summaryrefslogtreecommitdiff
path: root/automation/saw/chacha20.cry
diff options
context:
space:
mode:
Diffstat (limited to 'automation/saw/chacha20.cry')
-rw-r--r--automation/saw/chacha20.cry357
1 files changed, 0 insertions, 357 deletions
diff --git a/automation/saw/chacha20.cry b/automation/saw/chacha20.cry
deleted file mode 100644
index 0b52d51ad..000000000
--- a/automation/saw/chacha20.cry
+++ /dev/null
@@ -1,357 +0,0 @@
-/*
-** ChaCha20 specification
-** Author: Austin Seipp <aseipp@pobox.com>. Released in the Public Domain.
-**
-** Based on RFC 7539 - "ChaCha20 and Poly1305 for IETF Protocols"
-** https://tools.ietf.org/html/rfc7539
-*/
-module chacha20 where
-
-/* -------------------------------------------------------------------------- */
-/* -- Implementation -------------------------------------------------------- */
-
-type Round = [16][32] // An input to the ChaCha20 core function
-type Block = [64][8] // An output block from the ChaCha20 core function.
-type Key = [32][8] // A 32-byte input key
-type Nonce = [12][8] // A 12-byte nonce
-type Counter = [32] // Starting block counter. Usually 1 or 0.
-
-/* ---------------------------------- */
-/* -- Quarter Round ----------------- */
-
-// The quarter round. This takes 4 32-bit integers and diffuses them
-// appropriately, and is the core of the column and diagonal round.
-qround : [4][32] -> [4][32]
-qround [ a0, b0, c0, d0 ] = [ a2, b4, c2, d4 ]
- where
- a1 = a0 + b0 /* a += b; d ^= a; d <<<= 16 */
- d1 = d0 ^ a1
- d2 = d1 <<< 16
-
- c1 = c0 + d2 /* c += d; b ^= c; b <<<= 12 */
- b1 = b0 ^ c1
- b2 = b1 <<< 12
-
- a2 = a1 + b2 /* a += b; d ^= a; d <<<= 8 */
- d3 = d2 ^ a2
- d4 = d3 <<< 8
-
- c2 = c1 + d4 /* c += d; b ^= c; b <<<= 7 */
- b3 = b2 ^ c2
- b4 = b3 <<< 7
-
-
-/* ---------------------------------- */
-/* -- Column and diagonal rounds ---- */
-
-// Perform the column round, followed by the diagonal round on the
-// input state, which are both defined in terms of the quarter
-// round. ChaCha20 requires 20 total rounds of interleaving
-// column/diagonal passes on the state, and therefore `cdround` actually
-// does two passes at once (mostly for simplicity).
-cdround : Round -> Round
-cdround [ x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15 ]
- = [ z0, z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14, z15 ]
- where
- // Column round
- [ y0, y4, y8, y12 ] = qround [ x0, x4, x8, x12 ]
- [ y1, y5, y9, y13 ] = qround [ x1, x5, x9, x13 ]
- [ y2, y6, y10, y14 ] = qround [ x2, x6, x10, x14 ]
- [ y3, y7, y11, y15 ] = qround [ x3, x7, x11, x15 ]
-
- // Diagonal round
- [ z0, z5, z10, z15 ] = qround [ y0, y5, y10, y15 ]
- [ z1, z6, z11, z12 ] = qround [ y1, y6, y11, y12 ]
- [ z2, z7, z8, z13 ] = qround [ y2, y7, y8, y13 ]
- [ z3, z4, z9, z14 ] = qround [ y3, y4, y9, y14 ]
-
-
-/* ---------------------------------- */
-/* -- Block encryption -------------- */
-
-// Given an input round, calculate the core ChaCha20 algorithm over
-// the round and return an output block. These output blocks form the
-// stream which you XOR your plaintext with, and successive iterations of
-// the core algorithm result in an infinite stream you can use as a
-// cipher.
-core : Round -> Block
-core x = block
- where
- rounds = iterate cdround x // Do a bunch of column/diagonal passes...
