summaryrefslogtreecommitdiff
path: root/gtests/ssl_gtest/ssl_0rtt_unittest.cc
blob: 51ec9d3ee5c52bd9f84677a613b99fb7dd38a55c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "secerr.h"
#include "ssl.h"
#include "sslerr.h"
#include "sslexp.h"
#include "sslproto.h"

extern "C" {
// This is not something that should make you happy.
#include "libssl_internals.h"
}

#include "cpputil.h"
#include "gtest_utils.h"
#include "nss_scoped_ptrs.h"
#include "tls_connect.h"
#include "tls_filter.h"
#include "tls_parser.h"

namespace nss_test {

TEST_P(TlsConnectTls13, ZeroRtt) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, true);
  Handshake();
  ExpectEarlyDataAccepted(true);
  CheckConnected();
  SendReceive();
}

TEST_P(TlsConnectTls13, ZeroRttServerRejectByOption) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, false);
  Handshake();
  CheckConnected();
  SendReceive();
}

TEST_P(TlsConnectTls13, ZeroRttApplicationReject) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);

  auto reject_0rtt = [](PRBool firstHello, const PRUint8* clientToken,
                        unsigned int clientTokenLen, PRUint8* appToken,
                        unsigned int* appTokenLen, unsigned int appTokenMax,
                        void* arg) {
    auto* called = reinterpret_cast<bool*>(arg);
    *called = true;

    EXPECT_TRUE(firstHello);
    EXPECT_EQ(0U, clientTokenLen);
    return ssl_hello_retry_reject_0rtt;
  };

  bool cb_run = false;
  EXPECT_EQ(SECSuccess, SSL_HelloRetryRequestCallback(server_->ssl_fd(),
                                                      reject_0rtt, &cb_run));
  ZeroRttSendReceive(true, false);
  Handshake();
  EXPECT_TRUE(cb_run);
  CheckConnected();
  SendReceive();
}

TEST_P(TlsConnectTls13, ZeroRttApparentReplayAfterRestart) {
  // The test fixtures enable anti-replay in SetUp().  This results in 0-RTT
  // being rejected until at least one window passes.  SetupFor0Rtt() forces a
  // rollover of the anti-replay filters, which clears that state and allows
  // 0-RTT to work.  Make the first connection manually to avoid that rollover
  // and cause 0-RTT to be rejected.

  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  ConfigureVersion(SSL_LIBRARY_VERSION_TLS_1_3);
  server_->Set0RttEnabled(true);  // So we signal that we allow 0-RTT.
  Connect();
  SendReceive();  // Need to read so that we absorb the session ticket.
  CheckKeys();

  Reset();
  StartConnect();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, false);
  Handshake();
  CheckConnected();
  SendReceive();
}

class TlsZeroRttReplayTest : public TlsConnectTls13 {
 private:
  class SaveFirstPacket : public PacketFilter {
   public:
    PacketFilter::Action Filter(const DataBuffer& input,
                                DataBuffer* output) override {
      if (!packet_.len() && input.len()) {
        packet_ = input;
      }
      return KEEP;
    }

    const DataBuffer& packet() const { return packet_; }

   private:
    DataBuffer packet_;
  };

 protected:
  void RunTest(bool rollover, const ScopedPK11SymKey& epsk) {
    // Now run a true 0-RTT handshake, but capture the first packet.
    auto first_packet = std::make_shared<SaveFirstPacket>();
    client_->SetFilter(first_packet);
    client_->Set0RttEnabled(true);
    server_->Set0RttEnabled(true);
    ZeroRttSendReceive(true, true);
    Handshake();
    EXPECT_LT(0U, first_packet->packet().len());
    ExpectEarlyDataAccepted(true);
    CheckConnected();
    SendReceive();

    if (rollover) {
      RolloverAntiReplay();
    }

    // Now replay that packet against the server.
    Reset();
    server_->StartConnect();
    server_->Set0RttEnabled(true);
    server_->SetAntiReplayContext(anti_replay_);
    if (epsk) {
      AddPsk(epsk, std::string("foo"), ssl_hash_sha256,
             TLS_CHACHA20_POLY1305_SHA256);
    }

    // Capture the early_data extension, which should not appear.
    auto early_data_ext =
        MakeTlsFilter<TlsExtensionCapture>(server_, ssl_tls13_early_data_xtn);

    // Finally, replay the ClientHello and force the server to consume it.  Stop
    // after the server sends its first flight; the client will not be able to
    // complete this handshake.
    server_->adapter()->PacketReceived(first_packet->packet());
    server_->Handshake();
    EXPECT_FALSE(early_data_ext->captured());
  }

  void RunResPskTest(bool rollover) {
    // Run the initial handshake
    SetupForZeroRtt();
    ExpectResumption(RESUME_TICKET);
    RunTest(rollover, ScopedPK11SymKey(nullptr));
  }

  void RunExtPskTest(bool rollover) {
    ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
    ASSERT_NE(nullptr, slot);

    const std::vector<uint8_t> kPskDummyVal(16, 0xFF);
    SECItem psk_item = {siBuffer, toUcharPtr(kPskDummyVal.data()),
                        static_cast<unsigned int>(kPskDummyVal.size())};
    PK11SymKey* key =
        PK11_ImportSymKey(slot.get(), CKM_HKDF_KEY_GEN, PK11_OriginUnwrap,
                          CKA_DERIVE, &psk_item, NULL);
    ASSERT_NE(nullptr, key);
    ScopedPK11SymKey scoped_psk(key);
    RolloverAntiReplay();
    AddPsk(scoped_psk, std::string("foo"), ssl_hash_sha256,
           TLS_CHACHA20_POLY1305_SHA256);
    StartConnect();
    RunTest(rollover, scoped_psk);
  }
};

