summaryrefslogtreecommitdiff
path: root/lib/softoken/kbkdf.c
blob: c6021ef5e5ae49bc8f02f4c523ed581f3084f2d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
#include "pkcs11i.h"
#include "blapi.h"
#include "secerr.h"
#include "softoken.h"

/* Overview:
 *
 * This file contains implementations of the three KDFs from NIST SP800-108
 * "Recommendation for Key Derivation Using Pseudorandom Functions":
 *
 *  1. KDF in Counter Mode (section 5.1)
 *  2. KDF in Feedback Mode (section 5.2)
 *  3. KDF in Double-Pipeline Iteration Mode (section 5.3)
 *
 * These KDFs are a form of negotiable building blocks for KDFs: protocol
 * designers can choose various fields, their endianness, and the underlying
 * PRF. These constructs are generic enough to handle creation of arbitrary,
 * (but known ahead of time) length outputs.
 *
 * The families of PRFs described here are used, among other places, in
 * Kerberos and GlobalPlatform's Secure Channel Protocol 03. The PKCS#11 v3.0
 * design for this KDF facilitates a wide range of uses.
 *
 * Implementation Details:
 *
 * We reuse the new sftk_MACCtx for handling the underlying MACing; with a few
 * safe restrictions, we can reuse whatever it gives us to use as a PRF.
 *
 * We implement the core of the KDF in the *Raw(...) version of the function
 * call. The PKCS#11 key handling happens in the non-Raw version. This means
 * we need a single large allocation upfront (large enough to store the entire
 * key stream), but means we can share key parsing logic and enable the
 * creation of data objects.
 */

/* [ section: #define's ] */

#define VALID_CK_BOOL(x) ((x) == CK_TRUE || (x) == CK_FALSE)
#define IS_COUNTER(_mech) ((_mech) == CKM_SP800_108_COUNTER_KDF || (_mech) == CKM_NSS_SP800_108_COUNTER_KDF_DERIVE_DATA)
#define DOES_DERIVE_DATA(_mech) ((_mech) == CKM_NSS_SP800_108_COUNTER_KDF_DERIVE_DATA || (_mech) == CKM_NSS_SP800_108_FEEDBACK_KDF_DERIVE_DATA || (_mech) == CKM_NSS_SP800_108_DOUBLE_PIPELINE_KDF_DERIVE_DATA)

/* [ section: parameter validation ] */

static CK_RV
kbkdf_LoadParameters(CK_MECHANISM_TYPE mech, CK_MECHANISM_PTR pMechanism, CK_SP800_108_KDF_PARAMS_PTR kdf_params, CK_BYTE_PTR *initial_value, CK_ULONG_PTR initial_value_length)
{
    /* This function loads the parameters for the given mechanism into the
     * specified kdf_params, splitting off the IV if present. In PKCS#11 v3.0,
     * CK_SP800_108_FEEDBACK_KDF_PARAMS and CK_SP800_108_KDF_PARAMS have
     * different ordering of internal parameters, which means that it isn't
     * easy to reuse feedback parameters in the same functions as non-feedback
     * parameters. Rather than duplicating the logic, split out the only
     * Feedback-specific data (the IV) into a separate argument and repack it
     * into the passed kdf_params struct instead. */
    PR_ASSERT(pMechanism != NULL && kdf_params != NULL && initial_value != NULL && initial_value_length != NULL);

    CK_SP800_108_KDF_PARAMS_PTR in_params;
    CK_SP800_108_FEEDBACK_KDF_PARAMS_PTR feedback_params;

    if (mech == CKM_SP800_108_FEEDBACK_KDF || mech == CKM_NSS_SP800_108_FEEDBACK_KDF_DERIVE_DATA) {
        if (pMechanism->ulParameterLen != sizeof(CK_SP800_108_FEEDBACK_KDF_PARAMS)) {
            return CKR_MECHANISM_PARAM_INVALID;
        }

        feedback_params = (CK_SP800_108_FEEDBACK_KDF_PARAMS *)pMechanism->pParameter;

        if (feedback_params->pIV == NULL && feedback_params->ulIVLen > 0) {
            return CKR_MECHANISM_PARAM_INVALID;
        }

        kdf_params->prfType = feedback_params->prfType;
        kdf_params->ulNumberOfDataParams = feedback_params->ulNumberOfDataParams;
        kdf_params->pDataParams = feedback_params->pDataParams;
        kdf_params->ulAdditionalDerivedKeys = feedback_params->ulAdditionalDerivedKeys;
        kdf_params->pAdditionalDerivedKeys = feedback_params->pAdditionalDerivedKeys;

        *initial_value = feedback_params->pIV;
        *initial_value_length = feedback_params->ulIVLen;
    } else {
        if (pMechanism->ulParameterLen != sizeof(CK_SP800_108_KDF_PARAMS)) {
            return CKR_MECHANISM_PARAM_INVALID;
        }

        in_params = (CK_SP800_108_KDF_PARAMS *)pMechanism->pParameter;

        (*kdf_params) = *in_params;
    }

    return CKR_OK;
}

static CK_RV
kbkdf_ValidateParameter(CK_MECHANISM_TYPE mech, const CK_PRF_DATA_PARAM *data)
{
    /* This function validates that the passed data parameter (data) conforms
     * to PKCS#11 v3.0's expectations for KDF parameters. This depends both on
     * the type of this parameter (data->type) and on the KDF mechanism (mech)
     * as certain parameters are context dependent (like Iteration Variable).
     */

    /* If the parameter is missing a value when one is expected, then this
     * parameter is invalid. */
    if ((data->pValue == NULL) != (data->ulValueLen == 0)) {
        return CKR_MECHANISM_PARAM_INVALID;
    }

    switch (data->type) {
        case CK_SP800_108_ITERATION_VARIABLE:
        case CK_SP800_108_OPTIONAL_COUNTER: {
            if (data->type == CK_SP800_108_ITERATION_VARIABLE && !IS_COUNTER(mech)) {
                /* In Feedback and Double Pipeline KDFs, PKCS#11 v3.0 connotes the
                 * iteration variable as the chaining value from the previous PRF
                 * invocation. In contrast, counter mode treats this variable as a
                 * COUNTER_FORMAT descriptor. Thus we can skip validation of
                 * iteration variable parameters outside of counter mode. However,
                 * PKCS#11 v3.0 technically mandates that pValue is NULL, so we
                 * still have to validate that. */

                if (data->pValue != NULL) {
                    return CKR_MECHANISM_PARAM_INVALID;
                }

                return CKR_OK;
            }

            /* In counter mode, data->pValue should be a pointer to an instance of
             * CK_SP800_108_COUNTER_FORMAT; validate its length. */
            if (data->ulValueLen != sizeof(CK_SP800_108_COUNTER_FORMAT)) {
                return CKR_MECHANISM_PARAM_INVALID;
            }

            CK_SP800_108_COUNTER_FORMAT_PTR param = (CK_SP800_108_COUNTER_FORMAT_PTR)data->pValue;

            /* Validate the endian parameter. */
            if (!VALID_CK_BOOL(param->bLittleEndian)) {
                return CKR_MECHANISM_PARAM_INVALID;
            }

            /* Due to restrictions by our underlying hashes, we restrict bit
             * widths to actually be byte widths by ensuring they're a multiple
             * of eight. */
            if ((param->ulWidthInBits % 8) != 0) {
                return CKR_MECHANISM_PARAM_INVALID;
            }

            /* Note that section 5.1 denotes the maximum length of the counter
             * to be 32. */
            if (param->ulWidthInBits > 32) {
                return CKR_MECHANISM_PARAM_INVALID;
            }
            break;
        }
        case CK_SP800_108_DKM_LENGTH: {
            /* data->pValue should be a pointer to an instance of
             * CK_SP800_108_DKM_LENGTH_FORMAT; validate its length. */
            if (data->ulValueLen != sizeof(CK_SP800_108_DKM_LENGTH_FORMAT)) {
                return CKR_MECHANISM_PARAM_INVALID;
            }

            CK_SP800_108_DKM_LENGTH_FORMAT_PTR param = (CK_SP800_108_DKM_LENGTH_FORMAT_PTR)data->pValue;

            /* Validate the method parameter. */
            if (param->dkmLengthMethod != CK_SP800_108_DKM_LENGTH_SUM_OF_KEYS &&
                param->dkmLengthMethod != CK_SP800_108_DKM_LENGTH_SUM_OF_SEGMENTS) {
                return CKR_MECHANISM_PARAM_INVALID;
            }

            /* Validate the endian parameter. */
            if (!VALID_CK_BOOL(param->bLittleEndian)) {
                return CKR_MECHANISM_PARAM_INVALID;
            }