- result = rounds @ 10 // And grab the 10th result (20 total passes)
- block = blocked (x + result) // Add to input, convert to output block
-
-
-/* ---------------------------------- */
-/* -- Key Expansion ----------------- */
-
-// Key expansion. Given a nonce and a key, compute a round (which is
-// fed to the core algorithm above) by taking the initial round state and
-// mixing in the key and nonce appropriately.
-kexp : Key -> Counter -> Nonce -> Round
-kexp k c n = [ c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 ]
- where
- // The following describes the layout of the output round, which
- // is fed into the core algorithm successively.
-
- // Bytes 0-3: Constants
- [ c0, c1, c2, c3 ] = [ 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574 ]
-
- // Bytes 4-11: Key
- [ c4, c5, c6, c7 ] = map rjoin (groupBy`{4} kslice1 : [4][4][8]) : [4][32]
- [ c8, c9, c10, c11 ] = map rjoin (groupBy`{4} kslice2 : [4][4][8]) : [4][32]
- kslice1 = k @@ ([ 0 .. 15 ] : [16][32]) // Top half
- kslice2 = k @@ ([ 16 .. 31 ] : [16][32]) // Bottom half
-
- // Bytes 12: Counter, starts off with whatever the user specified
- // (usually 0 or 1)
- [ c12 ] = [ c ]
-
- // Bytes 14-15: Nonce
- [ c13, c14, c15 ] = map rjoin (groupBy`{4} n)
-
-
-/* ---------------------------------- */
-/* -- Round increments -------------- */
-
-// Take a given number of iterations and the input round (after key
-// expansion!), and calculate the input round for the core algorithm
-// function. This allows you to index into a particular Round which
-// can be passed to the 'core' function.
-iround : [64] -> Round -> Round
-iround n r = (iterate once r) @ n where
- // Given a round, increment the counter inside (index no 12)
- once [ x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15 ]
- = [ x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12+1, x13, x14, x15 ]
-
-/* ---------------------------------- */
-/* -- ChaCha20 encryption ----------- */
-
-// Produce a psuedo-random stream given a nonce and a key, which can
-// be XOR'd with your data to encrypt it.
-stream : {n} (fin n) => Key -> Counter -> Nonce -> [n][8]
-stream k c n = take`{n} (join rounds) // Take n bytes from the final result
- where
- // Expand key
- key = kexp k c n
-
- // Produce the stream by successively incrementing the input round
- // by `i`, and running the core algorithm to get the resulting
- // stream for the `i`th input. Once these are concatenated, you have
- // an infinite list representing the ChaCha20 stream.
- rounds = [ core (iround i key) | i <- [ 0, 1 ... ] ]
-
-
-// Given an message, a nonce, and a key, produce an encrypted
-// message. This is simply defined as the XOR of the message and the