TEST_P(TlsZeroRttReplayTest, ResPskZeroRttReplay) { RunResPskTest(false); }

TEST_P(TlsZeroRttReplayTest, ExtPskZeroRttReplay) { RunExtPskTest(false); }

TEST_P(TlsZeroRttReplayTest, ZeroRttReplayAfterRollover) {
  RunResPskTest(true);
}

// Test that we don't try to send 0-RTT data when the server sent
// us a ticket without the 0-RTT flags.
TEST_P(TlsConnectTls13, ZeroRttOptionsSetLate) {
  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  Connect();
  SendReceive();  // Need to read so that we absorb the session ticket.
  CheckKeys(ssl_kea_ecdh, ssl_auth_rsa_sign);
  Reset();
  StartConnect();
  // Now turn on 0-RTT but too late for the ticket.
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(false, false);
  Handshake();
  CheckConnected();
  SendReceive();
}

// Make sure that a session ticket sent well after the original handshake
// can be used for 0-RTT.
// Stream because DTLS doesn't support SSL_SendSessionTicket.
TEST_F(TlsConnectStreamTls13, ZeroRttUsingLateTicket) {
  // Use a small-ish anti-replay window.
  ResetAntiReplay(100 * PR_USEC_PER_MSEC);
  RolloverAntiReplay();

  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  server_->Set0RttEnabled(true);
  Connect();
  CheckKeys();

  // Now move time forward 30s and send a ticket.
  AdvanceTime(30 * PR_USEC_PER_SEC);
  EXPECT_EQ(SECSuccess, SSL_SendSessionTicket(server_->ssl_fd(), NULL, 0));
  SendReceive();
  Reset();
  StartConnect();

  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, true);
  Handshake();
  ExpectEarlyDataAccepted(true);
  CheckConnected();
  SendReceive();
}

// Check that post-handshake authentication with a long RTT doesn't
// make things worse.
TEST_F(TlsConnectStreamTls13, ZeroRttUsingLateTicketPha) {
  // Use a small-ish anti-replay window.
  ResetAntiReplay(100 * PR_USEC_PER_MSEC);
  RolloverAntiReplay();

  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  server_->Set0RttEnabled(true);
  client_->SetupClientAuth();
  client_->SetOption(SSL_ENABLE_POST_HANDSHAKE_AUTH, PR_TRUE);
  Connect();
  CheckKeys();

  // Add post-handshake authentication, with some added delays.
  AdvanceTime(10 * PR_USEC_PER_SEC);
  EXPECT_EQ(SECSuccess, SSL_SendCertificateRequest(server_->ssl_fd()));
  AdvanceTime(10 * PR_USEC_PER_SEC);
  server_->SendData(50);
  client_->ReadBytes(50);
  client_->SendData(50);
  server_->ReadBytes(50);

  AdvanceTime(10 * PR_USEC_PER_SEC);
  EXPECT_EQ(SECSuccess, SSL_SendSessionTicket(server_->ssl_fd(), NULL, 0));
  server_->SendData(100);
  client_->ReadBytes(100);
  Reset();
  StartConnect();

  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, true);
  Handshake();
  ExpectEarlyDataAccepted(true);
  CheckConnected();
  SendReceive();
}

// Same, but with client authentication on the first connection.
TEST_F(TlsConnectStreamTls13, ZeroRttUsingLateTicketClientAuth) {
  // Use a small-ish anti-replay window.
  ResetAntiReplay(100 * PR_USEC_PER_MSEC);
  RolloverAntiReplay();

  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  client_->SetupClientAuth();
  server_->RequestClientAuth(true);
  server_->Set0RttEnabled(true);
  Connect();
  CheckKeys();

  // Now move time forward 30s and send a ticket.
  AdvanceTime(30 * PR_USEC_PER_SEC);
  EXPECT_EQ(SECSuccess, SSL_SendSessionTicket(server_->ssl_fd(), NULL, 0));
  SendReceive();
  Reset();
  StartConnect();

  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, true);
  Handshake();
  ExpectEarlyDataAccepted(true);
  CheckConnected();
  SendReceive();
}

TEST_P(TlsConnectTls13, ZeroRttServerForgetTicket) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ClearServerCache();
  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  ExpectResumption(RESUME_NONE);
  ZeroRttSendReceive(true, false);
  Handshake();
  CheckConnected();
  SendReceive();
}

TEST_P(TlsConnectTls13, ZeroRttServerOnly) {
  ExpectResumption(RESUME_NONE);
  server_->Set0RttEnabled(true);
  StartConnect();

  // Client sends ordinary ClientHello.
  client_->Handshake();

  // Verify that the server doesn't get data.
  uint8_t buf[100];
  PRInt32 rv = PR_Read(server_->ssl_fd(), buf, sizeof(buf));
  EXPECT_EQ(SECFailure, rv);
  EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError());

  // Now make sure that things complete.
  Handshake();
  CheckConnected();
  SendReceive();
  CheckKeys();
}