            /* Validate the maximum width: we restrict it to being a byte width
             * instead of a bit width due to restrictions by the underlying
             * PRFs. */
            if ((param->ulWidthInBits % 8) != 0) {
                return CKR_MECHANISM_PARAM_INVALID;
            }

            /* Ensure that the width doesn't overflow a 64-bit int. This
             * restriction is arbitrary but since the counters can't exceed
             * 32-bits (and most PRFs output at most 1024 bits), you're unlikely
             * to need all 64-bits of length indicator. */
            if (param->ulWidthInBits > 64) {
                return CKR_MECHANISM_PARAM_INVALID;
            }
            break;
        }
        case CK_SP800_108_BYTE_ARRAY:
            /* There is no additional data to validate for byte arrays; we can
             * only assume the byte array is of the specified size. */
            break;
        default:
            /* Unexpected parameter type. */
            return CKR_MECHANISM_PARAM_INVALID;
    }

    return CKR_OK;
}

static CK_RV
kbkdf_ValidateDerived(CK_DERIVED_KEY_PTR key)
{
    CK_KEY_TYPE keyType = CKK_GENERIC_SECRET;
    PRUint64 keySize = 0;

    /* The pointer to the key handle shouldn't be NULL. If it is, we can't
     * do anything else, so exit early. Every other failure case sets the
     * key->phKey = CK_INVALID_HANDLE, so we can't use `goto failure` here. */
    if (key->phKey == NULL) {
        return CKR_MECHANISM_PARAM_INVALID;
    }

    /* Validate that we have no attributes if and only if pTemplate is NULL.
     * Otherwise, there's an inconsistency somewhere. */
    if ((key->ulAttributeCount == 0) != (key->pTemplate == NULL)) {
        goto failure;
    }

    for (size_t offset = 0; offset < key->ulAttributeCount; offset++) {
        CK_ATTRIBUTE_PTR template = key->pTemplate + offset;

        /* We only look for the CKA_VALUE_LEN and CKA_KEY_TYPE attributes.
         * Everything else we assume we can set on the key if it is passed
         * here. However, if we can't inquire as to a length (and barring
         * that, if we have a key type without a standard length), we're
         * definitely stuck. This mirrors the logic at the top of
         * NSC_DeriveKey(...). */
        if (template->type == CKA_KEY_TYPE) {
            if (template->ulValueLen != sizeof(CK_KEY_TYPE)) {
                goto failure;
            }

            keyType = *(CK_KEY_TYPE *)template->pValue;
        } else if (template->type == CKA_VALUE_LEN) {
            if (template->ulValueLen != sizeof(CK_ULONG)) {
                goto failure;
            }

            keySize = *(CK_ULONG *)template->pValue;
        }
    }

    if (keySize == 0) {
        /* When we lack a keySize, see if we can infer it from the type of the
         * passed key. */
        keySize = sftk_MapKeySize(keyType);
    }

    /* The main piece of information we validate is that we have a length for
     * this key. */
    if (keySize == 0 || keySize >= (1ull << 32ull)) {
        goto failure;
    }

    return CKR_OK;

failure:
    /* PKCS#11 v3.0: If the failure was caused by the content of a specific
     * key's template (ie the template defined by the content of pTemplate),
     * the corresponding phKey value will be set to CK_INVALID_HANDLE to
     * identify the offending template. */
    *(key->phKey) = CK_INVALID_HANDLE;
    return CKR_MECHANISM_PARAM_INVALID;
}

static CK_RV
kbkdf_ValidateParameters(CK_MECHANISM_TYPE mech, const CK_SP800_108_KDF_PARAMS *params, CK_ULONG keySize)
{
    CK_RV ret = CKR_MECHANISM_PARAM_INVALID;
    int param_type_count[5] = { 0, 0, 0, 0, 0 };
    size_t offset = 0;

    /* Start with checking the prfType as a mechanism against a list of
     * PRFs allowed by PKCS#11 v3.0. */
    if (!(/* The following types aren't defined in NSS yet. */
          /* params->prfType != CKM_3DES_CMAC && */
          params->prfType == CKM_AES_CMAC || /* allow */
          /* We allow any HMAC except MD2 and MD5. */
          params->prfType != CKM_MD2_HMAC ||                        /* disallow */
          params->prfType != CKM_MD5_HMAC ||                        /* disallow */
          sftk_HMACMechanismToHash(params->prfType) != HASH_AlgNULL /* Valid HMAC <-> HASH isn't NULL */
          )) {
        return CKR_MECHANISM_PARAM_INVALID;
    }

    /* We can't have a null pDataParams pointer: we always need at least one
     * parameter to succeed. */
    if (params->pDataParams == NULL) {
        return CKR_HOST_MEMORY;
    }

    /* Validate each KDF parameter. */
    for (offset = 0; offset < params->ulNumberOfDataParams; offset++) {
        /* Validate this parameter has acceptable values. */
        ret = kbkdf_ValidateParameter(mech, params->pDataParams + offset);
        if (ret != CKR_OK) {
            return CKR_MECHANISM_PARAM_INVALID;
        }

        /* Count that we have a parameter of this type. The above logic
         * in ValidateParameter MUST validate that type is within the
         * appropriate range. */
        PR_ASSERT(params->pDataParams[offset].type < sizeof(param_type_count) / sizeof(param_type_count[0]));
        param_type_count[params->pDataParams[offset].type] += 1;
    }

    if (IS_COUNTER(mech)) {
        /* We have to have at least one iteration variable parameter. */
        if (param_type_count[CK_SP800_108_ITERATION_VARIABLE] == 0) {
            return CKR_MECHANISM_PARAM_INVALID;
        }

        /* We can't have any optional counters parameters -- these belong in
         * iteration variable parameters instead. */
        if (param_type_count[CK_SP800_108_OPTIONAL_COUNTER] != 0) {
            return CKR_MECHANISM_PARAM_INVALID;
        }
    }

    /* Validate basic assumptions about derived keys:
     *      NULL <-> ulAdditionalDerivedKeys > 0
     */
    if ((params->ulAdditionalDerivedKeys == 0) != (params->pAdditionalDerivedKeys == NULL)) {
        return CKR_MECHANISM_PARAM_INVALID;
    }

    /* Validate each derived key. */
    for (offset = 0; offset < params->ulAdditionalDerivedKeys; offset++) {
        ret = kbkdf_ValidateDerived(params->pAdditionalDerivedKeys + offset);
        if (ret != CKR_OK) {
            return CKR_MECHANISM_PARAM_INVALID;
        }
    }

    /* Validate the length of our primary key. */
    if (keySize == 0 || ((PRUint64)keySize) >= (1ull << 32ull)) {
        return CKR_KEY_SIZE_RANGE;
    }

    return CKR_OK;
}

/* [ section: parameter helpers ] */

static CK_VOID_PTR
kbkdf_FindParameter(const CK_SP800_108_KDF_PARAMS *params, CK_PRF_DATA_TYPE type)
{
    for (size_t offset = 0; offset < params->ulNumberOfDataParams; offset++) {
        if (params->pDataParams[offset].type == type) {
            return params->pDataParams[offset].pValue;
        }
    }

    return NULL;
}

size_t
kbkdf_IncrementBuffer(size_t cur_offset, size_t consumed, size_t prf_length)
{
    return cur_offset + PR_ROUNDUP(consumed, prf_length);
}

CK_ULONG
kbkdf_GetDerivedKeySize(CK_DERIVED_KEY_PTR derived_key)
{
    /* Precondition: kbkdf_ValidateDerived(...) returns CKR_OK for this key,
     * which implies that keySize is defined. */

    CK_KEY_TYPE keyType = CKK_GENERIC_SECRET;
    CK_ULONG keySize = 0;

    for (size_t offset = 0; offset < derived_key->ulAttributeCount; offset++) {
        CK_ATTRIBUTE_PTR template = derived_key->pTemplate + offset;

        /* Find the two attributes we care about. */
        if (template->type == CKA_KEY_TYPE) {
            keyType = *(CK_KEY_TYPE *)template->pValue;
        } else if (template->type == CKA_VALUE_LEN) {
            keySize = *(CK_ULONG *)template->pValue;
        }
    }

    /* Prefer keySize, if we have it. */
    if (keySize > 0) {
        return keySize;
    }

