summaryrefslogtreecommitdiff
path: root/ports/winnt/ntpd/nt_clockstuff.c
diff options
context:
space:
mode:
authorLorry Tar Creator <lorry-tar-importer@baserock.org>2014-12-02 09:01:21 +0000
committer <>2014-12-04 16:11:25 +0000
commitbdab5265fcbf3f472545073a23f8999749a9f2b9 (patch)
treec6018dd03dea906f8f1fb5f105f05b71a7dc250a /ports/winnt/ntpd/nt_clockstuff.c
downloadntp-bdab5265fcbf3f472545073a23f8999749a9f2b9.tar.gz
Imported from /home/lorry/working-area/delta_ntp/ntp-dev-4.2.7p482.tar.gz.ntp-dev-4.2.7p482
Diffstat (limited to 'ports/winnt/ntpd/nt_clockstuff.c')
-rw-r--r--ports/winnt/ntpd/nt_clockstuff.c1743
1 files changed, 1743 insertions, 0 deletions
diff --git a/ports/winnt/ntpd/nt_clockstuff.c b/ports/winnt/ntpd/nt_clockstuff.c
new file mode 100644
index 0000000..052bfcd
--- /dev/null
+++ b/ports/winnt/ntpd/nt_clockstuff.c
@@ -0,0 +1,1743 @@
+/* Windows NT Clock Routines
+ *
+ * Created by Sven Dietrich sven@inter-yacht.com
+ *
+ * New interpolation scheme by Dave Hart <davehart@davehart.com> in
+ * February 2009 overcomes 500us-1ms inherent jitter with the older
+ * scheme, first identified by Peter Rosin (nee Ekberg)
+ * <peda@lysator.liu.se> in 2003 [Bug 216].
+ *
+ * Note: The Windows port of ntpd uses the C99-snprintf replacement for
+ * (v)snprintf(), also used by msyslog(), which does not understand the
+ * printf format specifier %I64d, only the more common %lld. With the
+ * minimum supported compiler raised to Visual C++ 2005 in ntp-dev in
+ * August 2011, all MS C runtime routines also understand %lld and %llu.
+ */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <sys/resource.h> /* our private version */
+
+#if defined(_MSC_VER) && _MSC_VER >= 1400 /* VS 2005 */
+#include <intrin.h> /* for __rdtsc() */
+#endif
+
+#ifdef HAVE_PPSAPI
+#include <timepps.h>
+/*
+ * ports/winnt/include/timepps.h defines EOPNOTSUPP for compatibility
+ * with PPSAPI on other platforms. ports/winnt/include/isc/net.h has
+ * #define EOPNOTSUPP WSAEOPNOTSUPP, so to avoid a macro redefinition
+ * warning undefine it.
+ */
+#undef EOPNOTSUPP
+#endif /* HAVE_PPSAPI */
+
+#include "ntp_stdlib.h"
+#include "ntp_unixtime.h"
+#include "ntp_timer.h"
+#include "ntp_assert.h"
+#include "ntp_leapsec.h"
+#include "clockstuff.h"
+#include "ntservice.h"
+#include "ntpd.h"
+#include "ntpd-opts.h"
+
+extern double sys_residual; /* residual from previous adjustment */
+
+/*
+ * Include code to possibly modify the MM timer while the service is active.
+ */
+
+/*
+ * Whether or not MM timer modifications takes place is still controlled
+ * by the variable below which is initialized by a default value but
+ * might be changed depending on a command line switch.
+ */
+static int modify_mm_timer = MM_TIMER_LORES;
+
+#define MM_TIMER_INTV 1 /* the interval we'd want to set the MM timer to [ms] */
+
+static UINT wTimerRes;
+
+BOOL init_randfile();
+
+static long last_Adj = 0;
+
+#define LS_CORR_INTV_SECS 2 /* seconds to apply leap second correction */
+#define LS_CORR_INTV ( (LONGLONG) HECTONANOSECONDS * LS_CORR_INTV_SECS )
+#define LS_CORR_LIMIT ( (LONGLONG) HECTONANOSECONDS / 2 ) // half a second
+
+typedef union ft_ull {
+ FILETIME ft;
+ ULONGLONG ull;
+ LONGLONG ll;
+ LARGE_INTEGER li;
+} FT_ULL;
+
+/* leap second stuff */
+static FT_ULL ls_ft;
+static DWORD ls_time_adjustment;
+static ULONGLONG ls_ref_perf_cnt;
+static LONGLONG ls_elapsed;
+
+static BOOL winnt_time_initialized = FALSE;
+static BOOL winnt_use_interpolation = FALSE;
+static unsigned clock_thread_id;
+
+
+void WINAPI GetInterpTimeAsFileTime(LPFILETIME pft);
+static void StartClockThread(void);
+static void tune_ctr_freq(LONGLONG, LONGLONG);
+void StopClockThread(void);
+void atexit_revert_mm_timer(void);
+void win_time_stepped(void);
+
+static HANDLE clock_thread = NULL;
+static HANDLE TimerThreadExitRequest = NULL;
+
+/*
+ * interp_time estimates time in 100ns units
+ * based on a performance counter value given.
+ * The 2nd parameter indicates if this is
+ * part of a current time-of-day calculation.
+ */
+ULONGLONG interp_time(ULONGLONG, BOOL);
+
+/*
+ * add_counter_time_pair is called by the
+ * high priority clock thread with a new
+ * sample.
+ */
+void add_counter_time_pair(ULONGLONG, LONGLONG);
+
+/*
+ * globals used by the above two functions to
+ * implement the counter/time history
+ */
+#define BASELINES_TOT 256
+#define BASELINES_USED 64
+
+static volatile int newest_baseline = 0;
+static volatile int newest_baseline_gen = 0;
+static ULONGLONG baseline_counts[BASELINES_TOT] = {0};
+static LONGLONG baseline_times[BASELINES_TOT] = {0};
+
+#define CLOCK_BACK_THRESHOLD 100 /* < 10us unremarkable */
+static ULONGLONG clock_backward_max = CLOCK_BACK_THRESHOLD;
+static int clock_backward_count;
+
+/**
+ * A flag set on Windows versions which ignore small time adjustments.
+ *
+ * Windows Vista and Windows 7 ignore TimeAdjustment less than 16.
+ * @note Has to be checked for Windows Server 2008/2012 and Windows 8.
+ * Ref: http://support.microsoft.com/kb/2537623, bug #2328
+ */
+static BOOL os_ignores_small_adjustment;
+
+/*
+ * clockperiod is the period used for SetSystemTimeAdjustment
+ * slewing calculations but does not necessarily correspond
+ * to the precision of the OS clock. Prior to Windows Vista
+ * (6.0) the two were identical. In 100ns units.
+ */
+static DWORD clockperiod;
+
+/*
+ * os_clock_precision is the observed precision of the OS
+ * clock, meaning the increment between discrete values. This
+ * is currently calculated once at startup. 100ns units.
+ */
+static ULONGLONG os_clock_precision;
+
+/*
+ * NomPerfCtrFreq is from QueryPerformanceFrequency and is the
+ * number of performance counter beats per second. PerfCtrFreq
+ * starts from NomPerfCtrFreq but is maintained using a sliding
+ * window average based on actual performance counter behavior,
+ * to allow us to better tolerate powersaving measures that
+ * alter the effective frequency of the processor cycle counter
+ * (TSC) which sometimes underlies QueryPerformanceCounter.
+ *
+ * Note that the OS is unlikely to be so subtle in its internal
+ * scheduling of waitable timers, presumably done using the
+ * performance counter. Therefore our calculations for
+ * interpolated time should be based on PerfCtrFreq but our
+ * calculations for SetWaitableTimer should assume the OS will
+ * convert from FILETIME 100ns units to performance counter
+ * beats using the nominal frequency.
