summaryrefslogtreecommitdiff
path: root/ntpd/refclock_chu.c
diff options
context:
space:
mode:
Diffstat (limited to 'ntpd/refclock_chu.c')
-rw-r--r--ntpd/refclock_chu.c1683
1 files changed, 1683 insertions, 0 deletions
diff --git a/ntpd/refclock_chu.c b/ntpd/refclock_chu.c
new file mode 100644
index 0000000..9c7093d
--- /dev/null
+++ b/ntpd/refclock_chu.c
@@ -0,0 +1,1683 @@
+/*
+ * refclock_chu - clock driver for Canadian CHU time/frequency station
+ */
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include "ntp_types.h"
+
+#if defined(REFCLOCK) && defined(CLOCK_CHU)
+
+#include "ntpd.h"
+#include "ntp_io.h"
+#include "ntp_refclock.h"
+#include "ntp_calendar.h"
+#include "ntp_stdlib.h"
+
+#include <stdio.h>
+#include <ctype.h>
+#include <math.h>
+
+#ifdef HAVE_AUDIO
+#include "audio.h"
+#endif /* HAVE_AUDIO */
+
+#define ICOM 1 /* undefine to suppress ICOM code */
+
+#ifdef ICOM
+#include "icom.h"
+#endif /* ICOM */
+/*
+ * Audio CHU demodulator/decoder
+ *
+ * This driver synchronizes the computer time using data encoded in
+ * radio transmissions from Canadian time/frequency station CHU in
+ * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
+ * 7850 kHz and 14670 kHz in upper sideband, compatible AM mode. An
+ * ordinary shortwave receiver can be tuned manually to one of these
+ * frequencies or, in the case of ICOM receivers, the receiver can be
+ * tuned automatically as propagation conditions change throughout the
+ * day and season.
+ *
+ * The driver requires an audio codec or sound card with sampling rate 8
+ * kHz and mu-law companding. This is the same standard as used by the
+ * telephone industry and is supported by most hardware and operating
+ * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
+ * implementation, only one audio driver and codec can be supported on a
+ * single machine.
+ *
+ * The driver can be compiled to use a Bell 103 compatible modem or
+ * modem chip to receive the radio signal and demodulate the data.
+ * Alternatively, the driver can be compiled to use the audio codec of
+ * the workstation or another with compatible audio drivers. In the
+ * latter case, the driver implements the modem using DSP routines, so
+ * the radio can be connected directly to either the microphone on line
+ * input port. In either case, the driver decodes the data using a
+ * maximum-likelihood technique which exploits the considerable degree
+ * of redundancy available to maximize accuracy and minimize errors.
+ *
+ * The CHU time broadcast includes an audio signal compatible with the
+ * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). The signal
+ * consists of nine, ten-character bursts transmitted at 300 bps between
+ * seconds 31 and 39 of each minute. Each character consists of eight
+ * data bits plus one start bit and two stop bits to encode two hex
+ * digits. The burst data consist of five characters (ten hex digits)
+ * followed by a repeat of these characters. In format A, the characters
+ * are repeated in the same polarity; in format B, the characters are
+ * repeated in the opposite polarity.
+ *
+ * Format A bursts are sent at seconds 32 through 39 of the minute in
+ * hex digits (nibble swapped)
+ *
+ * 6dddhhmmss6dddhhmmss
+ *
+ * The first ten digits encode a frame marker (6) followed by the day
+ * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
+ * format A bursts are sent during the third decade of seconds the tens
+ * digit of ss is always 3. The driver uses this to determine correct
+ * burst synchronization. These digits are then repeated with the same
+ * polarity.
+ *
+ * Format B bursts are sent at second 31 of the minute in hex digits
+ *
+ * xdyyyyttaaxdyyyyttaa
+ *
+ * The first ten digits encode a code (x described below) followed by
+ * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
+ * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
+ * digits are then repeated with inverted polarity.
+ *
+ * The x is coded
+ *
+ * 1 Sign of DUT (0 = +)
+ * 2 Leap second warning. One second will be added.