-// corresponding encryption stream.
-encrypt : {n} (fin n) => Key -> Counter -> Nonce -> [n][8] -> [n][8]
-encrypt k c n m = m ^ (stream k c n)
-
-/* -------------------------------------------------------------------------- */
-/* -- Theorems, tests ------------------------------------------------------- */
-
-// Tests are private
-private
- qround01 = qround in == out
- where
- in = [ 0x11111111, 0x01020304, 0x9b8d6f43, 0x01234567 ]
- out = [ 0xea2a92f4, 0xcb1cf8ce, 0x4581472e, 0x5881c4bb ]
-
- core01 = kexp k 1 n == out
- where
- n = [ 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x4a,
- 0x00, 0x00, 0x00, 0x00 ]
- k = [ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
- 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
- 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f ]
- out = [ 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574,
- 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c,
- 0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c,
- 0x00000001, 0x09000000, 0x4a000000, 0x00000000 ]
-
- core02 = core (kexp k 1 n) == out
- where
- n = [ 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x4a,
- 0x00, 0x00, 0x00, 0x00 ]
- k = [ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
- 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
- 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f ]
- out = [ 0x10, 0xf1, 0xe7, 0xe4, 0xd1, 0x3b, 0x59, 0x15,
- 0x50, 0x0f, 0xdd, 0x1f, 0xa3, 0x20, 0x71, 0xc4,
- 0xc7, 0xd1, 0xf4, 0xc7, 0x33, 0xc0, 0x68, 0x03,
- 0x04, 0x22, 0xaa, 0x9a, 0xc3, 0xd4, 0x6c, 0x4e,
- 0xd2, 0x82, 0x64, 0x46, 0x07, 0x9f, 0xaa, 0x09,
- 0x14, 0xc2, 0xd7, 0x05, 0xd9, 0x8b, 0x02, 0xa2,
- 0xb5, 0x12, 0x9c, 0xd1, 0xde, 0x16, 0x4e, 0xb9,
- 0xcb, 0xd0, 0x83, 0xe8, 0xa2, 0x50, 0x3c, 0x4e ]
-
- rfctest01 = encrypt zero zero zero zero
- == [ 0x76, 0xb8, 0xe0, 0xad, 0xa0, 0xf1, 0x3d, 0x90, 0x40, 0x5d,
- 0x6a, 0xe5, 0x53, 0x86, 0xbd, 0x28, 0xbd, 0xd2, 0x19, 0xb8,
- 0xa0, 0x8d, 0xed, 0x1a, 0xa8, 0x36, 0xef, 0xcc, 0x8b, 0x77,
- 0x0d, 0xc7, 0xda, 0x41, 0x59, 0x7c, 0x51, 0x57, 0x48, 0x8d,
- 0x77, 0x24, 0xe0, 0x3f, 0xb8, 0xd8, 0x4a, 0x37, 0x6a, 0x43,
- 0xb8, 0xf4, 0x15, 0x18, 0xa1, 0x1c, 0xc3, 0x87, 0xb6, 0x69,
- 0xb2, 0xee, 0x65, 0x86 ]
-
- rfctest02 = encrypt (zero # [1]) 1 (zero # [2]) msg == out
- where
- out = [ 0xa3, 0xfb, 0xf0, 0x7d, 0xf3, 0xfa, 0x2f, 0xde, 0x4f, 0x37,
- 0x6c, 0xa2, 0x3e, 0x82, 0x73, 0x70, 0x41, 0x60, 0x5d, 0x9f,
- 0x4f, 0x4f, 0x57, 0xbd, 0x8c, 0xff, 0x2c, 0x1d, 0x4b, 0x79,
- 0x55, 0xec, 0x2a, 0x97, 0x94, 0x8b, 0xd3, 0x72, 0x29, 0x15,
- 0xc8, 0xf3, 0xd3, 0x37, 0xf7, 0xd3, 0x70, 0x05, 0x0e, 0x9e,
- 0x96, 0xd6, 0x47, 0xb7, 0xc3, 0x9f, 0x56, 0xe0, 0x31, 0xca,