+ */
+
+volatile ULONGLONG PerfCtrFreq = 0;
+ ULONGLONG NomPerfCtrFreq = 0;
+
+/*
+ * If we're using RDTSC beating at the same rate as
+ * QueryPerformanceCounter, there is a systemic
+ * offset we need to account for when using
+ * counterstamps from serialpps.sys, which are
+ * always from QPC (actually KeQueryPerformanceCounter).
+ */
+static LONGLONG QPC_offset = 0;
+
+/*
+ * Substitute RDTSC for QueryPerformanceCounter()?
+ */
+static int use_pcc = -1;
+
+/*
+ * Restrict threads that call QPC/RDTSC to one CPU?
+ */
+static int lock_interp_threads = -1;
+
+/*
+ * ppm_per_adjust_unit is parts per million effect on the OS
+ * clock per slewing adjustment unit per second. Per haps.
+ */
+static DOUBLE ppm_per_adjust_unit;
+
+/*
+ * wintickadj emulates the functionality provided by unix tickadj,
+ * providing a baseline clock correction if needed to get the
+ * clock within a few hundred PPM of correct frequency.
+ */
+static long wintickadj;
+
+static void choose_interp_counter(void);
+static int is_qpc_built_on_pcc(void);
+
+/*
+ * performance counter frequency observations
+ */
+#define TUNE_CTR_DEPTH 3 /* running avg depth */
+
+static HANDLE ctr_freq_timer = INVALID_HANDLE_VALUE;
+static ULONGLONG tune_ctr_freq_max_interval;
+static unsigned tune_ctr_period;
+void start_ctr_freq_timer(ULONGLONG now_time);
+void reset_ctr_freq_timer(ULONGLONG when, ULONGLONG now);
+void reset_ctr_freq_timer_abs(ULONGLONG when);
+
+/* round a Windows time to the next bottom of the second */
+
+#define ROUND_TO_NEXT_SEC_BOTTOM(t) \
+do { \
+ (t) += 3 * HECTONANOSECONDS / 2 - 1; \
+ (t) /= HECTONANOSECONDS; \
+ (t) *= HECTONANOSECONDS; \
+ (t) -= HECTONANOSECONDS / 2; \
+} while (0)
+
+/*
+ * NT native time format is 100's of nanoseconds since 1601-01-01.
+ * Helpers for converting between "hectonanoseconds" and the
+ * performance counter scale from which interpolated time is
+ * derived.
+ */
+#define HNS2PERF(hns) ((hns) * PerfCtrFreq / HECTONANOSECONDS)
+#define PERF2HNS(ctr) ((ctr) * HECTONANOSECONDS / PerfCtrFreq)
+
+
+#if defined(_MSC_VER) && _MSC_VER >= 1400 /* VS 2005 */
+#define get_pcc() __rdtsc()
+#else
+/*
+ * something like this can be used for a compiler without __rdtsc()
+ */
+ULONGLONG __forceinline
+get_pcc(void)
+{
+ /* RDTSC returns in EDX:EAX, same as C compiler */
+ __asm {
+ RDTSC
+ }
+}
+#endif
+
+
+/*
+ * perf_ctr() returns the current performance counter value,
+ * from QueryPerformanceCounter or RDTSC.
+ */
+ULONGLONG WINAPI
+perf_ctr(void)
+{
+ FT_ULL ft;
+
+ if (use_pcc)
+ return get_pcc();
+ else {
+ QueryPerformanceCounter(&ft.li);
+ return ft.ull;
+ }
+}
+
+
+/*
+ * init_small_adjustment
+ *
+ * Set variable os_ignores_small_adjustment
+ *
+ */
+static void init_small_adjustment(void)
+{
+ OSVERSIONINFO vi;
+ memset(&vi, 0, sizeof(vi));
+ vi.dwOSVersionInfoSize = sizeof(vi);
+
+ if (!GetVersionEx(&vi)) {
+ msyslog(LOG_WARNING, "GetVersionEx failed with error code %d.", GetLastError());
+ os_ignores_small_adjustment = FALSE;
+ return;
+ }
+
+ if (vi.dwMajorVersion == 6 && vi.dwMinorVersion == 1) {
+ // Windows 7 and Windows Server 2008 R2
+ //
+ // Windows 7 is documented as affected.
+ // Windows Server 2008 R2 is assumed affected.
+ os_ignores_small_adjustment = TRUE;
+ } else if (vi.dwMajorVersion == 6 && vi.dwMinorVersion == 0) {
+ // Windows Vista and Windows Server 2008
+ //
+ // Windows Vista is documented as affected.
+ // Windows Server 2008 is assumed affected.
+ os_ignores_small_adjustment = TRUE;
+ } else {
+ os_ignores_small_adjustment = FALSE;
+ }
+}
+
+
+/*
+ * choose_interp_counter - select between QueryPerformanceCounter and
+ * the x86 processor cycle counter (TSC).
+ */
+static void
+choose_interp_counter(void)
+{
+ const char * ntpd_pcc_freq_text;
+ int qpc_built_on_pcc;
+
+ /*
+ * Regardless of whether we actually use RDTSC, first determine
+ * if QueryPerformanceCounter is built on it, so that we can
+ * decide whether it's prudent to lock QPC-consuming threads to
+ * a particular CPU.
+ */
+ qpc_built_on_pcc = is_qpc_built_on_pcc();
+ lock_interp_threads = qpc_built_on_pcc;
+
+ /*
+ * It's time to make some more permanent knobs,
+ * but for right now the RDTSC aka PCC dance on x86 is:
+ *
+ * 1. With none of these variables defined, only QPC
+ * is used because there is no reliable way to
+ * detect counter frequency variation after ntpd
+ * startup implemented.
+ * 2. We need a better knob, but for now if you know
+ * your RDTSC / CPU frequency is invariant, set
+ * NTPD_PCC and assuming your QPC is based on the
+ * PCC as well, RDTSC will be substituted.
+ * 3. More forcefully, you can jam in a desired exact
+ * processor frequency, expressed in cycles per
+ * second by setting NTPD_PCC_FREQ=398125000, for
+ * example, if yor actual known CPU frequency is
+ * 398.125 MHz, and NTPD_PCC doesn't work because
+ * QueryPerformanceCounter is implemented using
+ * another counter. It is very easy to make ntpd
+ * fall down if the NTPD_PCC_FREQ value isn't very
+ * close to the observed RDTSC units per second.
+ *
+ * Items 2 and 3 could probably best be combined into one
+ * new windows-specific command line switch such as
+ * ntpd --pcc
+ * or
+ * ntpd --pcc=398125000
+ *
+ * They are currently tied to Windows because that is
+ * the only ntpd port with its own interpolation, and
+ * to x86/x64 because no one has ported the Windows
+ * ntpd port to the sole remaining alternative, Intel
+ * Itanium.
+ */
+ if (HAVE_OPT(PCCFREQ))
+ ntpd_pcc_freq_text = OPT_ARG(PCCFREQ);
+ else
+ ntpd_pcc_freq_text = getenv("NTPD_PCC_FREQ");
+
+ if (!HAVE_OPT(USEPCC)
+ && NULL == ntpd_pcc_freq_text
+ && NULL == getenv("NTPD_PCC")) {
+ use_pcc = 0;
+ return;
+ }
+
+ if (!qpc_built_on_pcc && NULL == ntpd_pcc_freq_text) {
+ use_pcc = 0;
+ return;
+ }
+
+ use_pcc = 1;
+ if (ntpd_pcc_freq_text != NULL)
+ sscanf(ntpd_pcc_freq_text,
+ "%llu",
+ &NomPerfCtrFreq);
+
+ NLOG(NLOG_CLOCKINFO)
+ msyslog(LOG_INFO,
+ "using processor cycle counter "
+ "%.3f MHz",
+ NomPerfCtrFreq / 1e6);
+ return;
+}
+
+
+/*
+ * is_qpc_built_on_pcc - test if QueryPerformanceCounter runs at the
+ * same rate as the processor cycle counter (TSC).