    /* Else, fall back to this mapping. We know kbkdf_ValidateDerived(...)
     * passed, so this should return non-zero. */
    return sftk_MapKeySize(keyType);
}

static CK_RV
kbkdf_CalculateLength(const CK_SP800_108_KDF_PARAMS *params, sftk_MACCtx *ctx, CK_ULONG ret_key_size, PRUint64 *output_bitlen, size_t *buffer_length)
{
    /* Two cases: either we have additional derived keys or we don't. In the
     * case that we don't, the length of the derivation is the size of the
     * single derived key, and that is the length of the PRF buffer. Otherwise,
     * we need to use the proper CK_SP800_108_DKM_LENGTH_METHOD to calculate
     * the length of the output (in bits), with a separate value for the size
     * of the PRF data buffer. This means that, under PKCS#11 with additional
     * derived keys, we lie to the KDF about the _actual_ length of the PRF
     * output.
     *
     * Note that *output_bitlen is the L parameter in NIST SP800-108 and is in
     * bits. However, *buffer_length is in bytes.
     */

    if (params->ulAdditionalDerivedKeys == 0) {
        /* When we have no additional derived keys, we get the keySize from
         * the value passed to one of our KBKDF_* methods. */
        *output_bitlen = ret_key_size;
        *buffer_length = ret_key_size;
    } else {
        /* Offset in the additional derived keys array. */
        size_t offset = 0;

        /* Size of the derived key. */
        CK_ULONG derived_size = 0;

        /* In the below, we place the sum of the keys into *output_bitlen
         * and the size of the buffer (with padding mandated by PKCS#11 v3.0)
         * into *buffer_length. If the method is the segment sum, then we
         * replace *output_bitlen with *buffer_length at the end. This ensures
         * we always get a output buffer large enough to handle all derived
         * keys, and *output_bitlen reflects the correct L value. */

        /* Count the initial derived key. */
        *output_bitlen = ret_key_size;
        *buffer_length = kbkdf_IncrementBuffer(0, ret_key_size, ctx->mac_size);

        /* Handle n - 1 keys. The last key is special. */
        for (; offset < params->ulAdditionalDerivedKeys - 1; offset++) {
            derived_size = kbkdf_GetDerivedKeySize(params->pAdditionalDerivedKeys + offset);

            *output_bitlen += derived_size;
            *buffer_length = kbkdf_IncrementBuffer(*buffer_length, derived_size, ctx->mac_size);
        }

        /* Handle the last key. */
        derived_size = kbkdf_GetDerivedKeySize(params->pAdditionalDerivedKeys + offset);

        *output_bitlen += derived_size;
        *buffer_length = kbkdf_IncrementBuffer(*buffer_length, derived_size, ctx->mac_size);

        /* Pointer to the DKM method parameter. Note that this implicit cast
         * is safe since we've assumed we've been validated by
         * kbkdf_ValidateParameters(...). When kdm_param is NULL, we don't
         * use the output_bitlen parameter. */
        CK_SP800_108_DKM_LENGTH_FORMAT_PTR dkm_param = kbkdf_FindParameter(params, CK_SP800_108_DKM_LENGTH);
        if (dkm_param != NULL) {
            if (dkm_param->dkmLengthMethod == CK_SP800_108_DKM_LENGTH_SUM_OF_SEGMENTS) {
                *output_bitlen = *buffer_length;
            }
        }
    }

    /* Note that keySize is the size in bytes and ctx->mac_size is also
     * the size in bytes. However, output_bitlen needs to be in bits, so
     * multiply by 8 here. */
    *output_bitlen *= 8;

    return CKR_OK;
}

static CK_RV
kbkdf_CalculateIterations(CK_MECHANISM_TYPE mech, const CK_SP800_108_KDF_PARAMS *params, sftk_MACCtx *ctx, size_t buffer_length, PRUint32 *num_iterations)
{
    CK_SP800_108_COUNTER_FORMAT_PTR param_ptr = NULL;
    PRUint64 iteration_count;
    PRUint64 r = 32;

    /* We need to know how many full iterations are required. This is done
     * by rounding up the division of the PRF length into buffer_length.
     * However, we're not guaranteed that the last output is a full PRF
     * invocation, so handle that here. */
    iteration_count = buffer_length + (ctx->mac_size - 1);
    iteration_count = iteration_count / ctx->mac_size;

    /* NIST SP800-108, section 5.1, process step #2:
     *
     *      if n > 2^r - 1, then indicate an error and stop.
     *
     * In non-counter mode KDFs, r is set at 32, leaving behavior
     * under-defined when the optional counter is included but fewer than
     * 32 bits. This implementation assumes r is 32, but if the counter
     * parameter is included, validates it against that. In counter-mode
     * KDFs, this is in the ITERATION_VARIABLE parameter; in feedback- or
     * pipeline-mode KDFs, this is in the COUNTER parameter.
     *
     * This is consistent with the supplied sample CAVP tests; none reuses the
     * same counter value. In some configurations, this could result in
     * duplicated KDF output. We seek to avoid that from happening.
     */
    if (IS_COUNTER(mech)) {
        param_ptr = kbkdf_FindParameter(params, CK_SP800_108_ITERATION_VARIABLE);

        /* Validated by kbkdf_ValidateParameters(...) above. */
        PR_ASSERT(param_ptr != NULL);

        r = ((CK_SP800_108_COUNTER_FORMAT_PTR)param_ptr)->ulWidthInBits;
    } else {
        param_ptr = kbkdf_FindParameter(params, CK_SP800_108_COUNTER);

        /* Not guaranteed to exist, hence the default value of r=32. */
        if (param_ptr != NULL) {
            r = ((CK_SP800_108_COUNTER_FORMAT_PTR)param_ptr)->ulWidthInBits;
        }
    }

    if (iteration_count >= (1ull << r) || r > 32) {
        return CKR_MECHANISM_PARAM_INVALID;
    }

    *num_iterations = (PRUint32)iteration_count;

    return CKR_OK;
}

static CK_RV
kbkdf_AddParameters(CK_MECHANISM_TYPE mech, sftk_MACCtx *ctx, const CK_SP800_108_KDF_PARAMS *params, PRUint32 counter, PRUint64 length, const unsigned char *chaining_prf, size_t chaining_prf_len, CK_PRF_DATA_TYPE exclude)
{
    size_t offset = 0;
    CK_RV ret = CKR_OK;

    for (offset = 0; offset < params->ulNumberOfDataParams; offset++) {
        CK_PRF_DATA_PARAM_PTR param = params->pDataParams + offset;

        if (param->type == exclude) {
            /* Necessary for Double Pipeline mode: when constructing the IV,
             * we skip the  optional counter. */
            continue;
        }

        switch (param->type) {
            case CK_SP800_108_ITERATION_VARIABLE: {
                /* When present in COUNTER mode, this signifies adding the counter
                 * variable to the PRF. Otherwise, it signifies the chaining
                 * value for other KDF modes. */
                if (IS_COUNTER(mech)) {
                    CK_SP800_108_COUNTER_FORMAT_PTR counter_format = (CK_SP800_108_COUNTER_FORMAT_PTR)param->pValue;
                    CK_BYTE buffer[sizeof(PRUint64)];
                    CK_ULONG num_bytes;
                    sftk_EncodeInteger(counter, counter_format->ulWidthInBits, counter_format->bLittleEndian, buffer, &num_bytes);
                    ret = sftk_MAC_Update(ctx, buffer, num_bytes);
                } else {
                    ret = sftk_MAC_Update(ctx, chaining_prf, chaining_prf_len);
                }
                break;
            }
            case CK_SP800_108_COUNTER: {
                /* Only present in the case when not using COUNTER mode. */
                PR_ASSERT(!IS_COUNTER(mech));

                /* We should've already validated that this parameter is of
                 * type COUNTER_FORMAT. */
                CK_SP800_108_COUNTER_FORMAT_PTR counter_format = (CK_SP800_108_COUNTER_FORMAT_PTR)param->pValue;
                CK_BYTE buffer[sizeof(PRUint64)];
                CK_ULONG num_bytes;
                sftk_EncodeInteger(counter, counter_format->ulWidthInBits, counter_format->bLittleEndian, buffer, &num_bytes);
                ret = sftk_MAC_Update(ctx, buffer, num_bytes);
                break;
            }
            case CK_SP800_108_BYTE_ARRAY:
                ret = sftk_MAC_Update(ctx, (CK_BYTE_PTR)param->pValue, param->ulValueLen);
                break;
            case CK_SP800_108_DKM_LENGTH: {
                /* We've already done the hard work of calculating the length in
                 * the kbkdf_CalculateIterations function; we merely need to add
                 * the length to the desired point in the input stream. */
                CK_SP800_108_DKM_LENGTH_FORMAT_PTR length_format = (CK_SP800_108_DKM_LENGTH_FORMAT_PTR)param->pValue;
                CK_BYTE buffer[sizeof(PRUint64)];
                CK_ULONG num_bytes;
                sftk_EncodeInteger(length, length_format->ulWidthInBits, length_format->bLittleEndian, buffer, &num_bytes);
                ret = sftk_MAC_Update(ctx, buffer, num_bytes);
                break;
            }
            default:
                /* This should've been caught by kbkdf_ValidateParameters(...). */
                PR_ASSERT(PR_FALSE);
                return CKR_MECHANISM_PARAM_INVALID;
        }

        if (ret != CKR_OK) {
            return ret;
        }
    }

    return CKR_OK;
}

CK_RV
kbkdf_SaveKey(SFTKObject *key, unsigned char *key_buffer, unsigned int key_len)
{
    return sftk_forceAttribute(key, CKA_VALUE, key_buffer, key_len);
}