// Advancing time after sending the ClientHello means that the ticket age that
// arrives at the server is too low.  The server then rejects early data if this
// delay exceeds half the anti-replay window.
TEST_P(TlsConnectTls13, ZeroRttRejectOldTicket) {
  static const PRTime kWindow = 10 * PR_USEC_PER_SEC;
  ResetAntiReplay(kWindow);
  SetupForZeroRtt();

  Reset();
  StartConnect();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, false, [this]() {
    AdvanceTime(1 + kWindow / 2);
    return true;
  });
  Handshake();
  ExpectEarlyDataAccepted(false);
  CheckConnected();
  SendReceive();
}

// In this test, we falsely inflate the estimate of the RTT by delaying the
// ServerHello on the first handshake.  This results in the server estimating a
// higher value of the ticket age than the client ultimately provides.  Add a
// small tolerance for variation in ticket age and the ticket will appear to
// arrive prematurely, causing the server to reject early data.
TEST_P(TlsConnectTls13, ZeroRttRejectPrematureTicket) {
  static const PRTime kWindow = 10 * PR_USEC_PER_SEC;
  ResetAntiReplay(kWindow);
  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  ConfigureVersion(SSL_LIBRARY_VERSION_TLS_1_3);
  server_->Set0RttEnabled(true);
  StartConnect();
  client_->Handshake();  // ClientHello
  server_->Handshake();  // ServerHello
  AdvanceTime(1 + kWindow / 2);
  Handshake();  // Remainder of handshake
  CheckConnected();
  SendReceive();
  CheckKeys();

  Reset();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ExpectEarlyDataAccepted(false);
  StartConnect();
  ZeroRttSendReceive(true, false);
  Handshake();
  CheckConnected();
  SendReceive();
}

TEST_P(TlsConnectTls13, TestTls13ZeroRttAlpn) {
  EnableAlpn();
  SetupForZeroRtt();
  EnableAlpn();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ExpectEarlyDataAccepted(true);
  ZeroRttSendReceive(true, true, [this]() {
    client_->CheckAlpn(SSL_NEXT_PROTO_EARLY_VALUE, "a");
    return true;
  });
  Handshake();
  CheckConnected();
  SendReceive();
  CheckAlpn("a");
}

// NOTE: In this test and those below, the client always sends
// post-ServerHello alerts with the handshake keys, even if the server
// has accepted 0-RTT.  In some cases, as with errors in
// EncryptedExtensions, the client can't know the server's behavior,
// and in others it's just simpler.  What the server is expecting
// depends on whether it accepted 0-RTT or not. Eventually, we may
// make the server trial decrypt.
//
// Have the server negotiate a different ALPN value, and therefore
// reject 0-RTT.
TEST_P(TlsConnectTls13, TestTls13ZeroRttAlpnChangeServer) {
  EnableAlpn();
  SetupForZeroRtt();
  static const uint8_t client_alpn[] = {0x01, 0x61, 0x01, 0x62};  // "a", "b"
  static const uint8_t server_alpn[] = {0x01, 0x62};              // "b"
  client_->EnableAlpn(client_alpn, sizeof(client_alpn));
  server_->EnableAlpn(server_alpn, sizeof(server_alpn));
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, false, [this]() {
    client_->CheckAlpn(SSL_NEXT_PROTO_EARLY_VALUE, "a");
    return true;
  });
  Handshake();
  CheckConnected();
  SendReceive();
  CheckAlpn("b");
}

// Check that the client validates the ALPN selection of the server.
// Stomp the ALPN on the client after sending the ClientHello so
// that the server selection appears to be incorrect. The client
// should then fail the connection.
TEST_P(TlsConnectTls13, TestTls13ZeroRttNoAlpnServer) {
  EnableAlpn();
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  EnableAlpn();
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, true, [this]() {
    PRUint8 b[] = {'b'};
    client_->CheckAlpn(SSL_NEXT_PROTO_EARLY_VALUE, "a");
    EXPECT_EQ(SECSuccess, SSLInt_Set0RttAlpn(client_->ssl_fd(), b, sizeof(b)));
    client_->CheckAlpn(SSL_NEXT_PROTO_EARLY_VALUE, "b");
    client_->ExpectSendAlert(kTlsAlertIllegalParameter);
    return true;
  });
  if (variant_ == ssl_variant_stream) {
    server_->ExpectSendAlert(kTlsAlertBadRecordMac);
    Handshake();
    server_->CheckErrorCode(SSL_ERROR_BAD_MAC_READ);
  } else {
    client_->Handshake();
  }
  client_->CheckErrorCode(SSL_ERROR_NEXT_PROTOCOL_DATA_INVALID);
}

// Set up with no ALPN and then set the client so it thinks it has ALPN.
// The server responds without the extension and the client returns an
// error.
TEST_P(TlsConnectTls13, TestTls13ZeroRttNoAlpnClient) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, true, [this]() {
    PRUint8 b[] = {'b'};
    EXPECT_EQ(SECSuccess, SSLInt_Set0RttAlpn(client_->ssl_fd(), b, 1));
    client_->CheckAlpn(SSL_NEXT_PROTO_EARLY_VALUE, "b");
    client_->ExpectSendAlert(kTlsAlertIllegalParameter);
    return true;
  });
  if (variant_ == ssl_variant_stream) {
    server_->ExpectSendAlert(kTlsAlertBadRecordMac);
    Handshake();
    server_->CheckErrorCode(SSL_ERROR_BAD_MAC_READ);
  } else {
    client_->Handshake();
  }
  client_->CheckErrorCode(SSL_ERROR_NEXT_PROTOCOL_DATA_INVALID);
}