+ * 4 Leap second warning. One second will be subtracted.
+ * 8 Even parity bit for this nibble.
+ *
+ * By design, the last stop bit of the last character in the burst
+ * coincides with 0.5 second. Since characters have 11 bits and are
+ * transmitted at 300 bps, the last stop bit of the first character
+ * coincides with 0.5 - 9 * 11/300 = 0.170 second. Depending on the
+ * UART, character interrupts can vary somewhere between the end of bit
+ * 9 and end of bit 11. These eccentricities can be corrected along with
+ * the radio propagation delay using fudge time 1.
+ *
+ * Debugging aids
+ *
+ * The timecode format used for debugging and data recording includes
+ * data helpful in diagnosing problems with the radio signal and serial
+ * connections. With debugging enabled (-d on the ntpd command line),
+ * the driver produces one line for each burst in two formats
+ * corresponding to format A and B.Each line begins with the format code
+ * chuA or chuB followed by the status code and signal level (0-9999).
+ * The remainder of the line is as follows.
+ *
+ * Following is format A:
+ *
+ * n b f s m code
+ *
+ * where n is the number of characters in the burst (0-10), b the burst
+ * distance (0-40), f the field alignment (-1, 0, 1), s the
+ * synchronization distance (0-16), m the burst number (2-9) and code
+ * the burst characters as received. Note that the hex digits in each
+ * character are reversed, so the burst
+ *
+ * 10 38 0 16 9 06851292930685129293
+ *
+ * is interpreted as containing 10 characters with burst distance 38,
+ * field alignment 0, synchronization distance 16 and burst number 9.
+ * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
+ * second 39.
+ *
+ * Following is format B:
+ *
+ * n b s code
+ *
+ * where n is the number of characters in the burst (0-10), b the burst
+ * distance (0-40), s the synchronization distance (0-40) and code the
+ * burst characters as received. Note that the hex digits in each
+ * character are reversed and the last ten digits inverted, so the burst
+ *
+ * 10 40 1091891300ef6e76ec
+ *
+ * is interpreted as containing 10 characters with burst distance 40.
+ * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
+ * - UTC 31 seconds.
+ *
+ * Each line is preceeded by the code chuA or chuB, as appropriate. If
+ * the audio driver is compiled, the current gain (0-255) and relative
+ * signal level (0-9999) follow the code. The receiver volume control
+ * should be set so that the gain is somewhere near the middle of the
+ * range 0-255, which results in a signal level near 1000.
+ *
+ * In addition to the above, the reference timecode is updated and
+ * written to the clockstats file and debug score after the last burst
+ * received in the minute. The format is
+ *
+ * sq yyyy ddd hh:mm:ss l s dd t agc ident m b
+ *
+ * s '?' before first synchronized and ' ' after that
+ * q status code (see below)
+ * yyyy year
+ * ddd day of year
+ * hh:mm:ss time of day
+ * l leap second indicator (space, L or D)
+ * dst Canadian daylight code (opaque)
+ * t number of minutes since last synchronized
+ * agc audio gain (0 - 255)
+ * ident identifier (CHU0 3330 kHz, CHU1 7850 kHz, CHU2 14670 kHz)
+ * m signal metric (0 - 100)
+ * b number of timecodes for the previous minute (0 - 59)
+ *
+ * Fudge factors
+ *
+ * For accuracies better than the low millisceconds, fudge time1 can be
+ * set to the radio propagation delay from CHU to the receiver. This can
+ * be done conviently using the minimuf program.
+ *
+ * Fudge flag4 causes the dubugging output described above to be
+ * recorded in the clockstats file. When the audio driver is compiled,
+ * fudge flag2 selects the audio input port, where 0 is the mike port
+ * (default) and 1 is the line-in port. It does not seem useful to
+ * select the compact disc player port. Fudge flag3 enables audio
+ * monitoring of the input signal. For this purpose, the monitor gain is
+ * set to a default value.