CK_RV
kbkdf_CreateKey(CK_MECHANISM_TYPE kdf_mech, CK_SESSION_HANDLE hSession, CK_DERIVED_KEY_PTR derived_key, SFTKObject **ret_key)
{
    /* Largely duplicated from NSC_DeriveKey(...) */
    CK_RV ret = CKR_HOST_MEMORY;
    SFTKObject *key = NULL;
    SFTKSlot *slot = sftk_SlotFromSessionHandle(hSession);
    size_t offset = 0;

    /* Slot should be non-NULL because NSC_DeriveKey(...) has already
     * performed a sftk_SlotFromSessionHandle(...) call on this session
     * handle. However, Coverity incorrectly flagged this (see 1607955). */
    PR_ASSERT(slot != NULL);
    PR_ASSERT(ret_key != NULL);
    PR_ASSERT(derived_key != NULL);
    PR_ASSERT(derived_key->phKey != NULL);

    if (slot == NULL) {
        return CKR_SESSION_HANDLE_INVALID;
    }

    /* Create the new key object for this additional derived key. */
    key = sftk_NewObject(slot);
    if (key == NULL) {
        return CKR_HOST_MEMORY;
    }

    /* Setup the key from the provided template. */
    for (offset = 0; offset < derived_key->ulAttributeCount; offset++) {
        ret = sftk_AddAttributeType(key, sftk_attr_expand(derived_key->pTemplate + offset));
        if (ret != CKR_OK) {
            sftk_FreeObject(key);
            return ret;
        }
    }

    /* When using the CKM_SP800_* series of mechanisms, the result must be a
     * secret key, so its contents can be adequately protected in FIPS mode.
     * However, when using the special CKM_NSS_SP800_*_DERIVE_DATA series, the
     * contents need not be protected, so we set CKO_DATA on these "keys". */
    CK_OBJECT_CLASS classType = CKO_SECRET_KEY;
    if (DOES_DERIVE_DATA(kdf_mech)) {
        classType = CKO_DATA;
    }

    ret = sftk_forceAttribute(key, CKA_CLASS, &classType, sizeof(classType));
    if (ret != CKR_OK) {
        sftk_FreeObject(key);
        return ret;
    }

    *ret_key = key;
    return CKR_OK;
}

CK_RV
kbkdf_FinalizeKey(CK_SESSION_HANDLE hSession, CK_DERIVED_KEY_PTR derived_key, SFTKObject *key)
{
    /* Largely duplicated from NSC_DeriveKey(...) */
    CK_RV ret = CKR_HOST_MEMORY;
    SFTKSession *session = NULL;

    PR_ASSERT(derived_key != NULL && key != NULL);

    SFTKSessionObject *sessionForKey = sftk_narrowToSessionObject(key);
    PR_ASSERT(sessionForKey != NULL);
    sessionForKey->wasDerived = PR_TRUE;

    session = sftk_SessionFromHandle(hSession);

    /* Session should be non-NULL because NSC_DeriveKey(...) has already
     * performed a sftk_SessionFromHandle(...) call on this session handle. */
    PR_ASSERT(session != NULL);

    ret = sftk_handleObject(key, session);
    if (ret != CKR_OK) {
        goto done;
    }

    *(derived_key->phKey) = key->handle;

done:
    /* Guaranteed that key != NULL */
    sftk_FreeObject(key);

    /* Doesn't do anything. */
    if (session) {
        sftk_FreeSession(session);
    }

    return ret;
}

CK_RV
kbkdf_SaveKeys(CK_MECHANISM_TYPE mech, CK_SESSION_HANDLE hSession, CK_SP800_108_KDF_PARAMS_PTR params, unsigned char *output_buffer, size_t buffer_len, size_t prf_length, SFTKObject *ret_key, CK_ULONG ret_key_size)
{
    CK_RV ret;
    size_t key_offset = 0;
    size_t buffer_offset = 0;

    PR_ASSERT(output_buffer != NULL && buffer_len > 0 && ret_key != NULL);

    /* First place key material into the main key. */
    ret = kbkdf_SaveKey(ret_key, output_buffer + buffer_offset, ret_key_size);
    if (ret != CKR_OK) {
        return ret;
    }

    /* Then increment the offset based on PKCS#11 additional key guidelines:
     * no two keys may share the key stream from the same PRF invocation. */
    buffer_offset = kbkdf_IncrementBuffer(buffer_offset, ret_key_size, prf_length);

    if (params->ulAdditionalDerivedKeys > 0) {
        /* Note that the following code is technically incorrect: PKCS#11 v3.0
         * says that _no_ key should be set in the event of failure to derive
         * _any_ key. */
        for (key_offset = 0; key_offset < params->ulAdditionalDerivedKeys; key_offset++) {
            CK_DERIVED_KEY_PTR derived_key = params->pAdditionalDerivedKeys + key_offset;
            SFTKObject *key_obj = NULL;
            size_t key_size = kbkdf_GetDerivedKeySize(derived_key);

            /* Create a new internal key object for this derived key. */
            ret = kbkdf_CreateKey(mech, hSession, derived_key, &key_obj);
            if (ret != CKR_OK) {
                *(derived_key->phKey) = CK_INVALID_HANDLE;
                return ret;
            }

            /* Save the underlying key bytes to the key object. */
            ret = kbkdf_SaveKey(key_obj, output_buffer + buffer_offset, key_size);
            if (ret != CKR_OK) {
                /* When kbkdf_CreateKey(...) exits with an error, it will free
                 * the constructed key object. kbkdf_FinalizeKey(...) also
                 * always frees the key object. In the unlikely event that
                 * kbkdf_SaveKey(...) _does_ fail, we thus need to free it
                 * manually. */
                sftk_FreeObject(key_obj);
                *(derived_key->phKey) = CK_INVALID_HANDLE;
                return ret;
            }

            /* Handle the increment. */
            buffer_offset = kbkdf_IncrementBuffer(buffer_offset, key_size, prf_length);

            /* Finalize this key. */
            ret = kbkdf_FinalizeKey(hSession, derived_key, key_obj);
            if (ret != CKR_OK) {
                *(derived_key->phKey) = CK_INVALID_HANDLE;
                return ret;
            }
        }
    }

    return CKR_OK;
}

/* [ section: KDFs ] */

static CK_RV
kbkdf_CounterRaw(const CK_SP800_108_KDF_PARAMS *params, sftk_MACCtx *ctx, unsigned char *ret_buffer, size_t buffer_length, PRUint64 output_bitlen)
{
    CK_RV ret = CKR_OK;

    /* Counter variable for this KDF instance. */
    PRUint32 counter;

    /* Number of iterations required of this PRF necessary to reach the
     * desired output length. */
    PRUint32 num_iterations;

    /* Offset in ret_buffer that we're at. */
    size_t buffer_offset = 0;

    /* Size of this block, in bytes. Defaults to ctx->mac_size except on
     * the last iteration where it could be a partial block. */
    size_t block_size = ctx->mac_size;

    /* Calculate the number of iterations required based on the size of the
     * output buffer. */
    ret = kbkdf_CalculateIterations(CKM_SP800_108_COUNTER_KDF, params, ctx, buffer_length, &num_iterations);
    if (ret != CKR_OK) {
        return ret;
    }

    /*
     * 5.1 - [ KDF in Counter Mode ]
     *
     * Fixed values:
     *      1. h - the length of the PRF in bits (ctx->mac_size)
     *      2. r - the length of the binary representation of the counter i
     *          (params[k: params[k].type == CK_SP800_108_ITERATION_VARIABLE:].data->ulWidthInBits)
     * Input:
     *      1. K_I - the key for the PRF (base_key)
     *      2. label - a binary data field, usually before the separator. Optional.
     *      3. context - a binary data field, usually after the separator. Optional.
     *      4. L - length of the output in bits (output_bitlen)
     *
     * Process:
     *      1. n := ceil(L / h) (num_iterations)
     *      2. if n > 2^r - 1, then indicate an error and stop
     *      3. result(0) = NULL
     *      4. for i = 1 to n, do
     *          a. K(i) = PRF(K_I, [i]_2 || Label || 0x00 || Context || [L]_2)
     *          b. result(i) := result(i - 1) || K(i).
     *      5. return K_O := the leftmost L bits of result(n).
     */
    for (counter = 1; counter <= num_iterations; counter++) {
        if (counter == num_iterations) {
            block_size = buffer_length - buffer_offset;