// Remove the old ALPN value and so the client will not offer early data.
TEST_P(TlsConnectTls13, TestTls13ZeroRttAlpnChangeBoth) {
  EnableAlpn();
  SetupForZeroRtt();
  static const std::vector<uint8_t> alpn({0x01, 0x62});  // "b"
  EnableAlpn(alpn);
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, false, [this]() {
    client_->CheckAlpn(SSL_NEXT_PROTO_NO_SUPPORT);
    return false;
  });
  Handshake();
  CheckConnected();
  SendReceive();
  CheckAlpn("b");
}

// The client should abort the connection when sending a 0-rtt handshake but
// the servers responds with a TLS 1.2 ServerHello. (no app data sent)
TEST_P(TlsConnectTls13, TestTls13ZeroRttDowngrade) {
  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  server_->Set0RttEnabled(true);  // set ticket_allow_early_data
  Connect();

  SendReceive();  // Need to read so that we absorb the session tickets.
  CheckKeys();

  Reset();
  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  client_->SetVersionRange(SSL_LIBRARY_VERSION_TLS_1_2,
                           SSL_LIBRARY_VERSION_TLS_1_3);
  server_->SetVersionRange(SSL_LIBRARY_VERSION_TLS_1_2,
                           SSL_LIBRARY_VERSION_TLS_1_2);
  StartConnect();
  // We will send the early data xtn without sending actual early data. Thus
  // a 1.2 server shouldn't fail until the client sends an alert because the
  // client sends end_of_early_data only after reading the server's flight.
  client_->Set0RttEnabled(true);

  client_->ExpectSendAlert(kTlsAlertIllegalParameter);
  if (variant_ == ssl_variant_stream) {
    server_->ExpectSendAlert(kTlsAlertUnexpectedMessage);
  }
  client_->Handshake();
  server_->Handshake();
  ASSERT_TRUE_WAIT(
      (client_->error_code() == SSL_ERROR_DOWNGRADE_WITH_EARLY_DATA), 2000);

  // DTLS will timeout as we bump the epoch when installing the early app data
  // cipher suite. Thus the encrypted alert will be ignored.
  if (variant_ == ssl_variant_stream) {
    // The client sends an encrypted alert message.
    ASSERT_TRUE_WAIT(
        (server_->error_code() == SSL_ERROR_RX_UNEXPECTED_APPLICATION_DATA),
        2000);
  }
}

// The client should abort the connection when sending a 0-rtt handshake but
// the servers responds with a TLS 1.2 ServerHello. (with app data)
TEST_P(TlsConnectTls13, TestTls13ZeroRttDowngradeEarlyData) {
  const char* k0RttData = "ABCDEF";
  const PRInt32 k0RttDataLen = static_cast<PRInt32>(strlen(k0RttData));

  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  server_->Set0RttEnabled(true);  // set ticket_allow_early_data
  Connect();

  SendReceive();  // Need to read so that we absorb the session tickets.
  CheckKeys();

  Reset();
  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  client_->SetVersionRange(SSL_LIBRARY_VERSION_TLS_1_2,
                           SSL_LIBRARY_VERSION_TLS_1_3);
  server_->SetVersionRange(SSL_LIBRARY_VERSION_TLS_1_2,
                           SSL_LIBRARY_VERSION_TLS_1_2);
  StartConnect();
  // Send the early data xtn in the CH, followed by early app data. The server
  // will fail right after sending its flight, when receiving the early data.
  client_->Set0RttEnabled(true);
  client_->Handshake();  // Send ClientHello.
  PRInt32 rv =
      PR_Write(client_->ssl_fd(), k0RttData, k0RttDataLen);  // 0-RTT write.
  EXPECT_EQ(k0RttDataLen, rv);

  if (variant_ == ssl_variant_stream) {
    // When the server receives the early data, it will fail.
    server_->ExpectSendAlert(kTlsAlertUnexpectedMessage);
    server_->Handshake();  // Consume ClientHello
    EXPECT_EQ(TlsAgent::STATE_ERROR, server_->state());
    server_->CheckErrorCode(SSL_ERROR_RX_UNEXPECTED_APPLICATION_DATA);
  } else {
    // If it's datagram, we just discard the early data.
    server_->Handshake();  // Consume ClientHello
    EXPECT_EQ(TlsAgent::STATE_CONNECTING, server_->state());
  }

  // The client now reads the ServerHello and fails.
  ASSERT_EQ(TlsAgent::STATE_CONNECTING, client_->state());
  client_->ExpectSendAlert(kTlsAlertIllegalParameter);
  client_->Handshake();
  client_->CheckErrorCode(SSL_ERROR_DOWNGRADE_WITH_EARLY_DATA);
}

TEST_P(TlsConnectTls13, SendTooMuchEarlyData) {
  EnsureTlsSetup();
  const char* big_message = "0123456789abcdef";
  const size_t short_size = strlen(big_message) - 1;
  const PRInt32 short_length = static_cast<PRInt32>(short_size);
  EXPECT_EQ(SECSuccess,
            SSL_SetMaxEarlyDataSize(server_->ssl_fd(),
                                    static_cast<PRUint32>(short_size)));
  SetupForZeroRtt();

