summaryrefslogtreecommitdiff
path: root/lib/liboqs/src/sig/falcon/pqclean_falcon-1024_clean/common.c
blob: 2e3005b2badae68cc45c7bc125b623d21db3d570 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#include "inner.h"

/*
 * Support functions for signatures (hash-to-point, norm).
 *
 * ==========================(LICENSE BEGIN)============================
 *
 * Copyright (c) 2017-2019  Falcon Project
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * ===========================(LICENSE END)=============================
 *
 * @author   Thomas Pornin <thomas.pornin@nccgroup.com>
 */


/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_hash_to_point_vartime(
    inner_shake256_context *sc,
    uint16_t *x, unsigned logn) {
    /*
     * This is the straightforward per-the-spec implementation. It
     * is not constant-time, thus it might reveal information on the
     * plaintext (at least, enough to check the plaintext against a
     * list of potential plaintexts) in a scenario where the
     * attacker does not have access to the signature value or to
     * the public key, but knows the nonce (without knowledge of the
     * nonce, the hashed output cannot be matched against potential
     * plaintexts).
     */
    size_t n;

    n = (size_t)1 << logn;
    while (n > 0) {
        uint8_t buf[2];
        uint32_t w;

        inner_shake256_extract(sc, (void *)buf, sizeof buf);
        w = ((unsigned)buf[0] << 8) | (unsigned)buf[1];
        if (w < 61445) {
            while (w >= 12289) {
                w -= 12289;
            }
            *x ++ = (uint16_t)w;
            n --;
        }
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_hash_to_point_ct(
    inner_shake256_context *sc,
    uint16_t *x, unsigned logn, uint8_t *tmp) {
    /*
     * Each 16-bit sample is a value in 0..65535. The value is
     * kept if it falls in 0..61444 (because 61445 = 5*12289)
     * and rejected otherwise; thus, each sample has probability
     * about 0.93758 of being selected.
     *
     * We want to oversample enough to be sure that we will
     * have enough values with probability at least 1 - 2^(-256).
     * Depending on degree N, this leads to the following
     * required oversampling:
     *
     *   logn     n  oversampling
     *     1      2     65
     *     2      4     67
     *     3      8     71
     *     4     16     77
     *     5     32     86
     *     6     64    100
     *     7    128    122
     *     8    256    154
     *     9    512    205
     *    10   1024    287
     *
     * If logn >= 7, then the provided temporary buffer is large
     * enough. Otherwise, we use a stack buffer of 63 entries
     * (i.e. 126 bytes) for the values that do not fit in tmp[].
     */

    static const uint16_t overtab[] = {
        0, /* unused */
        65,
        67,
        71,
        77,
        86,
        100,
        122,
        154,
        205,
        287
    };

    unsigned n, n2, u, m, p, over;
    uint16_t *tt1, tt2[63];

    /*
     * We first generate m 16-bit value. Values 0..n-1 go to x[].
     * Values n..2*n-1 go to tt1[]. Values 2*n and later go to tt2[].
     * We also reduce modulo q the values; rejected values are set
     * to 0xFFFF.
     */
    n = 1U << logn;
    n2 = n << 1;
    over = overtab[logn];
    m = n + over;
    tt1 = (uint16_t *)tmp;
    for (u = 0; u < m; u ++) {
        uint8_t buf[2];
        uint32_t w, wr;

        inner_shake256_extract(sc, buf, sizeof buf);
        w = ((uint32_t)buf[0] << 8) | (uint32_t)buf[1];
        wr = w - ((uint32_t)24578 & (((w - 24578) >> 31) - 1));
        wr = wr - ((uint32_t)24578 & (((wr - 24578) >> 31) - 1));
        wr = wr - ((uint32_t)12289 & (((wr - 12289) >> 31) - 1));
        wr |= ((w - 61445) >> 31) - 1;
        if (u < n) {
            x[u] = (uint16_t)wr;
        } else if (u < n2) {
            tt1[u - n] = (uint16_t)wr;
        } else {
            tt2[u - n2] = (uint16_t)wr;
        }
    }