+ *
+ * The audio codec code is normally compiled in the driver if the
+ * architecture supports it (HAVE_AUDIO defined), but is used only if
+ * the link /dev/chu_audio is defined and valid. The serial port code is
+ * always compiled in the driver, but is used only if the autdio codec
+ * is not available and the link /dev/chu%d is defined and valid.
+ *
+ * The ICOM code is normally compiled in the driver if selected (ICOM
+ * defined), but is used only if the link /dev/icom%d is defined and
+ * valid and the mode keyword on the server configuration command
+ * specifies a nonzero mode (ICOM ID select code). The C-IV speed is
+ * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps
+ * if one. The C-IV trace is turned on if the debug level is greater
+ * than one.
+ *
+ * Alarm codes
+ *
+ * CEVNT_BADTIME invalid date or time
+ * CEVNT_PROP propagation failure - no stations heard
+ */
+/*
+ * Interface definitions
+ */
+#define SPEED232 B300 /* uart speed (300 baud) */
+#define PRECISION (-10) /* precision assumed (about 1 ms) */
+#define REFID "CHU" /* reference ID */
+#define DEVICE "/dev/chu%d" /* device name and unit */
+#define SPEED232 B300 /* UART speed (300 baud) */
+#ifdef ICOM
+#define TUNE .001 /* offset for narrow filter (MHz) */
+#define DWELL 5 /* minutes in a dwell */
+#define NCHAN 3 /* number of channels */
+#define ISTAGE 3 /* number of integrator stages */
+#endif /* ICOM */
+
+#ifdef HAVE_AUDIO
+/*
+ * Audio demodulator definitions
+ */
+#define SECOND 8000 /* nominal sample rate (Hz) */
+#define BAUD 300 /* modulation rate (bps) */
+#define OFFSET 128 /* companded sample offset */
+#define SIZE 256 /* decompanding table size */
+#define MAXAMP 6000. /* maximum signal level */
+#define MAXCLP 100 /* max clips above reference per s */
+#define SPAN 800. /* min envelope span */
+#define LIMIT 1000. /* soft limiter threshold */
+#define AGAIN 6. /* baseband gain */
+#define LAG 10 /* discriminator lag */
+#define DEVICE_AUDIO "/dev/audio" /* device name */
+#define DESCRIPTION "CHU Audio/Modem Receiver" /* WRU */
+#define AUDIO_BUFSIZ 240 /* audio buffer size (30 ms) */
+#else
+#define DESCRIPTION "CHU Modem Receiver" /* WRU */
+#endif /* HAVE_AUDIO */
+
+/*
+ * Decoder definitions
+ */
+#define CHAR (11. / 300.) /* character time (s) */
+#define BURST 11 /* max characters per burst */
+#define MINCHARS 9 /* min characters per burst */
+#define MINDIST 28 /* min burst distance (of 40) */
+#define MINSYNC 8 /* min sync distance (of 16) */
+#define MINSTAMP 20 /* min timestamps (of 60) */
+#define MINMETRIC 50 /* min channel metric (of 160) */
+
+/*
+ * The on-time synchronization point for the driver is the last stop bit
+ * of the first character 170 ms. The modem delay is 0.8 ms, while the
+ * receiver delay is approxmately 4.7 ms at 2125 Hz. The fudge value 1.3
+ * ms due to the codec and other causes was determined by calibrating to
+ * a PPS signal from a GPS receiver. The additional propagation delay
+ * specific to each receiver location can be programmed in the fudge
+ * time1.
+ *
+ * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
+ * generally within 0.5 ms short term with 0.3 ms jitter. The long-term
+ * offsets vary up to 0.3 ms due to ionospheric layer height variations.
+ * The processor load due to the driver is 0.4 percent.