  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);

  client_->Handshake();
  CheckEarlyDataLimit(client_, short_size);

  PRInt32 sent;
  // Writing more than the limit will succeed in TLS, but fail in DTLS.
  if (variant_ == ssl_variant_stream) {
    sent = PR_Write(client_->ssl_fd(), big_message,
                    static_cast<PRInt32>(strlen(big_message)));
  } else {
    sent = PR_Write(client_->ssl_fd(), big_message,
                    static_cast<PRInt32>(strlen(big_message)));
    EXPECT_GE(0, sent);
    EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError());

    // Try an exact-sized write now.
    sent = PR_Write(client_->ssl_fd(), big_message, short_length);
  }
  EXPECT_EQ(short_length, sent);

  // Even a single octet write should now fail.
  sent = PR_Write(client_->ssl_fd(), big_message, 1);
  EXPECT_GE(0, sent);
  EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError());

  // Process the ClientHello and read 0-RTT.
  server_->Handshake();
  CheckEarlyDataLimit(server_, short_size);

  std::vector<uint8_t> buf(short_size + 1);
  PRInt32 read = PR_Read(server_->ssl_fd(), buf.data(), buf.capacity());
  EXPECT_EQ(short_length, read);
  EXPECT_EQ(0, memcmp(big_message, buf.data(), short_size));

  // Second read fails.
  read = PR_Read(server_->ssl_fd(), buf.data(), buf.capacity());
  EXPECT_EQ(SECFailure, read);
  EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError());

  Handshake();
  ExpectEarlyDataAccepted(true);
  CheckConnected();
  SendReceive();
}

TEST_P(TlsConnectTls13, ReceiveTooMuchEarlyData) {
  EnsureTlsSetup();

  const size_t limit = 5;
  EXPECT_EQ(SECSuccess, SSL_SetMaxEarlyDataSize(server_->ssl_fd(), limit));
  SetupForZeroRtt();

  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);

  client_->Handshake();  // Send ClientHello
  CheckEarlyDataLimit(client_, limit);

  server_->Handshake();  // Process ClientHello, send server flight.

  // Lift the limit on the client.
  EXPECT_EQ(SECSuccess,
            SSLInt_SetSocketMaxEarlyDataSize(client_->ssl_fd(), 1000));

  // Send message
  const char* message = "0123456789abcdef";
  const PRInt32 message_len = static_cast<PRInt32>(strlen(message));
  EXPECT_EQ(message_len, PR_Write(client_->ssl_fd(), message, message_len));

  if (variant_ == ssl_variant_stream) {
    // This error isn't fatal for DTLS.
    ExpectAlert(server_, kTlsAlertUnexpectedMessage);
  }

  server_->Handshake();  // This reads the early data and maybe throws an error.
  if (variant_ == ssl_variant_stream) {
    server_->CheckErrorCode(SSL_ERROR_TOO_MUCH_EARLY_DATA);
  } else {
    EXPECT_EQ(TlsAgent::STATE_CONNECTING, server_->state());
  }
  CheckEarlyDataLimit(server_, limit);

  // Attempt to read early data. This will get an error.
  std::vector<uint8_t> buf(strlen(message) + 1);
  EXPECT_GT(0, PR_Read(server_->ssl_fd(), buf.data(), buf.capacity()));
  if (variant_ == ssl_variant_stream) {
    EXPECT_EQ(SSL_ERROR_HANDSHAKE_FAILED, PORT_GetError());
  } else {
    EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError());
  }

  client_->Handshake();  // Process the server's first flight.
  if (variant_ == ssl_variant_stream) {
    client_->Handshake();  // Process the alert.
    client_->CheckErrorCode(SSL_ERROR_HANDSHAKE_UNEXPECTED_ALERT);
  } else {
    server_->Handshake();  // Finish connecting.
    EXPECT_EQ(TlsAgent::STATE_CONNECTED, server_->state());
  }
}

class PacketCoalesceFilter : public PacketFilter {
 public:
  PacketCoalesceFilter() : packet_data_() {}

  void SendCoalesced(std::shared_ptr<TlsAgent> agent) {
    agent->SendDirect(packet_data_);
  }

 protected:
  PacketFilter::Action Filter(const DataBuffer& input,
                              DataBuffer* output) override {
    packet_data_.Write(packet_data_.len(), input);
    return DROP;
  }

 private:
  DataBuffer packet_data_;
};

TEST_P(TlsConnectTls13, ZeroRttOrdering) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);

  // Send out the ClientHello.
  client_->Handshake();

  // Now, coalesce the next three things from the client: early data, second
  // flight and 1-RTT data.
  auto coalesce = std::make_shared<PacketCoalesceFilter>();
  client_->SetFilter(coalesce);

  // Send (and hold) early data.
  static const std::vector<uint8_t> early_data = {3, 2, 1};
  EXPECT_EQ(static_cast<PRInt32>(early_data.size()),
            PR_Write(client_->ssl_fd(), early_data.data(), early_data.size()));

  // Send (and hold) the second client handshake flight.
  // The client sends EndOfEarlyData after seeing the server Finished.
  server_->Handshake();
  client_->Handshake();

  // Send (and hold) 1-RTT data.
  static const std::vector<uint8_t> late_data = {7, 8, 9, 10};
  EXPECT_EQ(static_cast<PRInt32>(late_data.size()),
            PR_Write(client_->ssl_fd(), late_data.data(), late_data.size()));