- 0x5e, 0xb6, 0x25, 0x0d, 0x40, 0x42, 0xe0, 0x27, 0x85, 0xec,
- 0xec, 0xfa, 0x4b, 0x4b, 0xb5, 0xe8, 0xea, 0xd0, 0x44, 0x0e,
- 0x20, 0xb6, 0xe8, 0xdb, 0x09, 0xd8, 0x81, 0xa7, 0xc6, 0x13,
- 0x2f, 0x42, 0x0e, 0x52, 0x79, 0x50, 0x42, 0xbd, 0xfa, 0x77,
- 0x73, 0xd8, 0xa9, 0x05, 0x14, 0x47, 0xb3, 0x29, 0x1c, 0xe1,
- 0x41, 0x1c, 0x68, 0x04, 0x65, 0x55, 0x2a, 0xa6, 0xc4, 0x05,
- 0xb7, 0x76, 0x4d, 0x5e, 0x87, 0xbe, 0xa8, 0x5a, 0xd0, 0x0f,
- 0x84, 0x49, 0xed, 0x8f, 0x72, 0xd0, 0xd6, 0x62, 0xab, 0x05,
- 0x26, 0x91, 0xca, 0x66, 0x42, 0x4b, 0xc8, 0x6d, 0x2d, 0xf8,
- 0x0e, 0xa4, 0x1f, 0x43, 0xab, 0xf9, 0x37, 0xd3, 0x25, 0x9d,
- 0xc4, 0xb2, 0xd0, 0xdf, 0xb4, 0x8a, 0x6c, 0x91, 0x39, 0xdd,
- 0xd7, 0xf7, 0x69, 0x66, 0xe9, 0x28, 0xe6, 0x35, 0x55, 0x3b,
- 0xa7, 0x6c, 0x5c, 0x87, 0x9d, 0x7b, 0x35, 0xd4, 0x9e, 0xb2,
- 0xe6, 0x2b, 0x08, 0x71, 0xcd, 0xac, 0x63, 0x89, 0x39, 0xe2,
- 0x5e, 0x8a, 0x1e, 0x0e, 0xf9, 0xd5, 0x28, 0x0f, 0xa8, 0xca,
- 0x32, 0x8b, 0x35, 0x1c, 0x3c, 0x76, 0x59, 0x89, 0xcb, 0xcf,
- 0x3d, 0xaa, 0x8b, 0x6c, 0xcc, 0x3a, 0xaf, 0x9f, 0x39, 0x79,
- 0xc9, 0x2b, 0x37, 0x20, 0xfc, 0x88, 0xdc, 0x95, 0xed, 0x84,
- 0xa1, 0xbe, 0x05, 0x9c, 0x64, 0x99, 0xb9, 0xfd, 0xa2, 0x36,
- 0xe7, 0xe8, 0x18, 0xb0, 0x4b, 0x0b, 0xc3, 0x9c, 0x1e, 0x87,
- 0x6b, 0x19, 0x3b, 0xfe, 0x55, 0x69, 0x75, 0x3f, 0x88, 0x12,
- 0x8c, 0xc0, 0x8a, 0xaa, 0x9b, 0x63, 0xd1, 0xa1, 0x6f, 0x80,
- 0xef, 0x25, 0x54, 0xd7, 0x18, 0x9c, 0x41, 0x1f, 0x58, 0x69,
- 0xca, 0x52, 0xc5, 0xb8, 0x3f, 0xa3, 0x6f, 0xf2, 0x16, 0xb9,
- 0xc1, 0xd3, 0x00, 0x62, 0xbe, 0xbc, 0xfd, 0x2d, 0xc5, 0xbc,
- 0xe0, 0x91, 0x19, 0x34, 0xfd, 0xa7, 0x9a, 0x86, 0xf6, 0xe6,
- 0x98, 0xce, 0xd7, 0x59, 0xc3, 0xff, 0x9b, 0x64, 0x77, 0x33,
- 0x8f, 0x3d, 0xa4, 0xf9, 0xcd, 0x85, 0x14, 0xea, 0x99, 0x82,
- 0xcc, 0xaf, 0xb3, 0x41, 0xb2, 0x38, 0x4d, 0xd9, 0x02, 0xf3,
- 0xd1, 0xab, 0x7a, 0xc6, 0x1d, 0xd2, 0x9c, 0x6f, 0x21, 0xba,
- 0x5b, 0x86, 0x2f, 0x37, 0x30, 0xe3, 0x7c, 0xfd, 0xc4, 0xfd,
- 0x80, 0x6c, 0x22, 0xf2, 0x21 ]
-
- msg = [ 0x41, 0x6e, 0x79, 0x20, 0x73, 0x75, 0x62, 0x6d, 0x69, 0x73,
- 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68,
- 0x65, 0x20, 0x49, 0x45, 0x54, 0x46, 0x20, 0x69, 0x6e, 0x74,
- 0x65, 0x6e, 0x64, 0x65, 0x64, 0x20, 0x62, 0x79, 0x20, 0x74,
- 0x68, 0x65, 0x20, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x69, 0x62,
- 0x75, 0x74, 0x6f, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70,
- 0x75, 0x62, 0x6c, 0x69, 0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e,
- 0x20, 0x61, 0x73, 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x6f, 0x72,
- 0x20, 0x70, 0x61, 0x72, 0x74, 0x20, 0x6f, 0x66, 0x20, 0x61,
- 0x6e, 0x20, 0x49, 0x45, 0x54, 0x46, 0x20, 0x49, 0x6e, 0x74,
- 0x65, 0x72, 0x6e, 0x65, 0x74, 0x2d, 0x44, 0x72, 0x61, 0x66,