    /*
     * Now we must "squeeze out" the invalid values. We do this in
     * a logarithmic sequence of passes; each pass computes where a
     * value should go, and moves it down by 'p' slots if necessary,
     * where 'p' uses an increasing powers-of-two scale. It can be
     * shown that in all cases where the loop decides that a value
     * has to be moved down by p slots, the destination slot is
     * "free" (i.e. contains an invalid value).
     */
    for (p = 1; p <= over; p <<= 1) {
        unsigned v;

        /*
         * In the loop below:
         *
         *   - v contains the index of the final destination of
         *     the value; it is recomputed dynamically based on
         *     whether values are valid or not.
         *
         *   - u is the index of the value we consider ("source");
         *     its address is s.
         *
         *   - The loop may swap the value with the one at index
         *     u-p. The address of the swap destination is d.
         */
        v = 0;
        for (u = 0; u < m; u ++) {
            uint16_t *s, *d;
            unsigned j, sv, dv, mk;

            if (u < n) {
                s = &x[u];
            } else if (u < n2) {
                s = &tt1[u - n];
            } else {
                s = &tt2[u - n2];
            }
            sv = *s;

            /*
             * The value in sv should ultimately go to
             * address v, i.e. jump back by u-v slots.
             */
            j = u - v;

            /*
             * We increment v for the next iteration, but
             * only if the source value is valid. The mask
             * 'mk' is -1 if the value is valid, 0 otherwise,
             * so we _subtract_ mk.
             */
            mk = (sv >> 15) - 1U;
            v -= mk;

            /*
             * In this loop we consider jumps by p slots; if
             * u < p then there is nothing more to do.
             */
            if (u < p) {
                continue;
            }

            /*
             * Destination for the swap: value at address u-p.
             */
            if ((u - p) < n) {
                d = &x[u - p];
            } else if ((u - p) < n2) {
                d = &tt1[(u - p) - n];
            } else {
                d = &tt2[(u - p) - n2];
            }
            dv = *d;

            /*
             * The swap should be performed only if the source
             * is valid AND the jump j has its 'p' bit set.
             */
            mk &= -(((j & p) + 0x1FF) >> 9);

            *s = (uint16_t)(sv ^ (mk & (sv ^ dv)));
            *d = (uint16_t)(dv ^ (mk & (sv ^ dv)));
        }
    }
}

/* see inner.h */
int
PQCLEAN_FALCON1024_CLEAN_is_short(
    const int16_t *s1, const int16_t *s2, unsigned logn) {
    /*
     * We use the l2-norm. Code below uses only 32-bit operations to
     * compute the square of the norm with saturation to 2^32-1 if
     * the value exceeds 2^31-1.
     */
    size_t n, u;
    uint32_t s, ng;

    n = (size_t)1 << logn;
    s = 0;
    ng = 0;
    for (u = 0; u < n; u ++) {
        int32_t z;

        z = s1[u];
        s += (uint32_t)(z * z);
        ng |= s;
        z = s2[u];
        s += (uint32_t)(z * z);
        ng |= s;
    }
    s |= -(ng >> 31);

    /*
     * Acceptance bound on the l2-norm is:
     *   1.2*1.55*sqrt(q)*sqrt(2*N)
     * Value 7085 is floor((1.2^2)*(1.55^2)*2*1024).
     */
    return s < (((uint32_t)7085 * (uint32_t)12289) >> (10 - logn));
}

/* see inner.h */
int
PQCLEAN_FALCON1024_CLEAN_is_short_half(
    uint32_t sqn, const int16_t *s2, unsigned logn) {
    size_t n, u;
    uint32_t ng;

    n = (size_t)1 << logn;
    ng = -(sqn >> 31);
    for (u = 0; u < n; u ++) {
        int32_t z;

        z = s2[u];
        sqn += (uint32_t)(z * z);
        ng |= sqn;
    }
    sqn |= -(ng >> 31);

    /*
     * Acceptance bound on the l2-norm is:
     *   1.2*1.55*sqrt(q)*sqrt(2*N)
     * Value 7085 is floor((1.2^2)*(1.55^2)*2*1024).
     */
    return sqn < (((uint32_t)7085 * (uint32_t)12289) >> (10 - logn));
}