summaryrefslogtreecommitdiff
path: root/test/parallel/test-crypto-dh.js
blob: 2a06fc6e7b86d65aac9d44a39bed2bed3e6f023c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
'use strict';
const common = require('../common');
const assert = require('assert');

if (!common.hasCrypto) {
  common.skip('missing crypto');
  return;
}
const crypto = require('crypto');
const DH_NOT_SUITABLE_GENERATOR = crypto.constants.DH_NOT_SUITABLE_GENERATOR;

// Test Diffie-Hellman with two parties sharing a secret,
// using various encodings as we go along
const dh1 = crypto.createDiffieHellman(common.hasFipsCrypto ? 1024 : 256);
const p1 = dh1.getPrime('buffer');
const dh2 = crypto.createDiffieHellman(p1, 'buffer');
let key1 = dh1.generateKeys();
let key2 = dh2.generateKeys('hex');
let secret1 = dh1.computeSecret(key2, 'hex', 'base64');
let secret2 = dh2.computeSecret(key1, 'latin1', 'buffer');

assert.equal(secret1, secret2.toString('base64'));
assert.equal(dh1.verifyError, 0);
assert.equal(dh2.verifyError, 0);

assert.throws(function() {
  crypto.createDiffieHellman([0x1, 0x2]);
});

assert.throws(function() {
  crypto.createDiffieHellman(function() { });
});

assert.throws(function() {
  crypto.createDiffieHellman(/abc/);
});

assert.throws(function() {
  crypto.createDiffieHellman({});
});

// Create "another dh1" using generated keys from dh1,
// and compute secret again
const dh3 = crypto.createDiffieHellman(p1, 'buffer');
const privkey1 = dh1.getPrivateKey();
dh3.setPublicKey(key1);
dh3.setPrivateKey(privkey1);

assert.deepStrictEqual(dh1.getPrime(), dh3.getPrime());
assert.deepStrictEqual(dh1.getGenerator(), dh3.getGenerator());
assert.deepStrictEqual(dh1.getPublicKey(), dh3.getPublicKey());
assert.deepStrictEqual(dh1.getPrivateKey(), dh3.getPrivateKey());
assert.equal(dh3.verifyError, 0);

const secret3 = dh3.computeSecret(key2, 'hex', 'base64');

assert.equal(secret1, secret3);

// Run this one twice to make sure that the dh3 clears its error properly
{
  const c = crypto.createDecipheriv('aes-128-ecb', crypto.randomBytes(16), '');
  assert.throws(function() { c.final('utf8'); }, /wrong final block length/);
}

assert.throws(function() {
  dh3.computeSecret('');
}, /key is too small/i);

{
  const c = crypto.createDecipheriv('aes-128-ecb', crypto.randomBytes(16), '');
  assert.throws(function() { c.final('utf8'); }, /wrong final block length/);
}

// Create a shared using a DH group.
const alice = crypto.createDiffieHellmanGroup('modp5');
const bob = crypto.createDiffieHellmanGroup('modp5');
alice.generateKeys();
bob.generateKeys();
const aSecret = alice.computeSecret(bob.getPublicKey()).toString('hex');
const bSecret = bob.computeSecret(alice.getPublicKey()).toString('hex');
assert.equal(aSecret, bSecret);
assert.equal(alice.verifyError, DH_NOT_SUITABLE_GENERATOR);
assert.equal(bob.verifyError, DH_NOT_SUITABLE_GENERATOR);