+ */
+static int
+is_qpc_built_on_pcc(void)
+{
+ LONGLONG offset;
+ FT_ULL ft1;
+ FT_ULL ft2;
+ FT_ULL ft3;
+ FT_ULL ft4;
+ FT_ULL ft5;
+
+ NTP_REQUIRE(NomPerfCtrFreq != 0);
+
+ QueryPerformanceCounter(&ft1.li);
+ ft2.ull = get_pcc();
+ Sleep(1);
+ QueryPerformanceCounter(&ft3.li);
+ Sleep(1);
+ ft4.ull = get_pcc();
+ Sleep(1);
+ QueryPerformanceCounter(&ft5.li);
+
+ offset = ft2.ull - ft1.ull;
+ ft3.ull += offset;
+ ft5.ull += offset;
+
+ if (ft2.ull <= ft3.ull &&
+ ft3.ull <= ft4.ull &&
+ ft4.ull <= ft5.ull) {
+
+ QPC_offset = offset;
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+
+/*
+ * Request Multimedia Timer
+ */
+void
+set_mm_timer(
+ int timerres
+ )
+{
+ modify_mm_timer = timerres;
+}
+
+/*
+ * adj_systime - called once every second to discipline system clock.
+ * Normally, the offset passed in (parameter now) is in the range
+ * [-NTP_MAXFREQ, NTP_MAXFREQ]. However, at EVNT_NSET, a much larger
+ * slew is requested if the initial offset is less than the step
+ * threshold, in the range [-step, step] where step is the step
+ * threshold, 128 msec by default. For the remainder of the frequency
+ * training interval, adj_systime is called with 0 offset each second
+ * and slew the large offset at 500 PPM (500 usec/sec).
+ * Returns 1 if okay, 0 if trouble.
+ */
+int
+adj_systime(
+ double now
+ )
+{
+ /* ntp time scale origin as ticks since 1601-01-01 */
+ static const ULONGLONG HNS_JAN_1900 = 94354848000000000ull;
+
+ static double adjtime_carry;
+ double dtemp;
+ u_char isneg;
+ BOOL rc;
+ long TimeAdjustment;
+ SYSTEMTIME st;
+ ULONGLONG this_perf_count;
+ FT_ULL curr_ft;
+ leap_result_t lsi;
+
+ /*
+ * Add the residual from the previous adjustment to the new
+ * adjustment, bound and round.
+ */
+ dtemp = adjtime_carry + sys_residual + now;
+ adjtime_carry = 0.;
+ sys_residual = 0.;
+ if (dtemp < 0) {
+ isneg = TRUE;
+ dtemp = -dtemp;
+ } else {
+ isneg = FALSE;
+ }
+
+ if (dtemp > NTP_MAXFREQ) {
+ adjtime_carry = dtemp - NTP_MAXFREQ;
+ dtemp = NTP_MAXFREQ;
+ }
+
+ if (isneg) {
+ dtemp = -dtemp;
+ adjtime_carry = -adjtime_carry;
+ }
+
+ dtemp = dtemp * 1e6;
+
+ /*
+ * dtemp is in micro seconds. NT uses 100 ns units,
+ * so a unit change in TimeAdjustment corresponds
+ * to slewing 10 ppm on a 100 Hz system. Calculate
+ * the number of 100ns units to add, using OS tick
+ * frequency as per suggestion from Harry Pyle,
+ * and leave the remainder in dtemp
+ */
+ TimeAdjustment = (long)(dtemp / ppm_per_adjust_unit +
+ ((isneg)
+ ? -0.5
+ : 0.5));
+
+ if (os_ignores_small_adjustment) {
+ /*
+ * As the OS ignores adjustments smaller than 16, we need to
+ * leave these small adjustments in sys_residual, causing
+ * the small values to be averaged over time.
+ */
+ if (TimeAdjustment > -16 && TimeAdjustment < 16) {
+ TimeAdjustment = 0;
+ }
+ }
+
+ dtemp -= TimeAdjustment * ppm_per_adjust_unit;
+
+
+ /* If a piping-hot close leap second is pending for the end
+ * of this day, determine the UTC time stamp when the transition
+ * must take place. (Calculated in the current leap era!)
+ */
+ if (leapsec >= LSPROX_ALERT) {
+ if (0 == ls_ft.ull && leapsec_frame(&lsi)) {
+ if (lsi.tai_diff > 0) {
+ /* A leap second insert is scheduled at the end
+ * of the day. Since we have not yet computed the
+ * time stamp, do it now. Signal electric mode
+ * for this insert.
+ */
+ ls_ft.ull = lsi.ttime.Q_s * HECTONANOSECONDS
+ + HNS_JAN_1900;
+ FileTimeToSystemTime(&ls_ft.ft, &st);
+ msyslog(LOG_NOTICE,
+ "Detected positive leap second announcement "
+ "for %04d-%02d-%02d %02d:%02d:%02d UTC",
+ st.wYear, st.wMonth, st.wDay,
+ st.wHour, st.wMinute, st.wSecond);
+ leapsec_electric(TRUE);
+ } else if (lsi.tai_diff < 0) {
+ /* Do not handle negative leap seconds here. If this
+ * happens, let the system step.
+ */
+ leapsec_electric(FALSE);
+ }
+ }
+ } else {
+ /* The leap second announcement is gone. Happens primarily after
+ * the leap transition, but can also be due to a clock step.
+ * Disarm the leap second, but only if there is one scheduled
+ * and not currently in progress!
+ */
+ if (ls_ft.ull != 0 && ls_time_adjustment == 0) {
+ ls_ft.ull = 0;
+ msyslog(LOG_NOTICE, "Leap second announcement disarmed");
+ }
+ }
+
+ /*
+ * If the time stamp for the next leap second has been set
+ * then check if the leap second must be handled
+ */
+ if (ls_ft.ull != 0) {
+ this_perf_count = perf_ctr();
+
+ if (0 == ls_time_adjustment) { /* has not yet been scheduled */
+
+ GetSystemTimeAsFileTime(&curr_ft.ft);
+ if (curr_ft.ull >= ls_ft.ull) {
+ ls_time_adjustment = clockperiod / LS_CORR_INTV_SECS;
+ ls_ref_perf_cnt = this_perf_count;
+ ls_elapsed = 0;
+ msyslog(LOG_NOTICE, "Inserting positive leap second.");
+ }
+ } else { /* leap sec adjustment has been scheduled previously */
+ ls_elapsed = (this_perf_count - ls_ref_perf_cnt)
+ * HECTONANOSECONDS / PerfCtrFreq;
+ }
+
+ if (ls_time_adjustment != 0) { /* leap second adjustment is currently active */
+ if (ls_elapsed > (LS_CORR_INTV - LS_CORR_LIMIT)) {
+ ls_time_adjustment = 0; /* leap second adjustment done */
+ ls_ft.ull = 0;
+ }
+
+ /*
+ * NOTE: While the system time is slewed during the leap second
+ * the interpolation function which is based on the performance
+ * counter does not account for the slew.