  // Now release them all at once.
  coalesce->SendCoalesced(client_);

  // Now ensure that the three steps are exposed in the right order on the
  // server: delivery of early data, handshake callback, delivery of 1-RTT.
  size_t step = 0;
  server_->SetHandshakeCallback([&step](TlsAgent*) {
    EXPECT_EQ(1U, step);
    ++step;
  });

  std::vector<uint8_t> buf(10);
  PRInt32 read = PR_Read(server_->ssl_fd(), buf.data(), buf.size());
  ASSERT_EQ(static_cast<PRInt32>(early_data.size()), read);
  buf.resize(read);
  EXPECT_EQ(early_data, buf);
  EXPECT_EQ(0U, step);
  ++step;

  // The third read should be after the handshake callback and should return the
  // data that was sent after the handshake completed.
  buf.resize(10);
  read = PR_Read(server_->ssl_fd(), buf.data(), buf.size());
  ASSERT_EQ(static_cast<PRInt32>(late_data.size()), read);
  buf.resize(read);
  EXPECT_EQ(late_data, buf);
  EXPECT_EQ(2U, step);
}

// Early data remains available after the handshake completes for TLS.
TEST_F(TlsConnectStreamTls13, ZeroRttLateReadTls) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  client_->Handshake();  // ClientHello

  // Write some early data.
  const uint8_t data[] = {1, 2, 3, 4, 5, 6, 7, 8};
  PRInt32 rv = PR_Write(client_->ssl_fd(), data, sizeof(data));
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), rv);

  // Consume the ClientHello and generate ServerHello..Finished.
  server_->Handshake();

  // Read some of the data.
  std::vector<uint8_t> small_buffer(1 + sizeof(data) / 2);
  rv = PR_Read(server_->ssl_fd(), small_buffer.data(), small_buffer.size());
  EXPECT_EQ(static_cast<PRInt32>(small_buffer.size()), rv);
  EXPECT_EQ(0, memcmp(data, small_buffer.data(), small_buffer.size()));

  Handshake();  // Complete the handshake.
  ExpectEarlyDataAccepted(true);
  CheckConnected();

  // After the handshake, it should be possible to read the remainder.
  uint8_t big_buf[100];
  rv = PR_Read(server_->ssl_fd(), big_buf, sizeof(big_buf));
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data) - small_buffer.size()), rv);
  EXPECT_EQ(0, memcmp(&data[small_buffer.size()], big_buf,
                      sizeof(data) - small_buffer.size()));

  // And that's all there is to read.
  rv = PR_Read(server_->ssl_fd(), big_buf, sizeof(big_buf));
  EXPECT_GT(0, rv);
  EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError());
}

// Early data that arrives before the handshake can be read after the handshake
// is complete.
TEST_F(TlsConnectDatagram13, ZeroRttLateReadDtls) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  client_->Handshake();  // ClientHello

  // Write some early data.
  const uint8_t data[] = {1, 2, 3};
  PRInt32 written = PR_Write(client_->ssl_fd(), data, sizeof(data));
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), written);

  Handshake();  // Complete the handshake.
  ExpectEarlyDataAccepted(true);
  CheckConnected();

  // Reading at the server should return the early data, which was buffered.
  uint8_t buf[sizeof(data) + 1] = {0};
  PRInt32 read = PR_Read(server_->ssl_fd(), buf, sizeof(buf));
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), read);
  EXPECT_EQ(0, memcmp(data, buf, sizeof(data)));
}

class PacketHolder : public PacketFilter {
 public:
  PacketHolder() = default;

  virtual Action Filter(const DataBuffer& input, DataBuffer* output) {
    packet_ = input;
    Disable();
    return DROP;
  }

  const DataBuffer& packet() const { return packet_; }

 private:
  DataBuffer packet_;
};

// Early data that arrives late is discarded for DTLS.
TEST_F(TlsConnectDatagram13, ZeroRttLateArrivalDtls) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  client_->Handshake();  // ClientHello

  // Write some early data.  Twice, so that we can read bits of it.
  const uint8_t data[] = {1, 2, 3};
  PRInt32 written = PR_Write(client_->ssl_fd(), data, sizeof(data));
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), written);

  // Block and capture the next packet.
  auto holder = std::make_shared<PacketHolder>();
  client_->SetFilter(holder);
  written = PR_Write(client_->ssl_fd(), data, sizeof(data));
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), written);
  EXPECT_FALSE(holder->enabled()) << "the filter should disable itself";

  // Consume the ClientHello and generate ServerHello..Finished.
  server_->Handshake();

  // Read some of the data.
  std::vector<uint8_t> small_buffer(sizeof(data));
  PRInt32 read =
      PR_Read(server_->ssl_fd(), small_buffer.data(), small_buffer.size());

  EXPECT_EQ(static_cast<PRInt32>(small_buffer.size()), read);
  EXPECT_EQ(0, memcmp(data, small_buffer.data(), small_buffer.size()));

  Handshake();  // Complete the handshake.
  ExpectEarlyDataAccepted(true);
  CheckConnected();

  server_->SendDirect(holder->packet());

  // Reading now should return nothing, even though a valid packet was
  // delivered.
  read = PR_Read(server_->ssl_fd(), small_buffer.data(), small_buffer.size());
  EXPECT_GT(0, read);
  EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError());
}

