const DataQueue::Vec* vecs, size_t count, auto done) {
        pullIsPending = false;
        CHECK_EQ(count, 1);
        CHECK_EQ(memcmp(vecs[0].base, buffer1, len1), 0);
        CHECK_EQ(status, node::bob::STATUS_CONTINUE);
      },
      node::bob::OPTIONS_SYNC,
      nullptr,
      0);

  // All of the actual entries are in-memory entries so reads should be sync.
  CHECK(!pullIsPending);
  CHECK_EQ(status, node::bob::STATUS_CONTINUE);
}