+ */
+ TimeAdjustment -= ls_time_adjustment;
+ }
+ }
+
+
+ sys_residual = dtemp / 1e6;
+ DPRINTF(3, ("adj_systime: %.9f -> %.9f residual %.9f",
+ now, 1e-6 * (TimeAdjustment * ppm_per_adjust_unit),
+ sys_residual));
+ if (0. == adjtime_carry)
+ DPRINTF(3, ("\n"));
+ else
+ DPRINTF(3, (" adjtime %.9f\n", adjtime_carry));
+
+ /* only adjust the clock if adjustment changes */
+ TimeAdjustment += wintickadj;
+ if (last_Adj != TimeAdjustment) {
+ last_Adj = TimeAdjustment;
+ DPRINTF(2, ("SetSystemTimeAdjustment(%+ld)\n", TimeAdjustment));
+ rc = SetSystemTimeAdjustment(clockperiod + TimeAdjustment, FALSE);
+ if (!rc)
+ msyslog(LOG_ERR, "Can't adjust time: %m");
+ } else {
+ rc = TRUE;
+ }
+
+ return rc;
+}
+
+
+void
+init_winnt_time(void)
+{
+ static const char settod[] = "settimeofday=\"SetSystemTime\"";
+ char szMsgPath[MAX_PATH+1];
+ HANDLE hToken = INVALID_HANDLE_VALUE;
+ TOKEN_PRIVILEGES tkp;
+ TIMECAPS tc;
+ BOOL noslew;
+ DWORD adjclockperiod;
+ LARGE_INTEGER Freq;
+ FT_ULL initial_hectonanosecs;
+ FT_ULL next_hectonanosecs;
+ double adjppm;
+ double rawadj;
+ char * pch;
+
+ if (winnt_time_initialized)
+ return;
+
+ /*
+ * Make sure the service is initialized
+ * before we do anything else
+ */
+ ntservice_init();
+
+ /* Set up the Console Handler */
+ if (!SetConsoleCtrlHandler(OnConsoleEvent, TRUE)) {
+ msyslog(LOG_ERR, "Can't set console control handler: %m");
+ }
+
+ /* Set the Event-ID message-file name. */
+ if (!GetModuleFileName(NULL, szMsgPath, sizeof(szMsgPath))) {
+ msyslog(LOG_ERR, "GetModuleFileName(PGM_EXE_FILE) failed: %m");
+ exit(1);
+ }
+
+ /* Initialize random file before OpenSSL checks */
+ if (!init_randfile())
+ msyslog(LOG_ERR, "Unable to initialize .rnd file");
+
+#pragma warning(push)
+#pragma warning(disable: 4127) /* conditional expression is constant */
+
+#ifdef DEBUG
+ if (SIZEOF_TIME_T != sizeof(time_t)
+ || SIZEOF_INT != sizeof(int)
+ || SIZEOF_SIGNED_CHAR != sizeof(char)) {
+ msyslog(LOG_ERR, "config.h SIZEOF_* macros wrong, fatal");
+ exit(1);
+ }
+#endif
+
+#pragma warning(pop)
+
+ init_small_adjustment();
+ leapsec_electric(TRUE);
+
+ /*
+ * Get privileges needed for fiddling with the clock
+ */
+
+ /* get the current process token handle */
+ if (!OpenProcessToken(
+ GetCurrentProcess(),
+ TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY,
+ &hToken)) {
+ msyslog(LOG_ERR, "OpenProcessToken failed: %m");
+ exit(-1);
+ }
+ /* get the LUID for system-time privilege. */
+ LookupPrivilegeValue(NULL, SE_SYSTEMTIME_NAME, &tkp.Privileges[0].Luid);
+ tkp.PrivilegeCount = 1; /* one privilege to set */
+ tkp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
+
+ /* get set-time privilege for this process. */
+ AdjustTokenPrivileges(hToken, FALSE, &tkp, 0,
+ (PTOKEN_PRIVILEGES) NULL, 0);
+
+ /* cannot use return value of AdjustTokenPrivileges. */
+ /* (success does not indicate all privileges were set) */
+ if (GetLastError() != ERROR_SUCCESS) {
+ msyslog(LOG_ERR, "AdjustTokenPrivileges failed: %m");
+ /* later set time call will probably fail */
+ }
+
+ CloseHandle(hToken);
+ hToken = INVALID_HANDLE_VALUE;
+
+ /*
+ * Say how we're setting the time of day
+ */
+ set_sys_var(settod, sizeof(settod), RO);
+
+ /*
+ * ntpd on Windows has always raised its priority, without
+ * requiring -N as on Unix. Since Windows ntpd doesn't share
+ * the history of unix ntpd of once having no -N and therefore
+ * needing to be invoked under nice, there is no reason to
+ * bring it in line with the Unix version in this regard.
+ * Instsrv assumes ntpd is invoked with no arguments, and
+ * upgrading users would be negatively surprised by the
+ * poor timekeeping if they failed to add -N as part of
+ * upgrading were we to correct this platform difference.
+ */
+ if (-1 == setpriority(PRIO_PROCESS, 0, NTP_PRIO))
+ exit(-1);
+
+ /* Determine the existing system time slewing */
+ if (!GetSystemTimeAdjustment(&adjclockperiod, &clockperiod, &noslew)) {
+ msyslog(LOG_ERR, "GetSystemTimeAdjustment failed: %m");
+ exit(-1);
+ }
+
+ /*
+ * If there is no slewing before ntpd, adjclockperiod and clockperiod
+ * will be equal. Any difference is carried into adj_systime's first
+ * pass as the previous adjustment.
+ */
+ last_Adj = adjclockperiod - clockperiod;
+
+ if (last_Adj)
+ msyslog(LOG_INFO,
+ "Clock interrupt period %.3f msec "
+ "(startup slew %.1f usec/period)",
+ clockperiod / 1e4,
+ last_Adj / 10.);
+ else
+ msyslog(LOG_INFO,
+ "Clock interrupt period %.3f msec",
+ clockperiod / 1e4);
+
+ /*
+ * Calculate the time adjustment resulting from incrementing
+ * units per tick by 1 unit for 1 second
+ */
+ ppm_per_adjust_unit = 1e6 / clockperiod;
+
+ pch = getenv("NTPD_TICKADJ_PPM");
+ if (pch != NULL && 1 == sscanf(pch, "%lf", &adjppm)) {
+ rawadj = adjppm / ppm_per_adjust_unit;
+ rawadj += (rawadj < 0)
+ ? -0.5
+ : 0.5;
+ wintickadj = (long)rawadj;
+ msyslog(LOG_INFO,
+ "Using NTPD_TICKADJ_PPM %+g ppm (%+ld)",
+ adjppm, wintickadj);
+ }
+
+ /* get the performance counter ticks per second */
+ if (!QueryPerformanceFrequency(&Freq) || !Freq.QuadPart) {
+ msyslog(LOG_ERR, "QueryPerformanceFrequency failed: %m");
+ exit(-1);
+ }
+
+ NomPerfCtrFreq = PerfCtrFreq = Freq.QuadPart;
+ msyslog(LOG_INFO,
+ "Performance counter frequency %.3f MHz",
+ PerfCtrFreq / 1e6);
+
+ /*
+ * With a precise system clock, our interpolation decision is
+ * a slam dunk.
+ */
+ if (NULL != pGetSystemTimePreciseAsFileTime) {
+ winnt_use_interpolation = FALSE;
+ winnt_time_initialized = TRUE;
+
+ return;
+ }
+
+ /*
+ * Implement any multimedia timer manipulation requested via -M
+ * option. This is rumored to be unneeded on Win8 with the
+ * introduction of the precise (interpolated) system clock.