            /* Assumption: if we've validated our arguments correctly, this
             * should always be true. */
            PR_ASSERT(block_size <= ctx->mac_size);
        }

        /* Add all parameters required by this instance of the KDF to the
         * input stream of the underlying PRF. */
        ret = kbkdf_AddParameters(CKM_SP800_108_COUNTER_KDF, ctx, params, counter, output_bitlen, NULL, 0 /* chaining_prf output */, 0 /* exclude */);
        if (ret != CKR_OK) {
            return ret;
        }

        /* Finalize this iteration of the PRF. */
        ret = sftk_MAC_Finish(ctx, ret_buffer + buffer_offset, NULL, block_size);
        if (ret != CKR_OK) {
            return ret;
        }

        /* Increment our position in the key material. */
        buffer_offset += block_size;

        if (counter < num_iterations) {
            /* Reset the underlying PRF for the next iteration. Only do this
             * when we have a next iteration since it isn't necessary to do
             * either before the first iteration (MAC is already initialized)
             * or after the last iteration (we won't be called again). */
            ret = sftk_MAC_Reset(ctx);
            if (ret != CKR_OK) {
                return ret;
            }
        }
    }

    return CKR_OK;
}

static CK_RV
kbkdf_FeedbackRaw(const CK_SP800_108_KDF_PARAMS *params, const unsigned char *initial_value, CK_ULONG initial_value_length, sftk_MACCtx *ctx, unsigned char *ret_buffer, size_t buffer_length, PRUint64 output_bitlen)
{
    CK_RV ret = CKR_OK;

    /* Counter variable for this KDF instance. */
    PRUint32 counter;

    /* Number of iterations required of this PRF necessary to reach the
     * desired output length. */
    PRUint32 num_iterations;

    /* Offset in ret_buffer that we're at. */
    size_t buffer_offset = 0;

    /* Size of this block, in bytes. Defaults to ctx->mac_size except on
     * the last iteration where it could be a partial block. */
    size_t block_size = ctx->mac_size;

    /* The last PRF invocation and/or the initial value; used for feedback
     * chaining in this KDF. Note that we have to make it large enough to
     * fit the output of the PRF, but we can delay its actual creation until
     * the first PRF invocation. Until then, point to the IV value. */
    unsigned char *chaining_value = (unsigned char *)initial_value;

    /* Size of the chaining value discussed above. Defaults to the size of
     * the IV value. */
    size_t chaining_length = initial_value_length;

    /* Calculate the number of iterations required based on the size of the
     * output buffer. */
    ret = kbkdf_CalculateIterations(CKM_SP800_108_FEEDBACK_KDF, params, ctx, buffer_length, &num_iterations);
    if (ret != CKR_OK) {
        goto finish;
    }

    /*
     * 5.2 - [ KDF in Feedback Mode ]
     *
     * Fixed values:
     *      1. h - the length of the PRF in bits (ctx->mac_size)
     *      2. r - the length of the binary representation of the counter i
     *          (params[k: params[k].type == CK_SP800_108_OPTIONAL_COUNTER:].data->ulWidthInBits)
     *          Note that it is only specified when the optional counter is requested.
     * Input:
     *      1. K_I - the key for the PRF (base_key)
     *      2. label - a binary data field, usually before the separator. Optional.
     *      3. context - a binary data field, usually after the separator. Optional.
     *      4. IV - a binary data field, initial PRF value. (params->pIV)
     *      5. L - length of the output in bits (output_bitlen)
     *
     * Process:
     *      1. n := ceil(L / h) (num_iterations)
     *      2. if n > 2^32 - 1, then indicate an error and stop
     *      3. result(0) = NULL, K(0) := IV (chaining_value)
     *      4. for i = 1 to n, do
     *          a. K(i) = PRF(K_I, K(i-1) {|| [i]_2} || Label || 0x00 || Context || [L]_2)
     *          b. result(i) := result(i - 1) || K(i).
     *      5. return K_O := the leftmost L bits of result(n).
     */
    for (counter = 1; counter <= num_iterations; counter++) {
        if (counter == num_iterations) {
            block_size = buffer_length - buffer_offset;

            /* Assumption: if we've validated our arguments correctly, this
             * should always be true. */
            PR_ASSERT(block_size <= ctx->mac_size);
        }

        /* Add all parameters required by this instance of the KDF to the
         * input stream of the underlying PRF. */
        ret = kbkdf_AddParameters(CKM_SP800_108_FEEDBACK_KDF, ctx, params, counter, output_bitlen, chaining_value, chaining_length, 0 /* exclude */);
        if (ret != CKR_OK) {
            goto finish;
        }

        if (counter == 1) {
            /* On the first iteration, chaining_value points to the IV from
             * the caller and chaining_length is the length of that IV. We
             * now need to allocate a buffer of suitable length to store the
             * MAC output. */
            chaining_value = PORT_ZNewArray(unsigned char, ctx->mac_size);
            chaining_length = ctx->mac_size;

            if (chaining_value == NULL) {
                ret = CKR_HOST_MEMORY;
                goto finish;
            }
        }

        /* Finalize this iteration of the PRF. Unlike other KDF forms, we
         * first save this to the chaining value so that we can reuse it
         * in the next iteration before copying the necessary length to
         * the output buffer. */
        ret = sftk_MAC_Finish(ctx, chaining_value, NULL, chaining_length);
        if (ret != CKR_OK) {
            goto finish;
        }

        /* Save as much of the chaining value as we need for output. */
        PORT_Memcpy(ret_buffer + buffer_offset, chaining_value, block_size);

        /* Increment our position in the key material. */
        buffer_offset += block_size;

        if (counter < num_iterations) {
            /* Reset the underlying PRF for the next iteration. Only do this
             * when we have a next iteration since it isn't necessary to do
             * either before the first iteration (MAC is already initialized)
             * or after the last iteration (we won't be called again). */
            ret = sftk_MAC_Reset(ctx);
            if (ret != CKR_OK) {
                goto finish;
            }
        }
    }

finish:
    if (chaining_value != initial_value && chaining_value != NULL) {
        PORT_ZFree(chaining_value, chaining_length);
    }

    return ret;
}

static CK_RV
kbkdf_PipelineRaw(const CK_SP800_108_KDF_PARAMS *params, sftk_MACCtx *ctx, unsigned char *ret_buffer, size_t buffer_length, PRUint64 output_bitlen)
{
    CK_RV ret = CKR_OK;

    /* Counter variable for this KDF instance. */
    PRUint32 counter;

    /* Number of iterations required of this PRF necessary to reach the
     * desired output length. */
    PRUint32 num_iterations;

    /* Offset in ret_buffer that we're at. */
    size_t buffer_offset = 0;

    /* Size of this block, in bytes. Defaults to ctx->mac_size except on
     * the last iteration where it could be a partial block. */
    size_t block_size = ctx->mac_size;

    /* The last PRF invocation. This is used for the first of the double
     * PRF invocations this KDF is named after. This defaults to NULL,
     * signifying that we have to calculate the initial value from params;
     * when non-NULL, we directly add only this value to the PRF. */
    unsigned char *chaining_value = NULL;

    /* Size of the chaining value discussed above. Defaults to 0. */
    size_t chaining_length = 0;

    /* Calculate the number of iterations required based on the size of the
     * output buffer. */
    ret = kbkdf_CalculateIterations(CKM_SP800_108_DOUBLE_PIPELINE_KDF, params, ctx, buffer_length, &num_iterations);
    if (ret != CKR_OK) {
        goto finish;
    }