+ */
+#define PDELAY ((170 + .8 + 4.7 + 1.3) / 1000) /* system delay (s) */
+
+/*
+ * Status bits (status)
+ */
+#define RUNT 0x0001 /* runt burst */
+#define NOISE 0x0002 /* noise burst */
+#define BFRAME 0x0004 /* invalid format B frame sync */
+#define BFORMAT 0x0008 /* invalid format B data */
+#define AFRAME 0x0010 /* invalid format A frame sync */
+#define AFORMAT 0x0020 /* invalid format A data */
+#define DECODE 0x0040 /* invalid data decode */
+#define STAMP 0x0080 /* too few timestamps */
+#define AVALID 0x0100 /* valid A frame */
+#define BVALID 0x0200 /* valid B frame */
+#define INSYNC 0x0400 /* clock synchronized */
+#define METRIC 0x0800 /* one or more stations heard */
+
+/*
+ * Alarm status bits (alarm)
+ *
+ * These alarms are set at the end of a minute in which at least one
+ * burst was received. SYNERR is raised if the AFRAME or BFRAME status
+ * bits are set during the minute, FMTERR is raised if the AFORMAT or
+ * BFORMAT status bits are set, DECERR is raised if the DECODE status
+ * bit is set and TSPERR is raised if the STAMP status bit is set.
+ */
+#define SYNERR 0x01 /* frame sync error */
+#define FMTERR 0x02 /* data format error */
+#define DECERR 0x04 /* data decoding error */
+#define TSPERR 0x08 /* insufficient data */
+
+#ifdef HAVE_AUDIO
+/*
+ * Maximum-likelihood UART structure. There are eight of these
+ * corresponding to the number of phases.
+ */
+struct surv {
+ l_fp cstamp; /* last bit timestamp */
+ double shift[12]; /* sample shift register */
+ double span; /* shift register envelope span */
+ double dist; /* sample distance */
+ int uart; /* decoded character */
+};
+#endif /* HAVE_AUDIO */
+
+#ifdef ICOM
+/*
+ * CHU station structure. There are three of these corresponding to the
+ * three frequencies.
+ */
+struct xmtr {
+ double integ[ISTAGE]; /* circular integrator */
+ double metric; /* integrator sum */
+ int iptr; /* integrator pointer */
+ int probe; /* dwells since last probe */
+};
+#endif /* ICOM */
+
+/*
+ * CHU unit control structure
+ */
+struct chuunit {
+ u_char decode[20][16]; /* maximum-likelihood decoding matrix */
+ l_fp cstamp[BURST]; /* character timestamps */
+ l_fp tstamp[MAXSTAGE]; /* timestamp samples */
+ l_fp timestamp; /* current buffer timestamp */
+ l_fp laststamp; /* last buffer timestamp */
+ l_fp charstamp; /* character time as a l_fp */
+ int second; /* counts the seconds of the minute */
+ int errflg; /* error flags */
+ int status; /* status bits */
+ char ident[5]; /* station ID and channel */
+#ifdef ICOM
+ int fd_icom; /* ICOM file descriptor */
+ int chan; /* radio channel */
+ int dwell; /* dwell cycle */
+ struct xmtr xmtr[NCHAN]; /* station metric */
+#endif /* ICOM */
+
+ /*
+ * Character burst variables
+ */
+ int cbuf[BURST]; /* character buffer */
+ int ntstamp; /* number of timestamp samples */
+ int ndx; /* buffer start index */
+ int prevsec; /* previous burst second */
+ int burdist; /* burst distance */
+ int syndist; /* sync distance */
+ int burstcnt; /* format A bursts this minute */
+ double maxsignal; /* signal level (modem only) */
+ int gain; /* codec gain (modem only) */
+
+ /*
+ * Format particulars
+ */
+ int leap; /* leap/dut code */
+ int dut; /* UTC1 correction */
+ int tai; /* TAI - UTC correction */
+ int dst; /* Canadian DST code */
+
+#ifdef HAVE_AUDIO
+ /*
+ * Audio codec variables
+ */