/* Ensure specific generator (buffer) works as expected.
 * The values below (modp2/modp2buf) are for a 1024 bits long prime from
 * RFC 2412 E.2, see https://tools.ietf.org/html/rfc2412. */
const modp2 = crypto.createDiffieHellmanGroup('modp2');
const modp2buf = Buffer.from([
  0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f,
  0xda, 0xa2, 0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b,
  0x80, 0xdc, 0x1c, 0xd1, 0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67,
  0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6, 0x3b, 0x13, 0x9b, 0x22,
  0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd, 0xef, 0x95,
  0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d,
  0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51,
  0xc2, 0x45, 0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6,
  0xf4, 0x4c, 0x42, 0xe9, 0xa6, 0x37, 0xed, 0x6b, 0x0b, 0xff,
  0x5c, 0xb6, 0xf4, 0x06, 0xb7, 0xed, 0xee, 0x38, 0x6b, 0xfb,
  0x5a, 0x89, 0x9f, 0xa5, 0xae, 0x9f, 0x24, 0x11, 0x7c, 0x4b,
  0x1f, 0xe6, 0x49, 0x28, 0x66, 0x51, 0xec, 0xe6, 0x53, 0x81,
  0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
]);
const exmodp2 = crypto.createDiffieHellman(modp2buf, Buffer.from([2]));
modp2.generateKeys();
exmodp2.generateKeys();
let modp2Secret = modp2.computeSecret(exmodp2.getPublicKey()).toString('hex');
const exmodp2Secret = exmodp2.computeSecret(modp2.getPublicKey())
                             .toString('hex');
assert.equal(modp2Secret, exmodp2Secret);
assert.equal(modp2.verifyError, DH_NOT_SUITABLE_GENERATOR);
assert.equal(exmodp2.verifyError, DH_NOT_SUITABLE_GENERATOR);


// Ensure specific generator (string with encoding) works as expected.
const exmodp2_2 = crypto.createDiffieHellman(modp2buf, '02', 'hex');
exmodp2_2.generateKeys();
modp2Secret = modp2.computeSecret(exmodp2_2.getPublicKey()).toString('hex');
const exmodp2_2Secret = exmodp2_2.computeSecret(modp2.getPublicKey())
                                 .toString('hex');
assert.equal(modp2Secret, exmodp2_2Secret);
assert.equal(exmodp2_2.verifyError, DH_NOT_SUITABLE_GENERATOR);


// Ensure specific generator (string without encoding) works as expected.
const exmodp2_3 = crypto.createDiffieHellman(modp2buf, '\x02');
exmodp2_3.generateKeys();
modp2Secret = modp2.computeSecret(exmodp2_3.getPublicKey()).toString('hex');
const exmodp2_3Secret = exmodp2_3.computeSecret(modp2.getPublicKey())
                               .toString('hex');
assert.equal(modp2Secret, exmodp2_3Secret);
assert.equal(exmodp2_3.verifyError, DH_NOT_SUITABLE_GENERATOR);


// Ensure specific generator (numeric) works as expected.
const exmodp2_4 = crypto.createDiffieHellman(modp2buf, 2);
exmodp2_4.generateKeys();
modp2Secret = modp2.computeSecret(exmodp2_4.getPublicKey()).toString('hex');
const exmodp2_4Secret = exmodp2_4.computeSecret(modp2.getPublicKey())
                               .toString('hex');
assert.equal(modp2Secret, exmodp2_4Secret);
assert.equal(exmodp2_4.verifyError, DH_NOT_SUITABLE_GENERATOR);


const p = 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74' +
          '020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437' +
          '4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' +
          'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF';
const bad_dh = crypto.createDiffieHellman(p, 'hex');
assert.equal(bad_dh.verifyError, DH_NOT_SUITABLE_GENERATOR);


// Test ECDH
const ecdh1 = crypto.createECDH('prime256v1');
const ecdh2 = crypto.createECDH('prime256v1');
key1 = ecdh1.generateKeys();
key2 = ecdh2.generateKeys('hex');
secret1 = ecdh1.computeSecret(key2, 'hex', 'base64');
secret2 = ecdh2.computeSecret(key1, 'latin1', 'buffer');

assert.equal(secret1, secret2.toString('base64'));

// Oakley curves do not clean up ERR stack, it was causing unexpected failure
// when accessing other OpenSSL APIs afterwards.
crypto.createECDH('Oakley-EC2N-3');
crypto.createHash('sha256');