- 0x74, 0x20, 0x6f, 0x72, 0x20, 0x52, 0x46, 0x43, 0x20, 0x61,
- 0x6e, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x73, 0x74, 0x61,
- 0x74, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x20, 0x6d, 0x61, 0x64,
- 0x65, 0x20, 0x77, 0x69, 0x74, 0x68, 0x69, 0x6e, 0x20, 0x74,
- 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74,
- 0x20, 0x6f, 0x66, 0x20, 0x61, 0x6e, 0x20, 0x49, 0x45, 0x54,
- 0x46, 0x20, 0x61, 0x63, 0x74, 0x69, 0x76, 0x69, 0x74, 0x79,
- 0x20, 0x69, 0x73, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x69, 0x64,
- 0x65, 0x72, 0x65, 0x64, 0x20, 0x61, 0x6e, 0x20, 0x22, 0x49,
- 0x45, 0x54, 0x46, 0x20, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x69,
- 0x62, 0x75, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x2e, 0x20, 0x53,
- 0x75, 0x63, 0x68, 0x20, 0x73, 0x74, 0x61, 0x74, 0x65, 0x6d,
- 0x65, 0x6e, 0x74, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6c, 0x75,
- 0x64, 0x65, 0x20, 0x6f, 0x72, 0x61, 0x6c, 0x20, 0x73, 0x74,
- 0x61, 0x74, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x20, 0x69,
- 0x6e, 0x20, 0x49, 0x45, 0x54, 0x46, 0x20, 0x73, 0x65, 0x73,
- 0x73, 0x69, 0x6f, 0x6e, 0x73, 0x2c, 0x20, 0x61, 0x73, 0x20,
- 0x77, 0x65, 0x6c, 0x6c, 0x20, 0x61, 0x73, 0x20, 0x77, 0x72,
- 0x69, 0x74, 0x74, 0x65, 0x6e, 0x20, 0x61, 0x6e, 0x64, 0x20,
- 0x65, 0x6c, 0x65, 0x63, 0x74, 0x72, 0x6f, 0x6e, 0x69, 0x63,
- 0x20, 0x63, 0x6f, 0x6d, 0x6d, 0x75, 0x6e, 0x69, 0x63, 0x61,
- 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x20, 0x6d, 0x61, 0x64, 0x65,
- 0x20, 0x61, 0x74, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x74, 0x69,
- 0x6d, 0x65, 0x20, 0x6f, 0x72, 0x20, 0x70, 0x6c, 0x61, 0x63,
- 0x65, 0x2c, 0x20, 0x77, 0x68, 0x69, 0x63, 0x68, 0x20, 0x61,
- 0x72, 0x65, 0x20, 0x61, 0x64, 0x64, 0x72, 0x65, 0x73, 0x73,
- 0x65, 0x64, 0x20, 0x74, 0x6f ]
-
- rfctest03 = encrypt key 42 (zero # [2]) msg == out
- where
- key = [ 0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a, 0xf3, 0x33,
- 0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0, 0x47, 0x39, 0x17, 0xc1,
- 0x40, 0x2b, 0x80, 0x09, 0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70,
- 0x75, 0xc0 ]
- out = [ 0x27, 0x54, 0x77, 0x61, 0x73, 0x20, 0x62, 0x72, 0x69, 0x6c,
- 0x6c, 0x69, 0x67, 0x2c, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x74,
- 0x68, 0x65, 0x20, 0x73, 0x6c, 0x69, 0x74, 0x68, 0x79, 0x20,
- 0x74, 0x6f, 0x76, 0x65, 0x73, 0x0a, 0x44, 0x69, 0x64, 0x20,
- 0x67, 0x79, 0x72, 0x65, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x67,
- 0x69, 0x6d, 0x62, 0x6c, 0x65, 0x20, 0x69, 0x6e, 0x20, 0x74,
- 0x68, 0x65, 0x20, 0x77, 0x61, 0x62, 0x65, 0x3a, 0x0a, 0x41,
- 0x6c, 0x6c, 0x20, 0x6d, 0x69, 0x6d, 0x73, 0x79, 0x20, 0x77,