+ */
+ if (modify_mm_timer) {
+ if (timeGetDevCaps(&tc, sizeof(tc)) == TIMERR_NOERROR) {
+ wTimerRes = min(max(tc.wPeriodMin, MM_TIMER_INTV), tc.wPeriodMax);
+ timeBeginPeriod(wTimerRes);
+ atexit(atexit_revert_mm_timer);
+
+ msyslog(LOG_INFO, "MM timer resolution: %u..%u msec, set to %u msec",
+ tc.wPeriodMin, tc.wPeriodMax, wTimerRes );
+ } else {
+ msyslog(LOG_ERR, "Multimedia timer unavailable");
+ }
+ }
+
+ /*
+ * Spin on GetSystemTimeAsFileTime to determine its
+ * granularity. Prior to Windows Vista this is
+ * typically the same as the clock period.
+ */
+ GetSystemTimeAsFileTime(&initial_hectonanosecs.ft);
+ do {
+ GetSystemTimeAsFileTime(&next_hectonanosecs.ft);
+ } while (initial_hectonanosecs.ull == next_hectonanosecs.ull);
+
+ os_clock_precision = next_hectonanosecs.ull -
+ initial_hectonanosecs.ull;
+
+ msyslog(LOG_INFO,
+ "Windows clock precision %.3f msec, min. slew %.3f ppm/s",
+ os_clock_precision / 1e4, ppm_per_adjust_unit);
+
+ winnt_time_initialized = TRUE;
+
+ choose_interp_counter();
+
+ if (getenv("NTPD_USE_SYSTEM_CLOCK") ||
+ (os_clock_precision < 4 * 10000 &&
+ !getenv("NTPD_USE_INTERP_DANGEROUS"))) {
+ msyslog(LOG_INFO, "using Windows clock directly");
+ } else {
+ winnt_use_interpolation = TRUE;
+ get_sys_time_as_filetime = GetInterpTimeAsFileTime;
+ StartClockThread();
+ }
+}
+
+
+void
+atexit_revert_mm_timer(void)
+{
+ timeEndPeriod(wTimerRes);
+ DPRINTF(1, ("MM timer resolution reset\n"));
+}
+
+
+void
+reset_winnt_time(void)
+{
+ SYSTEMTIME st;
+
+ /*
+ * If we're in the 2-second slew right after a leap second,
+ * we don't want to continue that extreme slew, in that case
+ * disable our slewing and return clock discipline to the
+ * kernel. Similarly if we are not yet synchronized,
+ * our current slew may not be a good ongoing trim.
+ * Otherwise, our leave in place the last SetSystemTimeAdjustment
+ * as an ongoing frequency correction, better than nothing.
+ * TODO:
+ * Verify this will not call SetSystemTimeAdjustment if
+ * ntpd is running in ntpdate mode.
+ */
+ if (sys_leap == LEAP_NOTINSYNC || ls_time_adjustment != 0)
+ SetSystemTimeAdjustment(0, TRUE);
+
+ /*
+ * Read the current system time, and write it back to
+ * force CMOS update, only if we are exiting because
+ * the computer is shutting down and we are already
+ * synchronized.
+ */
+ if (ntservice_systemisshuttingdown() && sys_leap != LEAP_NOTINSYNC) {
+ GetSystemTime(&st);
+ SetSystemTime(&st);
+ NLOG(NLOG_SYSEVENT | NLOG_CLOCKINFO)
+ msyslog(LOG_NOTICE, "system is shutting down, CMOS time reset.");
+ }
+}
+
+
+/*
+ * GetSystemTimeAsFileTime() interface clone is used by getclock() in ntpd.
+ */
+
+void WINAPI
+GetInterpTimeAsFileTime(
+ LPFILETIME pft
+ )
+{
+ static ULONGLONG last_interp_time;
+ FT_ULL now_time;
+ FT_ULL now_count;
+ ULONGLONG clock_backward;
+
+ /*
+ * Mark a mark ASAP. The latency to here should be reasonably
+ * deterministic
+ */
+
+ now_count.ull = perf_ctr();
+ now_time.ull = interp_time(now_count.ull, TRUE);
+
+ if (last_interp_time <= now_time.ull) {
+ last_interp_time = now_time.ull;
+ } else {
+ clock_backward = last_interp_time - now_time.ull;
+ if (clock_backward > clock_backward_max) {
+ clock_backward_max = clock_backward;
+ clock_backward_count++;
+ }
+ now_time.ull = last_interp_time;
+ }
+ *pft = now_time.ft;
+
+ return;
+}
+
+
+/*
+ * TimerApcFunction is invoked on the high-priority clock
+ * thread to capture a new baseline system time and
+ * performance counter correlation every 43 msec (64Hz
+ * OS clock precision).
+ */
+static void CALLBACK
+TimerApcFunction(
+ LPVOID lpArgToCompletionRoutine,
+ DWORD dwTimerLowValue,
+ DWORD dwTimerHighValue
+ )
+{
+ static BOOL ctr_freq_timer_started = FALSE;
+ static ULONGLONG prev_count;
+ ULONGLONG now_time;
+ FT_ULL now_count;
+
+ /* Grab the counter first of all */
+ now_count.ull = perf_ctr();
+
+ now_time = (((ULONGLONG)dwTimerHighValue << 32) |
+ dwTimerLowValue);
+
+ /*
+ * Save this correlation in the history.
+ */
+ add_counter_time_pair(now_count.ull, now_time);
+
+ /*
+ * Once we're synchronized start the counter frequency
+ * tuning timer.
+ */
+ if (INVALID_HANDLE_VALUE == ctr_freq_timer &&
+ LEAP_NOTINSYNC != sys_leap)
+ start_ctr_freq_timer(now_time);
+}
+
+
+unsigned WINAPI
+ClockThread(
+ void *arg
+ )
+{
+ LARGE_INTEGER DueTime;
+ HANDLE timer;
+ double HZ;
+ double TimerHz;
+ DWORD timer_period_msec;
+ DWORD res;
+ char *ntpd_int_int_text;
+
+ UNUSED_ARG(arg);
+
+ timer = CreateWaitableTimer(NULL, FALSE, NULL);
+
+ ntpd_int_int_text = getenv("NTPD_INT_INT");
+
+ HZ = (double)HECTONANOSECONDS / clockperiod;
+
+ if (HZ > 63 && HZ < 65) {
+ timer_period_msec = 43;
+ } else if (HZ > 98 && HZ < 102) {
+ timer_period_msec = 27;
+ if (NULL == ntpd_int_int_text)
+ msyslog(LOG_WARNING,
+ "%.3f Hz system clock may benefit from "
+ "custom NTPD_INT_INT env var timer interval "
+ "override between approx. 20 and 50 msecs.",
+ HZ);
+ } else {
+ timer_period_msec = (DWORD)(0.5 + (2.752 * clockperiod / 10000));
+ if (NULL == ntpd_int_int_text)
+ msyslog(LOG_WARNING,
+ "unfamiliar %.3f Hz system clock may benefit "
+ "from custom NTPD_INT_INT env var timer "
+ "interval override between approx. 20 and 50 "
+ "msecs.",
+ HZ);
+ }
+
+ if (ntpd_int_int_text != NULL) {
+ timer_period_msec = atoi(ntpd_int_int_text);
+ timer_period_msec = max(9, timer_period_msec);
+ msyslog(LOG_NOTICE,
+ "using NTPD_INT_INT env var override %u",
+ timer_period_msec);
+ }
+
+ TimerHz = 1e3 / timer_period_msec;
+ msyslog(LOG_NOTICE, "HZ %.3f using %u msec timer %.3f Hz %d deep",
+ HZ,
+ timer_period_msec,
+ TimerHz,
+ BASELINES_USED);
+
+ /* negative DueTime means relative to now */
+ DueTime.QuadPart = -(int)timer_period_msec;
+
+ SetWaitableTimer(
+ timer,
+ &DueTime, /* first fire */
+ timer_period_msec, /* period thereafter */
+ TimerApcFunction, /* callback routine */
+ &timer, /* context for callback */
+ FALSE); /* do not interfere with power saving */
+
+ /*
+ * The clock thread spends the rest of its life in the TimerApcFunction
+ * and ctr_freq_timer_fired timer APC callbacks, which can only occur
+ * while this thread is in an alertable wait. Note the Ex on
+ * WaitForSingleObjectEx and TRUE for fAlertable. The wait will return
+ * after each APC callback in which case we simply wait again. We will
+ * break out of the loop when StopClockThread signals our exit event.