// Point formats
assert.equal(ecdh1.getPublicKey('buffer', 'uncompressed')[0], 4);
let firstByte = ecdh1.getPublicKey('buffer', 'compressed')[0];
assert(firstByte === 2 || firstByte === 3);
firstByte = ecdh1.getPublicKey('buffer', 'hybrid')[0];
assert(firstByte === 6 || firstByte === 7);

// ECDH should check that point is on curve
const ecdh3 = crypto.createECDH('secp256k1');
const key3 = ecdh3.generateKeys();

assert.throws(function() {
  ecdh2.computeSecret(key3, 'latin1', 'buffer');
});

// ECDH should allow .setPrivateKey()/.setPublicKey()
const ecdh4 = crypto.createECDH('prime256v1');

ecdh4.setPrivateKey(ecdh1.getPrivateKey());
ecdh4.setPublicKey(ecdh1.getPublicKey());

assert.throws(function() {
  ecdh4.setPublicKey(ecdh3.getPublicKey());
}, /Failed to convert Buffer to EC_POINT/);

// Verify that we can use ECDH without having to use newly generated keys.
const ecdh5 = crypto.createECDH('secp256k1');

// Verify errors are thrown when retrieving keys from an uninitialized object.
assert.throws(function() {
  ecdh5.getPublicKey();
}, /Failed to get ECDH public key/);
assert.throws(function() {
  ecdh5.getPrivateKey();
}, /Failed to get ECDH private key/);

// A valid private key for the secp256k1 curve.
const cafebabeKey = 'cafebabe'.repeat(8);
// Associated compressed and uncompressed public keys (points).
const cafebabePubPtComp =
'03672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3';
const cafebabePubPtUnComp =
'04672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3' +
'2e02c7f93d13dc2732b760ca377a5897b9dd41a1c1b29dc0442fdce6d0a04d1d';
ecdh5.setPrivateKey(cafebabeKey, 'hex');
assert.equal(ecdh5.getPrivateKey('hex'), cafebabeKey);
// Show that the public point (key) is generated while setting the private key.
assert.equal(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);

// Compressed and uncompressed public points/keys for other party's private key
// 0xDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEF
const peerPubPtComp =
'02c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae';
const peerPubPtUnComp =
'04c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae' +
'b651944a574a362082a77e3f2b5d9223eb54d7f2f76846522bf75f3bedb8178e';

const sharedSecret =
'1da220b5329bbe8bfd19ceef5a5898593f411a6f12ea40f2a8eead9a5cf59970';

assert.equal(ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex'), sharedSecret);
assert.equal(ecdh5.computeSecret(peerPubPtUnComp, 'hex', 'hex'), sharedSecret);

// Verify that we still have the same key pair as before the computation.
assert.equal(ecdh5.getPrivateKey('hex'), cafebabeKey);
assert.equal(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);

// Verify setting and getting compressed and non-compressed serializations.
ecdh5.setPublicKey(cafebabePubPtComp, 'hex');
assert.equal(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
assert.equal(ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp);
ecdh5.setPublicKey(cafebabePubPtUnComp, 'hex');
assert.equal(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
assert.equal(ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp);

// Show why allowing the public key to be set on this type does not make sense.
ecdh5.setPublicKey(peerPubPtComp, 'hex');
assert.equal(ecdh5.getPublicKey('hex'), peerPubPtUnComp);
assert.throws(function() {
  // Error because the public key does not match the private key anymore.
  ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex');
}, /Invalid key pair/);

// Set to a valid key to show that later attempts to set an invalid key are
// rejected.
ecdh5.setPrivateKey(cafebabeKey, 'hex');

[ // Some invalid private keys for the secp256k1 curve.
  '0000000000000000000000000000000000000000000000000000000000000000',
  'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141',
  'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF',
].forEach(function(element, index, object) {
  assert.throws(function() {
    ecdh5.setPrivateKey(element, 'hex');
  }, /Private key is not valid for specified curve/);
  // Verify object state did not change.
  assert.equal(ecdh5.getPrivateKey('hex'), cafebabeKey);
});