    /*
     * 5.3 - [ KDF in Double-Pipeline Iteration Mode ]
     *
     * Fixed values:
     *      1. h - the length of the PRF in bits (ctx->mac_size)
     *      2. r - the length of the binary representation of the counter i
     *          (params[k: params[k].type == CK_SP800_108_OPTIONAL_COUNTER:].data->ulWidthInBits)
     *          Note that it is only specified when the optional counter is requested.
     * Input:
     *      1. K_I - the key for the PRF (base_key)
     *      2. label - a binary data field, usually before the separator. Optional.
     *      3. context - a binary data field, usually after the separator. Optional.
     *      4. L - length of the output in bits (output_bitlen)
     *
     * Process:
     *      1. n := ceil(L / h) (num_iterations)
     *      2. if n > 2^32 - 1, then indicate an error and stop
     *      3. result(0) = NULL
     *      4. A(0) := IV := Label || 0x00 || Context || [L]_2
     *      5. for i = 1 to n, do
     *          a. A(i) := PRF(K_I, A(i-1))
     *          b. K(i) := PRF(K_I, A(i) {|| [i]_2} || Label || 0x00 || Context || [L]_2
     *          c. result(i) := result(i-1) || K(i)
     *      6. return K_O := the leftmost L bits of result(n).
     */
    for (counter = 1; counter <= num_iterations; counter++) {
        if (counter == num_iterations) {
            block_size = buffer_length - buffer_offset;

            /* Assumption: if we've validated our arguments correctly, this
             * should always be true. */
            PR_ASSERT(block_size <= ctx->mac_size);
        }

        /* ===== First pipeline: construct A(i) ===== */
        if (counter == 1) {
            /* On the first iteration, we have no chaining value so specify
             * NULL for the pointer and 0 for the length, and exclude the
             * optional counter if it exists. This is what NIST specifies as
             * the IV for the KDF. */
            ret = kbkdf_AddParameters(CKM_SP800_108_DOUBLE_PIPELINE_KDF, ctx, params, counter, output_bitlen, NULL, 0, CK_SP800_108_OPTIONAL_COUNTER);
            if (ret != CKR_OK) {
                goto finish;
            }

            /* Allocate the chaining value so we can save the PRF output. */
            chaining_value = PORT_ZNewArray(unsigned char, ctx->mac_size);
            chaining_length = ctx->mac_size;
            if (chaining_value == NULL) {
                ret = CKR_HOST_MEMORY;
                goto finish;
            }
        } else {
            /* On all other iterations, the next stage of the first pipeline
             * comes directly from this stage. */
            ret = sftk_MAC_Update(ctx, chaining_value, chaining_length);
            if (ret != CKR_OK) {
                goto finish;
            }
        }

        /* Save the PRF output to chaining_value for use in the second
         * pipeline. */
        ret = sftk_MAC_Finish(ctx, chaining_value, NULL, chaining_length);
        if (ret != CKR_OK) {
            goto finish;
        }

        /* Reset the PRF so we can reuse it for the second pipeline. */
        ret = sftk_MAC_Reset(ctx);
        if (ret != CKR_OK) {
            goto finish;
        }

        /* ===== Second pipeline: construct K(i) ===== */

        /* Add all parameters required by this instance of the KDF to the
         * input stream of the underlying PRF. Note that this includes the
         * chaining value we calculated from the previous pipeline stage. */
        ret = kbkdf_AddParameters(CKM_SP800_108_FEEDBACK_KDF, ctx, params, counter, output_bitlen, chaining_value, chaining_length, 0 /* exclude */);
        if (ret != CKR_OK) {
            goto finish;
        }

        /* Finalize this iteration of the PRF directly to the output buffer.
         * Unlike Feedback mode, this pipeline doesn't influence the previous
         * stage. */
        ret = sftk_MAC_Finish(ctx, ret_buffer + buffer_offset, NULL, block_size);
        if (ret != CKR_OK) {
            goto finish;
        }

        /* Increment our position in the key material. */
        buffer_offset += block_size;

        if (counter < num_iterations) {
            /* Reset the underlying PRF for the next iteration. Only do this
             * when we have a next iteration since it isn't necessary to do
             * either before the first iteration (MAC is already initialized)
             * or after the last iteration (we won't be called again). */
            ret = sftk_MAC_Reset(ctx);
            if (ret != CKR_OK) {
                goto finish;
            }
        }
    }

finish:
    PORT_ZFree(chaining_value, chaining_length);

    return ret;
}

static CK_RV
kbkdf_RawDispatch(CK_MECHANISM_TYPE mech,
                  const CK_SP800_108_KDF_PARAMS *kdf_params,
                  const CK_BYTE *initial_value,
                  CK_ULONG initial_value_length,
                  SFTKObject *prf_key, const unsigned char *prf_key_bytes,
                  unsigned int prf_key_length, unsigned char **out_key_bytes,
                  size_t *out_key_length, unsigned int *mac_size,
                  CK_ULONG ret_key_size)
{
    CK_RV ret;
    /* Context for our underlying PRF function.
     *
     * Zeroing context required unconditional call of sftk_MAC_Destroy.
     */
    sftk_MACCtx ctx = { 0 };

    /* We need one buffers large enough to fit the entire KDF key stream for
     * all iterations of the PRF. This needs only include to the end of the
     * last key, so it isn't an even multiple of the PRF output size. */
    unsigned char *output_buffer = NULL;

    /* Size of the above buffer, in bytes. Note that this is technically
     * separate from the below output_bitlen variable due to the presence
     * of additional derived keys. See commentary in kbkdf_CalculateLength.
     */
    size_t buffer_length = 0;

    /* While NIST specifies a maximum length (in bits) for the counter, they
     * don't for the maximum length. It is unlikely, but theoretically
     * possible for output of the PRF to exceed 32 bits while keeping the
     * counter under 2^32. Thus, use a 64-bit variable for the maximum
     * output length.
     *
     * It is unlikely any caller will request this much data in practice.
     * 2^32 invocations of the PRF (for a 512-bit PRF) would be 256GB of
     * data in the KDF key stream alone. The bigger limit is the number of
     * and size of keys (again, 2^32); this could easily exceed 256GB when
     * counting the backing softoken key, the key data, template data, and
     * the input parameters to this KDF.
     *
     * This is the L parameter in NIST SP800-108.
     */
    PRUint64 output_bitlen = 0;

    /* First validate our passed input parameters against PKCS#11 v3.0
     * and NIST SP800-108 requirements. */
    ret = kbkdf_ValidateParameters(mech, kdf_params, ret_key_size);
    if (ret != CKR_OK) {
        goto finish;
    }

    /* Initialize the underlying PRF state. */
    if (prf_key) {
        ret = sftk_MAC_Init(&ctx, kdf_params->prfType, prf_key);
    } else {
        ret = sftk_MAC_InitRaw(&ctx, kdf_params->prfType, prf_key_bytes,
                               prf_key_length, PR_TRUE);
    }
    if (ret != CKR_OK) {
        goto finish;
    }

    /* Compute the size of our output buffer based on passed parameters and
     * the output size of the underlying PRF. */
    ret = kbkdf_CalculateLength(kdf_params, &ctx, ret_key_size, &output_bitlen, &buffer_length);
    if (ret != CKR_OK) {
        goto finish;
    }

    /* Allocate memory for the PRF output */
    output_buffer = PORT_ZNewArray(unsigned char, buffer_length);
    if (output_buffer == NULL) {
        ret = CKR_HOST_MEMORY;
        goto finish;
    }

    /* Call into the underlying KDF */
    switch (mech) {
        case CKM_NSS_SP800_108_COUNTER_KDF_DERIVE_DATA: /* fall through */
        case CKM_SP800_108_COUNTER_KDF:
            ret = kbkdf_CounterRaw(kdf_params, &ctx, output_buffer, buffer_length, output_bitlen);
            break;
        case CKM_NSS_SP800_108_FEEDBACK_KDF_DERIVE_DATA: /* fall through */
        case CKM_SP800_108_FEEDBACK_KDF:
            ret = kbkdf_FeedbackRaw(kdf_params, initial_value, initial_value_length, &ctx, output_buffer, buffer_length, output_bitlen);
            break;
        case CKM_NSS_SP800_108_DOUBLE_PIPELINE_KDF_DERIVE_DATA: /* fall through */
        case CKM_SP800_108_DOUBLE_PIPELINE_KDF:
            ret = kbkdf_PipelineRaw(kdf_params, &ctx, output_buffer, buffer_length, output_bitlen);
            break;
        default:
            /* Shouldn't happen unless NIST introduces a new KBKDF type. */
            PR_ASSERT(PR_FALSE);
            ret = CKR_FUNCTION_FAILED;
    }

    /* Validate the above KDF succeeded. */
    if (ret != CKR_OK) {
        goto finish;
    }

    *out_key_bytes = output_buffer;
    *out_key_length = buffer_length;
    *mac_size = ctx.mac_size;

    output_buffer = NULL; /* returning the buffer, don't zero and free it */

finish:
    PORT_ZFree(output_buffer, buffer_length);

    /* Free the PRF. This should handle clearing all sensitive information. */
    sftk_MAC_Destroy(&ctx, PR_FALSE);
    return ret;
}