+ int fd_audio; /* audio port file descriptor */
+ double comp[SIZE]; /* decompanding table */
+ int port; /* codec port */
+ int mongain; /* codec monitor gain */
+ int clipcnt; /* sample clip count */
+ int seccnt; /* second interval counter */
+
+ /*
+ * Modem variables
+ */
+ l_fp tick; /* audio sample increment */
+ double bpf[9]; /* IIR bandpass filter */
+ double disc[LAG]; /* discriminator shift register */
+ double lpf[27]; /* FIR lowpass filter */
+ double monitor; /* audio monitor */
+ int discptr; /* discriminator pointer */
+
+ /*
+ * Maximum-likelihood UART variables
+ */
+ double baud; /* baud interval */
+ struct surv surv[8]; /* UART survivor structures */
+ int decptr; /* decode pointer */
+ int decpha; /* decode phase */
+ int dbrk; /* holdoff counter */
+#endif /* HAVE_AUDIO */
+};
+
+/*
+ * Function prototypes
+ */
+static int chu_start (int, struct peer *);
+static void chu_shutdown (int, struct peer *);
+static void chu_receive (struct recvbuf *);
+static void chu_second (int, struct peer *);
+static void chu_poll (int, struct peer *);
+
+/*
+ * More function prototypes
+ */
+static void chu_decode (struct peer *, int, l_fp);
+static void chu_burst (struct peer *);
+static void chu_clear (struct peer *);
+static void chu_a (struct peer *, int);
+static void chu_b (struct peer *, int);
+static int chu_dist (int, int);
+static double chu_major (struct peer *);
+#ifdef HAVE_AUDIO
+static void chu_uart (struct surv *, double);
+static void chu_rf (struct peer *, double);
+static void chu_gain (struct peer *);
+static void chu_audio_receive (struct recvbuf *rbufp);
+#endif /* HAVE_AUDIO */
+#ifdef ICOM
+static int chu_newchan (struct peer *, double);
+#endif /* ICOM */
+static void chu_serial_receive (struct recvbuf *rbufp);
+
+/*
+ * Global variables
+ */
+static char hexchar[] = "0123456789abcdef_*=";
+
+#ifdef ICOM
+/*
+ * Note the tuned frequencies are 1 kHz higher than the carrier. CHU
+ * transmits on USB with carrier so we can use AM and the narrow SSB
+ * filter.
+ */
+static double qsy[NCHAN] = {3.330, 7.850, 14.670}; /* freq (MHz) */
+#endif /* ICOM */
+
+/*
+ * Transfer vector
+ */
+struct refclock refclock_chu = {
+ chu_start, /* start up driver */
+ chu_shutdown, /* shut down driver */
+ chu_poll, /* transmit poll message */
+ noentry, /* not used (old chu_control) */
+ noentry, /* initialize driver (not used) */
+ noentry, /* not used (old chu_buginfo) */
+ chu_second /* housekeeping timer */
+};
+
+
+/*
+ * chu_start - open the devices and initialize data for processing
+ */
+static int
+chu_start(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct chuunit *up;
+ struct refclockproc *pp;
+ char device[20]; /* device name */
+ int fd; /* file descriptor */
+#ifdef ICOM
+ int temp;
+#endif /* ICOM */
+#ifdef HAVE_AUDIO
+ int fd_audio; /* audio port file descriptor */
+ int i; /* index */
+ double step; /* codec adjustment */
+
+ /*
+ * Open audio device. Don't complain if not there.
+ */
+ fd_audio = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
+
+#ifdef DEBUG
+ if (fd_audio >= 0 && debug)
+ audio_show();
+#endif
+
+ /*
+ * If audio is unavailable, Open serial port in raw mode.
+ */
+ if (fd_audio >= 0) {
+ fd = fd_audio;
+ } else {
+ snprintf(device, sizeof(device), DEVICE, unit);
+ fd = refclock_open(device, SPEED232, LDISC_RAW);
+ }
+#else /* HAVE_AUDIO */
+
+ /*
+ * Open serial port in raw mode.