// Early data reads in TLS should be coalesced.
TEST_F(TlsConnectStreamTls13, ZeroRttCoalesceReadTls) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  client_->Handshake();  // ClientHello

  // Write some early data.  In two writes.
  const uint8_t data[] = {1, 2, 3, 4, 5, 6};
  PRInt32 written = PR_Write(client_->ssl_fd(), data, 1);
  EXPECT_EQ(1, written);

  written = PR_Write(client_->ssl_fd(), data + 1, sizeof(data) - 1);
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data) - 1), written);

  // Consume the ClientHello and generate ServerHello..Finished.
  server_->Handshake();

  // Read all of the data.
  std::vector<uint8_t> buffer(sizeof(data));
  PRInt32 read = PR_Read(server_->ssl_fd(), buffer.data(), buffer.size());
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), read);
  EXPECT_EQ(0, memcmp(data, buffer.data(), sizeof(data)));

  Handshake();  // Complete the handshake.
  ExpectEarlyDataAccepted(true);
  CheckConnected();
}

// Early data reads in DTLS should not be coalesced.
TEST_F(TlsConnectDatagram13, ZeroRttNoCoalesceReadDtls) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  client_->Handshake();  // ClientHello

  // Write some early data.  In two writes.
  const uint8_t data[] = {1, 2, 3, 4, 5, 6};
  PRInt32 written = PR_Write(client_->ssl_fd(), data, 1);
  EXPECT_EQ(1, written);

  written = PR_Write(client_->ssl_fd(), data + 1, sizeof(data) - 1);
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data) - 1), written);

  // Consume the ClientHello and generate ServerHello..Finished.
  server_->Handshake();

  // Try to read all of the data.
  std::vector<uint8_t> buffer(sizeof(data));
  PRInt32 read = PR_Read(server_->ssl_fd(), buffer.data(), buffer.size());
  EXPECT_EQ(1, read);
  EXPECT_EQ(0, memcmp(data, buffer.data(), 1));

  // Read the remainder.
  read = PR_Read(server_->ssl_fd(), buffer.data(), buffer.size());
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data) - 1), read);
  EXPECT_EQ(0, memcmp(data + 1, buffer.data(), sizeof(data) - 1));

  Handshake();  // Complete the handshake.
  ExpectEarlyDataAccepted(true);
  CheckConnected();
}

// Early data reads in DTLS should fail if the buffer is too small.
TEST_F(TlsConnectDatagram13, ZeroRttShortReadDtls) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  client_->Handshake();  // ClientHello

  // Write some early data.  In two writes.
  const uint8_t data[] = {1, 2, 3, 4, 5, 6};
  PRInt32 written = PR_Write(client_->ssl_fd(), data, sizeof(data));
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), written);

  // Consume the ClientHello and generate ServerHello..Finished.
  server_->Handshake();

  // Try to read all of the data into a small buffer.
  std::vector<uint8_t> buffer(sizeof(data));
  PRInt32 read = PR_Read(server_->ssl_fd(), buffer.data(), 1);
  EXPECT_GT(0, read);
  EXPECT_EQ(SSL_ERROR_RX_SHORT_DTLS_READ, PORT_GetError());

  // Read again with more space.
  read = PR_Read(server_->ssl_fd(), buffer.data(), buffer.size());
  EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), read);
  EXPECT_EQ(0, memcmp(data, buffer.data(), sizeof(data)));

  Handshake();  // Complete the handshake.
  ExpectEarlyDataAccepted(true);
  CheckConnected();
}

// There are few ways in which TLS uses the clock and most of those operate on
// timescales that would be ridiculous to wait for in a test.  This is the one
// test we have that uses the real clock.  It tests that time passes by checking
// that a small sleep results in rejection of early data. 0-RTT has a
// configurable timer, which makes it ideal for this.
TEST_F(TlsConnectStreamTls13, TimePassesByDefault) {
  // Calling EnsureTlsSetup() replaces the time function on client and server,
  // and sets up anti-replay, which we don't want, so initialize each directly.
  client_->EnsureTlsSetup();
  server_->EnsureTlsSetup();
  // StartConnect() calls EnsureTlsSetup(), so avoid that too.
  client_->StartConnect();
  server_->StartConnect();

  // Set a tiny anti-replay window.  This has to be at least 2 milliseconds to
  // have any chance of being relevant as that is the smallest window that we
  // can detect.  Anything smaller rounds to zero.
  static const unsigned int kTinyWindowMs = 5;
  ResetAntiReplay(static_cast<PRTime>(kTinyWindowMs * PR_USEC_PER_MSEC));
  server_->SetAntiReplayContext(anti_replay_);

  ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET);
  ConfigureVersion(SSL_LIBRARY_VERSION_TLS_1_3);
  server_->Set0RttEnabled(true);
  Handshake();
  CheckConnected();
  SendReceive();  // Absorb a session ticket.
  CheckKeys();

  // Clear the first window.
  PR_Sleep(PR_MillisecondsToInterval(kTinyWindowMs));

  Reset();
  client_->EnsureTlsSetup();
  server_->EnsureTlsSetup();
  client_->StartConnect();
  server_->StartConnect();

  // Early data is rejected by the server only if time passes for it as well.
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, false, []() {
    // Sleep long enough that we minimize the risk of our RTT estimation being
    // duped by stutters in test execution.  This is very long to allow for
    // flaky and low-end hardware, especially what our CI runs on.
    PR_Sleep(PR_MillisecondsToInterval(1000));
    return true;
  });
  Handshake();
  ExpectEarlyDataAccepted(false);
  CheckConnected();
}