/* [ section: PKCS#11 entry ] */

CK_RV
kbkdf_Dispatch(CK_MECHANISM_TYPE mech, CK_SESSION_HANDLE hSession, CK_MECHANISM_PTR pMechanism, SFTKObject *prf_key, SFTKObject *ret_key, CK_ULONG ret_key_size)
{
    /* This handles boilerplate common to all KBKDF types. Instead of placing
     * this in pkcs11c.c, place it here to reduce clutter. */

    CK_RV ret;

    /* Assumptions about our calling environment. */
    PR_ASSERT(pMechanism != NULL && prf_key != NULL && ret_key != NULL);

    /* Validate that the caller passed parameters. */
    if (pMechanism->pParameter == NULL) {
        return CKR_MECHANISM_PARAM_INVALID;
    }

    /* Create a common set of parameters to use for all KDF types. This
     * separates out the KDF parameters from the Feedback-specific IV,
     * allowing us to use a common type for all calls. */
    CK_SP800_108_KDF_PARAMS kdf_params = { 0 };
    CK_BYTE_PTR initial_value = NULL;
    CK_ULONG initial_value_length = 0;
    unsigned char *output_buffer = NULL;
    size_t buffer_length = 0;
    unsigned int mac_size = 0;

    /* Split Feedback-specific IV from remaining KDF parameters. */
    ret = kbkdf_LoadParameters(mech, pMechanism, &kdf_params, &initial_value, &initial_value_length);
    if (ret != CKR_OK) {
        goto finish;
    }
    /* let rawDispatch handle the rest. We split this out so we could
     * handle the POST test without accessing pkcs #11 objects. */
    ret = kbkdf_RawDispatch(mech, &kdf_params, initial_value,
                            initial_value_length, prf_key, NULL, 0,
                            &output_buffer, &buffer_length, &mac_size,
                            ret_key_size);
    if (ret != CKR_OK) {
        goto finish;
    }

    /* Write the output of the PRF into the appropriate keys. */
    ret = kbkdf_SaveKeys(mech, hSession, &kdf_params, output_buffer, buffer_length, mac_size, ret_key, ret_key_size);
    if (ret != CKR_OK) {
        goto finish;
    }

finish:
    PORT_ZFree(output_buffer, buffer_length);

    return ret;
}

struct sftk_SP800_Test_struct {
    CK_MECHANISM_TYPE mech;
    CK_SP800_108_KDF_PARAMS kdf_params;
    unsigned int expected_mac_size;
    unsigned int ret_key_length;
    const unsigned char expected_key_bytes[64];
};

static const CK_SP800_108_COUNTER_FORMAT counter_32 = { 0, 32 };
static const CK_PRF_DATA_PARAM counter_32_data = { CK_SP800_108_ITERATION_VARIABLE, (CK_VOID_PTR)&counter_32, sizeof(counter_32) };

#ifdef NSS_FULL_POST
static const CK_SP800_108_COUNTER_FORMAT counter_16 = { 0, 16 };
static const CK_PRF_DATA_PARAM counter_16_data = { CK_SP800_108_ITERATION_VARIABLE, (CK_VOID_PTR)&counter_16, sizeof(counter_16) };
static const CK_PRF_DATA_PARAM counter_null_data = { CK_SP800_108_ITERATION_VARIABLE, NULL, 0 };
#endif