+ */
+ do res = WaitForSingleObjectEx(
+ TimerThreadExitRequest,
+ INFINITE,
+ TRUE);
+ while (WAIT_OBJECT_0 != res);
+
+ CloseHandle(timer);
+
+ if (ctr_freq_timer != INVALID_HANDLE_VALUE) {
+ CloseHandle(ctr_freq_timer);
+ ctr_freq_timer = INVALID_HANDLE_VALUE;
+ }
+
+ return 0;
+}
+
+
+static void
+StartClockThread(void)
+{
+ static BOOL done_once = FALSE;
+ FT_ULL StartTime;
+
+ /* init variables with the time now */
+ GetSystemTimeAsFileTime(&StartTime.ft);
+ baseline_times[0] = StartTime.ull;
+ baseline_counts[0] = perf_ctr();
+
+ /* init sync objects */
+ TimerThreadExitRequest = CreateEvent(NULL, FALSE, FALSE, NULL);
+
+ clock_thread =
+ (HANDLE)_beginthreadex(
+ NULL,
+ 0,
+ ClockThread,
+ NULL,
+ CREATE_SUSPENDED,
+ &clock_thread_id);
+
+ if (clock_thread != NULL) {
+ /* remember the thread priority is only within the process class */
+ if (!SetThreadPriority(clock_thread, THREAD_PRIORITY_TIME_CRITICAL)) {
+ DPRINTF(1, ("Error setting thread priority\n"));
+ }
+
+ lock_thread_to_processor(clock_thread);
+ ResumeThread(clock_thread);
+
+ if (FALSE == done_once) {
+ done_once = TRUE;
+ lock_thread_to_processor(GetCurrentThread());
+ atexit( StopClockThread );
+ }
+
+ /*
+ * Give the clock thread time to fill its counter/time
+ * sample buffer. This will underfill the buffer a
+ * bit for sample periods over 43 msec.
+ */
+ Sleep(BASELINES_USED * 43);
+ }
+}
+
+
+void
+StopClockThread(void)
+{
+ /*
+ * if the clock thread exit()s this routine
+ * will be called on the clock thread and
+ * we need not (and can't) use the normal
+ * TimerThreadExitRequest event.
+ */
+ if (GetCurrentThreadId() != clock_thread_id) {
+
+ if (!SetEvent(TimerThreadExitRequest) ||
+ WaitForSingleObject(clock_thread, 2 * 1000) !=
+ WAIT_OBJECT_0) {
+ msyslog(LOG_ERR, "Failed to stop clock thread.");
+ }
+ }
+ CloseHandle(TimerThreadExitRequest);
+ TimerThreadExitRequest = NULL;
+ CloseHandle(clock_thread);
+ clock_thread = NULL;
+}
+
+
+void
+lock_thread_to_processor(HANDLE thread)
+{
+ static DWORD_PTR ProcessAffinityMask;
+ static DWORD_PTR ThreadAffinityMask;
+ DWORD_PTR SystemAffinityMask;
+ char *cputext;
+ unsigned int cpu;
+
+ if ( ! winnt_time_initialized) {
+ DPRINTF(1, ("init_winnt_time() must be called before "
+ "lock_thread_to_processor(), exiting\n"));
+ exit(-1);
+ }
+
+ if (!winnt_use_interpolation)
+ return;
+
+ if (-1 == lock_interp_threads) {
+ DPRINTF(1, ("choose_interp_counter() is not called "
+ "before lock_thread_to_processor()\n"));
+ exit(-1);
+ } else if (!lock_interp_threads)
+ return;
+
+ /*
+ * Calculate the ThreadAffinityMask we'll use once on the
+ * first invocation.
+ */
+ if (!ProcessAffinityMask) {
+
+ /*
+ * Choose which processor to nail the main and clock threads to.
+ * If we have more than one, we simply choose the 2nd.
+ * Randomly choosing from 2 to n would be better, but in
+ * either case with clock and network interrupts more likely
+ * to be serviced by the first procecssor, let's stay away
+ * from it. QueryPerformanceCounter is not necessarily
+ * consistent across CPUs, hence the need to nail the two
+ * threads involved in QPC-based interpolation to the same
+ * CPU.
+ */
+
+ GetProcessAffinityMask(
+ GetCurrentProcess(),
+ &ProcessAffinityMask,
+ &SystemAffinityMask);
+
+ /*
+ * respect NTPD_CPU environment variable if present
+ * for testing. NTPD_CPU=0 means use all CPUs, 1-64
+ * means lock threads involved in interpolation to
+ * that CPU. Default to 2nd if more than 1.
+ */
+
+ cpu = 2;
+ cputext = getenv("NTPD_CPU");
+ if (cputext) {
+ cpu = (unsigned int) atoi(cputext);
+ cpu = min((8 * sizeof(DWORD_PTR)), cpu);
+ }
+
+ /*
+ * Clear all bits except the 2nd. If we have only one proc
+ * that leaves ThreadAffinityMask zeroed and we won't bother
+ * with SetThreadAffinityMask.
+ */
+
+ ThreadAffinityMask = (0 == cpu) ? 0 : (1 << (cpu - 1));
+
+ if (ThreadAffinityMask &&
+ !(ThreadAffinityMask & ProcessAffinityMask))
+
+ DPRINTF(1, ("Selected CPU %u (mask %x) is outside "
+ "process mask %x, using all CPUs.\n",
+ cpu, ThreadAffinityMask,
+ ProcessAffinityMask));
+ else
+ DPRINTF(1, ("Wiring to processor %u (0 means all) "
+ "affinity mask %x\n",
+ cpu, ThreadAffinityMask));
+
+ ThreadAffinityMask &= ProcessAffinityMask;
+ }
+
+ if (ThreadAffinityMask &&
+ !SetThreadAffinityMask(thread, ThreadAffinityMask))
+ msyslog(LOG_ERR,
+ "Unable to wire thread to mask %x: %m",
+ ThreadAffinityMask);
+}
+
+
+#ifdef HAVE_PPSAPI
+static inline void ntp_timestamp_from_counter(l_fp *, ULONGLONG,
+ ULONGLONG);
+
+/*
+ * helper routine for serial PPS which returns QueryPerformanceCounter
+ * timestamp and needs to interpolate it to an NTP timestamp.