- 0x65, 0x72, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20, 0x62, 0x6f,
- 0x72, 0x6f, 0x67, 0x6f, 0x76, 0x65, 0x73, 0x2c, 0x0a, 0x41,
- 0x6e, 0x64, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x6d,
- 0x65, 0x20, 0x72, 0x61, 0x74, 0x68, 0x73, 0x20, 0x6f, 0x75,
- 0x74, 0x67, 0x72, 0x61, 0x62, 0x65, 0x2e ]
-
- msg = [ 0x62, 0xe6, 0x34, 0x7f, 0x95, 0xed, 0x87, 0xa4, 0x5f, 0xfa,
- 0xe7, 0x42, 0x6f, 0x27, 0xa1, 0xdf, 0x5f, 0xb6, 0x91, 0x10,
- 0x04, 0x4c, 0x0d, 0x73, 0x11, 0x8e, 0xff, 0xa9, 0x5b, 0x01,
- 0xe5, 0xcf, 0x16, 0x6d, 0x3d, 0xf2, 0xd7, 0x21, 0xca, 0xf9,
- 0xb2, 0x1e, 0x5f, 0xb1, 0x4c, 0x61, 0x68, 0x71, 0xfd, 0x84,
- 0xc5, 0x4f, 0x9d, 0x65, 0xb2, 0x83, 0x19, 0x6c, 0x7f, 0xe4,
- 0xf6, 0x05, 0x53, 0xeb, 0xf3, 0x9c, 0x64, 0x02, 0xc4, 0x22,
- 0x34, 0xe3, 0x2a, 0x35, 0x6b, 0x3e, 0x76, 0x43, 0x12, 0xa6,
- 0x1a, 0x55, 0x32, 0x05, 0x57, 0x16, 0xea, 0xd6, 0x96, 0x25,
- 0x68, 0xf8, 0x7d, 0x3f, 0x3f, 0x77, 0x04, 0xc6, 0xa8, 0xd1,
- 0xbc, 0xd1, 0xbf, 0x4d, 0x50, 0xd6, 0x15, 0x4b, 0x6d, 0xa7,
- 0x31, 0xb1, 0x87, 0xb5, 0x8d, 0xfd, 0x72, 0x8a, 0xfa, 0x36,
- 0x75, 0x7a, 0x79, 0x7a, 0xc1, 0x88, 0xd1 ]
-
-property allTestsPass =
- ([ // Basic tests
- qround01, core01, core02
- // Full RFC test vectors
- , rfctest01, rfctest02, rfctest03
- ] : [_]Bit) == ~zero // All test bits should equal one
-
-/* -------------------------------------------------------------------------- */
-/* -- Private utilities ----------------------------------------------------- */
-
-private
- // Convert a round into a block, by splitting every 32-bit round entry
- // into 4 bytes, and then serialize those values into a full block.
- blocked : Round -> Block
- blocked x = join (map toBytes x)
- where
- // This essentially splits a 32-bit number into 4-byte
- // little-endian form, where 'rjoin' is the inverse and would merge
- // 4 bytes as a 32-bit little endian number.
- toBytes : [32] -> [4][8]
- toBytes v = reverse (groupBy`{8} v)
-
- // Map a function over a finite list.
- map : { a, b, c }
- (a -> b) -> [c]a -> [c]b
- map f xs = [ f x | x <- xs ]
-
- // Map a function iteratively over a seed value, producing an infinite
- // list of successive function applications:
- //
- // iterate f 0 == [ 0, f 0, f (f 0), f (f (f 0)), ... ]
- iterate : { a } (a -> a) -> a -> [inf]a
- iterate f x = [x] # [ f v | v <- iterate f x ]
- where
- // NB: Needs a binded name in order to tie the recursive knot.
- xs = [x] # [ f v | v <- xs ]
-
- // rjoin = join . reverse
- // This encodes a sequence of values as a little endian number
- // e.g. [ 0xaa, 0xbb, 0xcc, 0xdd ] is serialized as \xdd\xcc\xbb\xaa
- rjoin : {a, b, c}
- ( fin a, fin c
- ) => [c][a]b -> [a * c]b
- rjoin x = join (reverse x)