static const struct sftk_SP800_Test_struct sftk_SP800_Tests[] = {
#ifdef NSS_FULL_POST
    {
        CKM_SP800_108_COUNTER_KDF,
        { CKM_AES_CMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_16_data, 0, NULL },
        16,
        64,
        { 0x7b, 0x1c, 0xe7, 0xf3, 0x14, 0x67, 0x15, 0xdd,
          0xde, 0x0c, 0x09, 0x46, 0x3f, 0x47, 0x7b, 0xa6,
          0xb8, 0xba, 0x40, 0x07, 0x7c, 0xe3, 0x19, 0x53,
          0x26, 0xac, 0x4c, 0x2e, 0x2b, 0x37, 0x41, 0xe4,
          0x1b, 0x01, 0x3f, 0x2f, 0x2d, 0x16, 0x95, 0xee,
          0xeb, 0x7e, 0x72, 0x7d, 0xa4, 0xab, 0x2e, 0x67,
          0x1d, 0xef, 0x6f, 0xa2, 0xc6, 0xee, 0x3c, 0xcf,
          0xef, 0x88, 0xfd, 0x5c, 0x1d, 0x7b, 0xa0, 0x5a },
    },
    {
        CKM_SP800_108_COUNTER_KDF,
        { CKM_SHA384_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_32_data, 0, NULL },
        48,
        64,
        { 0xe6, 0x62, 0xa4, 0x32, 0x5c, 0xe4, 0xc2, 0x28,
          0x73, 0x8a, 0x5d, 0x94, 0xe7, 0x05, 0xe0, 0x5a,
          0x71, 0x61, 0xb2, 0x3c, 0x51, 0x28, 0x03, 0x1d,
          0xa7, 0xf5, 0x10, 0x83, 0x34, 0xdb, 0x11, 0x73,
          0x92, 0xa6, 0x79, 0x74, 0x81, 0x5d, 0x22, 0x7e,
          0x8d, 0xf2, 0x59, 0x14, 0x56, 0x60, 0xcf, 0xb2,
          0xb3, 0xfd, 0x46, 0xfd, 0x9b, 0x74, 0xfe, 0x4a,
          0x09, 0x30, 0x4a, 0xdf, 0x07, 0x43, 0xfe, 0x85 },
    },
    {
        CKM_SP800_108_COUNTER_KDF,
        { CKM_SHA512_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_32_data, 0, NULL },
        64,
        64,
        { 0xb0, 0x78, 0x36, 0xe1, 0x15, 0xd6, 0xf0, 0xac,
          0x68, 0x7b, 0x42, 0xd3, 0xb6, 0x82, 0x51, 0xad,
          0x95, 0x0a, 0x69, 0x88, 0x84, 0xc2, 0x2e, 0x07,
          0x34, 0x62, 0x8d, 0x42, 0x72, 0x0f, 0x22, 0xe6,
          0xd5, 0x7f, 0x80, 0x15, 0xe6, 0x84, 0x00, 0x65,
          0xef, 0x64, 0x77, 0x29, 0xd6, 0x3b, 0xc7, 0x9a,
          0x15, 0x6d, 0x36, 0xf3, 0x96, 0xc9, 0x14, 0x3f,
          0x2d, 0x4a, 0x7c, 0xdb, 0xc3, 0x6c, 0x3d, 0x6a },
    },
    {
        CKM_SP800_108_FEEDBACK_KDF,
        { CKM_AES_CMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL },
        16,
        64,
        { 0xc0, 0xa0, 0x23, 0x96, 0x16, 0x4d, 0xd6, 0xbd,
          0x2a, 0x75, 0x8e, 0x72, 0xf5, 0xc3, 0xa0, 0xb8,
          0x78, 0x83, 0x15, 0x21, 0x34, 0xd3, 0xd8, 0x71,
          0xc9, 0xe7, 0x4b, 0x20, 0xb7, 0x65, 0x5b, 0x13,
          0xbc, 0x85, 0x54, 0xe3, 0xb6, 0xee, 0x73, 0xd5,
          0xf2, 0xa0, 0x94, 0x1a, 0x79, 0x66, 0x3b, 0x1e,
          0x67, 0x3e, 0x69, 0xa4, 0x12, 0x40, 0xa9, 0xda,
          0x8d, 0x14, 0xb1, 0xce, 0xf1, 0x4b, 0x79, 0x4e },
    },
    {
        CKM_SP800_108_FEEDBACK_KDF,
        { CKM_SHA256_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL },
        32,
        64,
        { 0x99, 0x9b, 0x08, 0x79, 0x14, 0x2e, 0x58, 0x34,
          0xd7, 0x92, 0xa7, 0x7e, 0x7f, 0xc2, 0xf0, 0x34,
          0xa3, 0x4e, 0x33, 0xf0, 0x63, 0x95, 0x2d, 0xad,
          0xbf, 0x3b, 0xcb, 0x6d, 0x4e, 0x07, 0xd9, 0xe9,
          0xbd, 0xbd, 0x77, 0x54, 0xe1, 0xa3, 0x36, 0x26,
          0xcd, 0xb1, 0xf9, 0x2d, 0x80, 0x68, 0xa2, 0x01,
          0x4e, 0xbf, 0x35, 0xec, 0x65, 0xae, 0xfd, 0x71,
          0xa6, 0xd7, 0x62, 0x26, 0x2c, 0x3f, 0x73, 0x63 },
    },
    {
        CKM_SP800_108_FEEDBACK_KDF,
        { CKM_SHA384_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL },
        48,
        64,
        { 0xc8, 0x7a, 0xf8, 0xd9, 0x6b, 0x90, 0x82, 0x35,
          0xea, 0xf5, 0x2c, 0x8f, 0xce, 0xaa, 0x3b, 0xa5,
          0x68, 0xd3, 0x7f, 0xae, 0x31, 0x93, 0xe6, 0x69,
          0x0c, 0xd1, 0x74, 0x7f, 0x8f, 0xc2, 0xe2, 0x33,
          0x93, 0x45, 0x23, 0xba, 0xb3, 0x73, 0xc9, 0x2c,
          0xd6, 0xd2, 0x10, 0x16, 0xe9, 0x9f, 0x9e, 0xe8,
          0xc1, 0x0e, 0x29, 0x95, 0x3d, 0x16, 0x68, 0x24,
          0x40, 0x4d, 0x40, 0x21, 0x41, 0xa6, 0xc8, 0xdb },
    },
    {
        CKM_SP800_108_FEEDBACK_KDF,
        { CKM_SHA512_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL },
        64,
        64,
        { 0x81, 0x39, 0x12, 0xc2, 0xf9, 0x31, 0x24, 0x7c,
          0x71, 0x12, 0x97, 0x08, 0x82, 0x76, 0x83, 0x55,
          0x8c, 0x82, 0xf3, 0x09, 0xd6, 0x1b, 0x7a, 0xa2,
          0x6e, 0x71, 0x6b, 0xad, 0x46, 0x57, 0x60, 0x89,
          0x38, 0xcf, 0x63, 0xfa, 0xf4, 0x38, 0x27, 0xef,
          0xf0, 0xaf, 0x75, 0x4e, 0xc2, 0xe0, 0x31, 0xdb,
          0x59, 0x7d, 0x19, 0xc9, 0x6d, 0xbb, 0xed, 0x95,
          0xaf, 0x3e, 0xd8, 0x33, 0x76, 0xab, 0xec, 0xfa },
    },
    {
        CKM_SP800_108_DOUBLE_PIPELINE_KDF,
        { CKM_AES_CMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL },
        16,
        64,
        { 0x3e, 0xa8, 0xbf, 0x77, 0x84, 0x90, 0xb0, 0x3a,
          0x89, 0x16, 0x32, 0x01, 0x92, 0xd3, 0x1f, 0x1b,
          0xc1, 0x06, 0xc5, 0x32, 0x62, 0x03, 0x50, 0x16,
          0x3b, 0xb9, 0xa7, 0xdc, 0xb5, 0x68, 0x6a, 0xbb,
          0xbb, 0x7d, 0x63, 0x69, 0x24, 0x6e, 0x09, 0xd6,
          0x6f, 0x80, 0x57, 0x65, 0xc5, 0x62, 0x33, 0x96,
          0x69, 0xe6, 0xab, 0x65, 0x36, 0xd0, 0xe2, 0x5c,
          0xd7, 0xbd, 0xe4, 0x68, 0x13, 0xd6, 0xb1, 0x46 },
    },
    {
        CKM_SP800_108_DOUBLE_PIPELINE_KDF,
        { CKM_SHA256_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL },
        32,
        64,
        { 0xeb, 0x28, 0xd9, 0x2c, 0x19, 0x33, 0xb9, 0x2a,
          0xf9, 0xac, 0x85, 0xbd, 0xf4, 0xdb, 0xfa, 0x88,
          0x73, 0xf4, 0x36, 0x08, 0xdb, 0xfe, 0x13, 0xd1,
          0x5a, 0xec, 0x7b, 0x68, 0x13, 0x53, 0xb3, 0xd1,
          0x31, 0xf2, 0x83, 0xae, 0x9f, 0x75, 0x47, 0xb6,
          0x6d, 0x3c, 0x20, 0x16, 0x47, 0x9c, 0x27, 0x66,
          0xec, 0xa9, 0xdf, 0x0c, 0xda, 0x2a, 0xf9, 0xf4,
          0x55, 0x74, 0xde, 0x9d, 0x3f, 0xe3, 0x5e, 0x14 },
    },
    {
        CKM_SP800_108_DOUBLE_PIPELINE_KDF,
        { CKM_SHA384_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL },
        48,
        64,
        { 0xa5, 0xca, 0x32, 0x40, 0x00, 0x93, 0xb2, 0xcc,
          0x78, 0x3c, 0xa6, 0xc4, 0xaf, 0xa8, 0xb3, 0xd0,
          0xa4, 0x6b, 0xb5, 0x31, 0x35, 0x87, 0x33, 0xa2,
          0x6a, 0x6b, 0xe1, 0xff, 0xea, 0x1d, 0x6e, 0x9e,
          0x0b, 0xde, 0x8b, 0x92, 0x15, 0xd6, 0x56, 0x2f,
          0xb6, 0x1a, 0xd7, 0xd2, 0x01, 0x3e, 0x28, 0x2e,
          0xfa, 0x84, 0x3c, 0xc0, 0xe8, 0xbe, 0x94, 0xc0,
          0x06, 0xbd, 0xbf, 0x87, 0x1f, 0xb8, 0x64, 0xc2 },
    },
    {
        CKM_SP800_108_DOUBLE_PIPELINE_KDF,
        { CKM_SHA512_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL },
        64,
        64,
        { 0x3f, 0xd9, 0x4e, 0x80, 0x58, 0x21, 0xc8, 0xea,
          0x22, 0x17, 0xcf, 0x7d, 0xce, 0xfd, 0xec, 0x03,
          0xb9, 0xe4, 0xa2, 0xf7, 0xc0, 0xf1, 0x68, 0x81,
          0x53, 0x71, 0xb7, 0x42, 0x14, 0x4e, 0x5b, 0x09,
          0x05, 0x31, 0xb9, 0x27, 0x18, 0x2d, 0x23, 0xf8,
          0x9c, 0x3d, 0x4e, 0xd0, 0xdd, 0xf3, 0x1e, 0x4b,
          0xf2, 0xf9, 0x1a, 0x5d, 0x00, 0x66, 0x22, 0x83,
          0xae, 0x3c, 0x53, 0xd2, 0x54, 0x4b, 0x06, 0x4c },
    },
#endif
    {
        CKM_SP800_108_COUNTER_KDF,
        { CKM_SHA256_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_32_data, 0, NULL },
        32,
        64,
        { 0xfb, 0x2b, 0xb5, 0xde, 0xce, 0x5a, 0x2b, 0xdc,
          0x25, 0x8f, 0x54, 0x17, 0x4b, 0x5a, 0xa7, 0x90,
          0x64, 0x36, 0xeb, 0x43, 0x1f, 0x1d, 0xf9, 0x23,
          0xb2, 0x22, 0x29, 0xa0, 0xfa, 0x2e, 0x21, 0xb6,
          0xb7, 0xfb, 0x27, 0x0a, 0x1c, 0xa6, 0x58, 0x43,
          0xa1, 0x16, 0x44, 0x29, 0x4b, 0x1c, 0xb3, 0x72,
          0xd5, 0x98, 0x9d, 0x27, 0xd5, 0x75, 0x25, 0xbf,
          0x23, 0x61, 0x40, 0x48, 0xbb, 0x0b, 0x49, 0x8e },
    }
};

SECStatus
sftk_fips_SP800_108_PowerUpSelfTests(void)
{
    int i;
    CK_RV crv;

    const unsigned char prf_key[] = {
        0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
        0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,
        0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38,
        0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
        0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
        0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
        0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78
    };
    for (i = 0; i < PR_ARRAY_SIZE(sftk_SP800_Tests); i++) {
        const struct sftk_SP800_Test_struct *test = &sftk_SP800_Tests[i];
        unsigned char *output_buffer;
        size_t buffer_length;
        unsigned int mac_size;

        crv = kbkdf_RawDispatch(test->mech, &test->kdf_params,
                                prf_key, test->expected_mac_size,
                                NULL, prf_key, test->expected_mac_size,
                                &output_buffer, &buffer_length, &mac_size,
                                test->ret_key_length);
        if (crv != CKR_OK) {
            PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
            return SECFailure;
        }
        if ((mac_size != test->expected_mac_size) ||
            (buffer_length != test->ret_key_length) ||
            (output_buffer == NULL) ||
            (PORT_Memcmp(output_buffer, test->expected_key_bytes, buffer_length) != 0)) {
            PORT_ZFree(output_buffer, buffer_length);
            return SECFailure;
        }
        PORT_ZFree(output_buffer, buffer_length);
    }
    return SECSuccess;
}