+ */
+void
+pps_ntp_timestamp_from_counter(
+ ntp_fp_t *result,
+ ULONGLONG Timestamp,
+ ULONGLONG Counterstamp
+ )
+{
+ /*
+ * convert between equivalent l_fp and PPSAPI ntp_fp_t
+ */
+ ntp_timestamp_from_counter(
+ (l_fp *)result,
+ Timestamp,
+ Counterstamp);
+}
+
+
+static inline
+void
+ntp_timestamp_from_counter(
+ l_fp *result,
+ ULONGLONG Timestamp,
+ ULONGLONG Counterstamp
+ )
+{
+ FT_ULL Now;
+ FT_ULL Ctr;
+ LONGLONG CtrDelta;
+ double seconds;
+ ULONGLONG InterpTimestamp;
+
+ if (winnt_use_interpolation) {
+ if (0 == Counterstamp) {
+ DPRINTF(1, ("ntp_timestamp_from_counter rejecting 0 counter.\n"));
+ ZERO(*result);
+ return;
+ }
+
+ InterpTimestamp = interp_time(Counterstamp + QPC_offset, FALSE);
+ } else { /* ! winnt_use_interpolation */
+ if (NULL != pGetSystemTimePreciseAsFileTime &&
+ 0 != Counterstamp) {
+ QueryPerformanceCounter(&Ctr.li);
+ (*pGetSystemTimePreciseAsFileTime)(&Now.ft);
+ CtrDelta = Ctr.ull - Counterstamp;
+ seconds = (double)CtrDelta / PerfCtrFreq;
+ InterpTimestamp = Now.ull -
+ (ULONGLONG)(seconds * HECTONANOSECONDS);
+ } else {
+ /* have to simply use the driver's system time timestamp */
+ InterpTimestamp = Timestamp;
+ GetSystemTimeAsFileTime(&Now.ft);
+ }
+ }
+
+ /* convert from 100ns units to NTP fixed point format */
+
+ InterpTimestamp -= FILETIME_1970;
+ result->l_ui = JAN_1970 + (u_int32)(InterpTimestamp / HECTONANOSECONDS);
+ result->l_uf = (u_int32)((InterpTimestamp % HECTONANOSECONDS) *
+ (ULONGLONG)FRAC / HECTONANOSECONDS);
+}
+#endif /* HAVE_PPSAPI */
+
+
+void
+win_time_stepped(void)
+{
+ /*
+ * called back by ntp_set_tod after the system
+ * time has been stepped (set).
+ *
+ * We normally prevent the reported time from going backwards
+ * but need to allow it in this case.
+ */
+ if (FALSE == winnt_use_interpolation)
+ return;
+
+
+ /*
+ * Restart the clock thread to get a new baseline
+ * time/counter correlation.
+ */
+ StopClockThread();
+
+ /*
+ * newest_baseline_gen is a generation counter
+ * incremented once each time newest_baseline
+ * is reset.
+ */
+ newest_baseline_gen++;
+
+ clock_backward_max = CLOCK_BACK_THRESHOLD;
+ clock_backward_count = 0;
+ newest_baseline = 0;
+ ZERO(baseline_counts);
+ ZERO(baseline_times);
+
+ StartClockThread();
+}
+
+
+/*
+ * log2ull - log base 2 of a unsigned 64-bit number
+ */
+int
+log2ull(
+ ULONGLONG n
+ )
+{
+ const ULONGLONG one = 1;
+ int log = 0;
+
+ if (n >= one<<32) { n >>= 32; log += 32; }
+ if (n >= one<<16) { n >>= 16; log += 16; }
+ if (n >= one<< 8) { n >>= 8; log += 8; }
+ if (n >= one<< 4) { n >>= 4; log += 4; }
+ if (n >= one<< 2) { n >>= 2; log += 2; }
+ if (n >= one<< 1) { log += 1; }
+
+ return (n) ? log : (-1);
+}
+
+
+/*
+ * ctr_freq_timer_fired is called once a few seconds before
+ * tune_ctr_period seconds have elapsed, to reset the timer
+ * and hopefully minimize error due to the system using the
+ * nominal performance counter frequency to set the timer
+ * internally, which is typically dozens of PPM from the
+ * actual performance counter rate. A few seconds later
+ * it is called again to observe the counter and estimate the
+ * counter frequency.
+ */
+static void CALLBACK
+ctr_freq_timer_fired(
+ LPVOID arg,
+ DWORD dwTimeLow,
+ DWORD dwTimeHigh
+ )
+{
+ static FT_ULL begin_time = {0};
+ static FT_ULL begin_count = {0};
+ static ULONGLONG next_period_time = 0;
+ static ULONGLONG report_systemtime = 0;
+ const ULONGLONG five_minutes = 5ui64 * 60 * HECTONANOSECONDS;
+ FT_ULL now_time;
+ FT_ULL now_count;
+
+ if (!begin_time.ull) {
+ begin_count.ull = perf_ctr();
+ begin_time.ft.dwLowDateTime = dwTimeLow;
+ begin_time.ft.dwHighDateTime = dwTimeHigh;
+
+ /*
+ * adapt perf ctr observation interval to the
+ * counter frequency
+ */
+ tune_ctr_period = 22680 / log2ull(NomPerfCtrFreq);
+
+ /*
+ * reset timer 2s before period ends to minimize
+ * error from OS timer routines using nominal
+ * performance frequency internally.
+ */
+ tune_ctr_freq_max_interval = tune_ctr_period - 2;
+
+ next_period_time = begin_time.ull +
+ (ULONGLONG)tune_ctr_period * HECTONANOSECONDS;
+
+ ROUND_TO_NEXT_SEC_BOTTOM(next_period_time);
+
+ reset_ctr_freq_timer(next_period_time, begin_time.ull);
+
+ return;
+ }
+
+ now_time.ft.dwLowDateTime = dwTimeLow;
+ now_time.ft.dwHighDateTime = dwTimeHigh;
+
+ if (now_time.ull >= next_period_time) {
+ now_count.ull = perf_ctr();
+ tune_ctr_freq(
+ now_count.ull - begin_count.ull,
+ now_time.ull - begin_time.ull);
+ next_period_time += (ULONGLONG)tune_ctr_period * HECTONANOSECONDS;
+ begin_count.ull = now_count.ull;
+ begin_time.ull = now_time.ull;
+ }
+
+ /*
+ * Log clock backward events no more often than 5 minutes.
+ */
+ if (!report_systemtime) {
+ report_systemtime = now_time.ull + five_minutes;
+ } else if (report_systemtime <= now_time.ull) {
+ report_systemtime += five_minutes;
+ if (clock_backward_count) {
+ msyslog(LOG_WARNING,
+ "clock would have gone backward %d times, "
+ "max %.1f usec",
+ clock_backward_count,
+ clock_backward_max / 10.);
+
+ clock_backward_max = CLOCK_BACK_THRESHOLD;
+ clock_backward_count = 0;
+ }
+ }
+ reset_ctr_freq_timer(next_period_time, now_time.ull);
+}
+
+
+void
+reset_ctr_freq_timer_abs(
+ ULONGLONG when
+ )
+{
+ FT_ULL fire_time;
+
+ fire_time.ull = when;
+ SetWaitableTimer(
+ ctr_freq_timer,
+ &fire_time.li, /* first fire */
+ 0, /* not periodic */
+ ctr_freq_timer_fired, /* callback routine */
+ NULL, /* context for callback */
+ FALSE); /* do not interfere with power saving */
+}
+
+
+void
+reset_ctr_freq_timer(
+ ULONGLONG when,
+ ULONGLONG now
+ )
+{
+ if (when - now >
+ (tune_ctr_freq_max_interval * HECTONANOSECONDS + HECTONANOSECONDS))
+ when = now + tune_ctr_freq_max_interval * HECTONANOSECONDS;
+
+ reset_ctr_freq_timer_abs(when);
+}
+
+
+void
+start_ctr_freq_timer(
+ ULONGLONG now_time
+ )
+{
+ ULONGLONG when;
+
+ ctr_freq_timer = CreateWaitableTimer(NULL, FALSE, NULL);
+ when = now_time;
+ ROUND_TO_NEXT_SEC_BOTTOM(when);
+
+ reset_ctr_freq_timer_abs(when);
+}
+
+
+/*
+ * tune_ctr_freq is called once per tune_ctr_period seconds
+ * with a counter difference and time difference.