// Test that SSL_CreateAntiReplayContext doesn't pass bad inputs.
TEST_F(TlsConnectStreamTls13, BadAntiReplayArgs) {
  SSLAntiReplayContext* p;
  // Zero or negative window.
  EXPECT_EQ(SECFailure, SSL_CreateAntiReplayContext(0, -1, 1, 1, &p));
  EXPECT_EQ(SEC_ERROR_INVALID_ARGS, PORT_GetError());
  EXPECT_EQ(SECFailure, SSL_CreateAntiReplayContext(0, 0, 1, 1, &p));
  EXPECT_EQ(SEC_ERROR_INVALID_ARGS, PORT_GetError());
  // Zero k.
  EXPECT_EQ(SECFailure, SSL_CreateAntiReplayContext(0, 1, 0, 1, &p));
  EXPECT_EQ(SEC_ERROR_INVALID_ARGS, PORT_GetError());
  // Zero bits.
  EXPECT_EQ(SECFailure, SSL_CreateAntiReplayContext(0, 1, 1, 0, &p));
  EXPECT_EQ(SEC_ERROR_INVALID_ARGS, PORT_GetError());
  EXPECT_EQ(SECFailure, SSL_CreateAntiReplayContext(0, 1, 1, 1, nullptr));
  EXPECT_EQ(SEC_ERROR_INVALID_ARGS, PORT_GetError());

  // Prove that these parameters do work, even if they are useless..
  EXPECT_EQ(SECSuccess, SSL_CreateAntiReplayContext(0, 1, 1, 1, &p));
  ASSERT_NE(nullptr, p);
  ScopedSSLAntiReplayContext ctx(p);

  // The socket isn't a client or server until later, so configuring a client
  // should work OK.
  client_->EnsureTlsSetup();
  EXPECT_EQ(SECSuccess, SSL_SetAntiReplayContext(client_->ssl_fd(), ctx.get()));
  EXPECT_EQ(SECSuccess, SSL_SetAntiReplayContext(client_->ssl_fd(), nullptr));
}

// See also TlsConnectGenericResumption.ResumeServerIncompatibleCipher
TEST_P(TlsConnectTls13, ZeroRttDifferentCompatibleCipher) {
  EnsureTlsSetup();
  server_->EnableSingleCipher(TLS_AES_128_GCM_SHA256);
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  // Change the ciphersuite.  Resumption is OK because the hash is the same, but
  // early data will be rejected.
  server_->EnableSingleCipher(TLS_CHACHA20_POLY1305_SHA256);
  ExpectResumption(RESUME_TICKET);

  StartConnect();
  ZeroRttSendReceive(true, false);

  Handshake();
  ExpectEarlyDataAccepted(false);
  CheckConnected();
  SendReceive();
}

// See also TlsConnectGenericResumption.ResumeServerIncompatibleCipher
TEST_P(TlsConnectTls13, ZeroRttDifferentIncompatibleCipher) {
  EnsureTlsSetup();
  server_->EnableSingleCipher(TLS_AES_256_GCM_SHA384);
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  // Resumption is rejected because the hash is different.
  server_->EnableSingleCipher(TLS_CHACHA20_POLY1305_SHA256);
  ExpectResumption(RESUME_NONE);

  StartConnect();
  ZeroRttSendReceive(true, false);

  Handshake();
  ExpectEarlyDataAccepted(false);
  CheckConnected();
  SendReceive();
}

// The client failing to provide EndOfEarlyData results in failure.
// After 0-RTT working perfectly, things fall apart later.
// The server is unable to detect the change in keys, so it fails decryption.
// The client thinks everything has worked until it gets the alert.
TEST_F(TlsConnectStreamTls13, SuppressEndOfEarlyDataClientOnly) {
  SetupForZeroRtt();
  client_->Set0RttEnabled(true);
  server_->Set0RttEnabled(true);
  client_->SetOption(SSL_SUPPRESS_END_OF_EARLY_DATA, true);
  ExpectResumption(RESUME_TICKET);
  ZeroRttSendReceive(true, true);
  ExpectAlert(server_, kTlsAlertBadRecordMac);
  Handshake();
  EXPECT_EQ(TlsAgent::STATE_CONNECTED, client_->state());
  EXPECT_EQ(TlsAgent::STATE_ERROR, server_->state());
  server_->CheckErrorCode(SSL_ERROR_BAD_MAC_READ);
  client_->Handshake();
  EXPECT_EQ(TlsAgent::STATE_ERROR, client_->state());
  client_->CheckErrorCode(SSL_ERROR_BAD_MAC_ALERT);
}

TEST_P(TlsConnectGeneric, SuppressEndOfEarlyDataNoZeroRtt) {
  EnsureTlsSetup();
  client_->SetOption(SSL_SUPPRESS_END_OF_EARLY_DATA, true);
  server_->SetOption(SSL_SUPPRESS_END_OF_EARLY_DATA, true);
  Connect();
  SendReceive();
}

#ifndef NSS_DISABLE_TLS_1_3
INSTANTIATE_TEST_SUITE_P(Tls13ZeroRttReplayTest, TlsZeroRttReplayTest,
                         TlsConnectTestBase::kTlsVariantsAll);
#endif

}  // namespace nss_test