+ */
+void
+tune_ctr_freq(
+ LONGLONG ctr_delta,
+ LONGLONG time_delta
+ )
+{
+ static unsigned count = 0;
+ static unsigned dispcount = 0;
+ static unsigned report_at_count = 0;
+ static int disbelieved = 0;
+ static int i = 0;
+ static double nom_freq = 0;
+ static LONGLONG diffs[TUNE_CTR_DEPTH] = {0};
+ static LONGLONG sum = 0;
+ char ctr_freq_eq[64];
+ LONGLONG delta;
+ LONGLONG deltadiff;
+ ULONGLONG ObsPerfCtrFreq;
+ double freq;
+ double this_freq;
+ BOOL isneg;
+
+ /* one-time initialization */
+ if (!report_at_count) {
+ report_at_count = 24 * 60 * 60 / tune_ctr_period;
+ nom_freq = NomPerfCtrFreq / 1e6;
+ }
+
+ /* delta is the per-second observed frequency this time */
+ delta = (LONGLONG)((double)ctr_delta * HECTONANOSECONDS /
+ time_delta);
+
+ /* disbelieve any delta more than +/- 976 PPM from nominal */
+ deltadiff = delta - NomPerfCtrFreq;
+ if (0 > deltadiff) {
+ isneg = TRUE;
+ deltadiff = -deltadiff;
+ } else {
+ isneg = FALSE;
+ }
+
+ if ((ULONGLONG)deltadiff > (NomPerfCtrFreq / 1024)) {
+ disbelieved++;
+ dispcount++;
+#ifdef DEBUG
+ msyslog(LOG_DEBUG, "ctr delta %s%lld exceeds limit %llu",
+ (isneg) ? "-" : "",
+ deltadiff,
+ NomPerfCtrFreq / 1024);
+#endif
+ } else {
+
+ /*
+ * collect average over TUNE_CTR_DEPTH samples
+ * for our PerfCtrFreq trimming.
+ */
+
+ if (isneg)
+ deltadiff = -deltadiff;
+ sum -= diffs[i];
+ diffs[i] = deltadiff;
+ sum += deltadiff;
+ i = (i + 1) % COUNTOF(diffs);
+ count++;
+ dispcount++;
+ }
+
+ this_freq = delta / 1e6;
+
+ ObsPerfCtrFreq = NomPerfCtrFreq + (sum / COUNTOF(diffs));
+
+#if 1 /* #if 0 to disable changing freq used */
+ /* get rid of ObsPerfCtrFreq when removing the #ifdef */
+ PerfCtrFreq = ObsPerfCtrFreq;
+#endif
+ freq = PerfCtrFreq / 1e6;
+
+ /*
+ * make the performance counter's frequency error from its
+ * nominal rate, expressed in PPM, available via ntpq as
+ * system variable "ctr_frequency". This is consistent with
+ * "frequency" which is the system clock drift in PPM.
+ */
+ snprintf(ctr_freq_eq, sizeof(ctr_freq_eq), "ctr_frequency=%.2f",
+ 1e6 * (freq - nom_freq) / nom_freq);
+ set_sys_var(ctr_freq_eq, strlen(ctr_freq_eq) + 1, RO | DEF);
+
+ /*
+ * report observed ctr freq each time the estimate used during
+ * startup moves toward the observed freq from the nominal.
+ */
+
+ if (count > COUNTOF(diffs) &&
+ /* (count % COUNTOF(diffs)) && */ /* enables reporting each */
+ dispcount < report_at_count) /* TUNE_CTR_DEPTH samples */
+ return;
+
+ NLOG(NLOG_CLOCKINFO)
+ if (count <= COUNTOF(diffs))
+ /* moving to observed freq. from nominal (startup) */
+ msyslog(LOG_INFO,
+ (freq > 100)
+ ? "ctr %.3f MHz %+6.2f PPM using %.3f MHz %+6.2f PPM"
+ : "ctr %.6f MHz %+6.2f PPM using %.6f MHz %+6.2f PPM",
+ this_freq,
+ 1e6 * (this_freq - nom_freq) / nom_freq,
+ freq,
+ 1e6 * (freq - nom_freq) / nom_freq);
+ else
+ /* steady state */
+ msyslog(LOG_INFO,
+ (freq > 100)
+ ? "ctr %.3f MHz %+.2f PPM"
+ : "ctr %.6f MHz %+.2f PPM",
+ freq,
+ 1e6 * (freq - nom_freq) / nom_freq);
+
+ if (disbelieved) {
+ msyslog(LOG_ERR,
+ "%d ctr samples exceed +/- 976 PPM range gate",
+ disbelieved);
+ disbelieved = 0;
+ }
+
+ dispcount = 0;
+}
+
+
+/*
+ * add_counter_time_pair is called by the
+ * high priority clock thread with each new
+ * baseline counter/time correlation.
+ */
+void
+add_counter_time_pair(
+ ULONGLONG ctr,
+ LONGLONG time
+ )
+{
+ int i;
+
+ i = (newest_baseline + 1) % BASELINES_TOT;
+
+ baseline_counts[i] = ctr;
+ baseline_times[i] = time;
+
+ newest_baseline = i;
+}
+
+
+/*
+ * interp_time estimates NT time in 100ns units
+ * based on a performance counter value given.
+ * This must tolerate recent historical counters
+ * as well as current. When current is FALSE
+ * we can't assume ctr is the latest/highest
+ * seen.
+ */
+ULONGLONG
+interp_time(
+ ULONGLONG ctr,
+ BOOL current
+ )
+{
+ static __declspec(thread) int last_newest = -1;
+ static __declspec(thread) int last_newest_gen;
+ static __declspec(thread) int best_index;
+ ULONGLONG this_ctr;
+ LONGLONG this_time;
+ LONGLONG latest_time;
+ LONGLONG ctr_diff;
+ int i;
+ int i_gen;
+ int c;
+
+ /*
+ * Use the system time (roughly synchronised to the tick, and
+ * extrapolated using the system performance counter.
+ *
+ * Cache the results per thread and only repeat the
+ * calculation when new data has arrived.
+ */
+ i = newest_baseline;
+ i_gen = newest_baseline_gen;
+
+ if (last_newest == i && last_newest_gen == i_gen) {
+ this_time = baseline_times[best_index];
+ ctr_diff = ctr - baseline_counts[best_index];
+ this_time += (LONGLONG)PERF2HNS((double)ctr_diff);
+
+ return this_time;
+ }
+
+ last_newest = i;
+ last_newest_gen = i_gen;
+
+ latest_time = 0;
+
+ /*
+ * Run through the history calculating the interpolated
+ * time based on each counter/time correlation in turn,
+ * and believe the latest one. This is akin to the NTP
+ * protocol minimum delay clock filter. Errors due to
+ * counter/time correlations with stale time are all
+ * negative.
+ */
+ for (c = 0; c < BASELINES_USED; c++) {
+ if (baseline_times[i]) {
+ this_time = baseline_times[i];
+ this_ctr = baseline_counts[i];
+
+ ctr_diff = ctr - this_ctr;
+
+ if (current && ctr_diff < 0) {
+ /*
+ * The performance counter apparently went
+ * backwards without rolling over. It might
+ * be nice to complain but we don't want
+ * to do it repeatedly.
+ */
+ ctr_diff = 0;
+ }
+
+ this_time += (LONGLONG)PERF2HNS((double)ctr_diff);
+
+ if (this_time > latest_time) {
+ latest_time = this_time;
+ best_index = i;
+ }
+ }
+ i = i ? (i - 1) : (BASELINES_TOT - 1);
+ }
+
+ return latest_time;
+}