+ */
+ snprintf(device, sizeof(device), DEVICE, unit);
+ fd = refclock_open(device, SPEED232, LDISC_RAW);
+#endif /* HAVE_AUDIO */
+
+ if (fd < 0)
+ return (0);
+
+ /*
+ * Allocate and initialize unit structure
+ */
+ up = emalloc_zero(sizeof(*up));
+ pp = peer->procptr;
+ pp->unitptr = up;
+ pp->io.clock_recv = chu_receive;
+ pp->io.srcclock = peer;
+ pp->io.datalen = 0;
+ pp->io.fd = fd;
+ if (!io_addclock(&pp->io)) {
+ close(fd);
+ pp->io.fd = -1;
+ free(up);
+ pp->unitptr = NULL;
+ return (0);
+ }
+
+ /*
+ * Initialize miscellaneous variables
+ */
+ peer->precision = PRECISION;
+ pp->clockdesc = DESCRIPTION;
+ strlcpy(up->ident, "CHU", sizeof(up->ident));
+ memcpy(&pp->refid, up->ident, 4);
+ DTOLFP(CHAR, &up->charstamp);
+#ifdef HAVE_AUDIO
+
+ /*
+ * The companded samples are encoded sign-magnitude. The table
+ * contains all the 256 values in the interest of speed. We do
+ * this even if the audio codec is not available. C'est la lazy.
+ */
+ up->fd_audio = fd_audio;
+ up->gain = 127;
+ up->comp[0] = up->comp[OFFSET] = 0.;
+ up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
+ up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
+ step = 2.;
+ for (i = 3; i < OFFSET; i++) {
+ up->comp[i] = up->comp[i - 1] + step;
+ up->comp[OFFSET + i] = -up->comp[i];
+ if (i % 16 == 0)
+ step *= 2.;
+ }
+ DTOLFP(1. / SECOND, &up->tick);
+#endif /* HAVE_AUDIO */
+#ifdef ICOM
+ temp = 0;
+#ifdef DEBUG
+ if (debug > 1)
+ temp = P_TRACE;
+#endif
+ if (peer->ttl > 0) {
+ if (peer->ttl & 0x80)
+ up->fd_icom = icom_init("/dev/icom", B1200,
+ temp);
+ else
+ up->fd_icom = icom_init("/dev/icom", B9600,
+ temp);
+ }
+ if (up->fd_icom > 0) {
+ if (chu_newchan(peer, 0) != 0) {
+ msyslog(LOG_NOTICE, "icom: radio not found");
+ close(up->fd_icom);
+ up->fd_icom = 0;
+ } else {
+ msyslog(LOG_NOTICE, "icom: autotune enabled");
+ }
+ }
+#endif /* ICOM */
+ return (1);
+}
+
+
+/*
+ * chu_shutdown - shut down the clock
+ */
+static void
+chu_shutdown(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct chuunit *up;
+ struct refclockproc *pp;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+ if (up == NULL)
+ return;
+
+ io_closeclock(&pp->io);
+#ifdef ICOM
+ if (up->fd_icom > 0)
+ close(up->fd_icom);
+#endif /* ICOM */
+ free(up);
+}
+
+
+/*
+ * chu_receive - receive data from the audio or serial device
+ */
+static void
+chu_receive(
+ struct recvbuf *rbufp /* receive buffer structure pointer */
+ )
+{
+#ifdef HAVE_AUDIO
+ struct chuunit *up;
+ struct refclockproc *pp;
+ struct peer *peer;
+
+ peer = rbufp->recv_peer;
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * If the audio codec is warmed up, the buffer contains codec
+ * samples which need to be demodulated and decoded into CHU
+ * characters using the software UART. Otherwise, the buffer
+ * contains CHU characters from the serial port, so the software
+ * UART is bypassed. In this case the CPU will probably run a
+ * few degrees cooler.
+ */
+ if (up->fd_audio > 0)
+ chu_audio_receive(rbufp);
+ else
+ chu_serial_receive(rbufp);
+#else
+ chu_serial_receive(rbufp);
+#endif /* HAVE_AUDIO */
+}
+
+
+#ifdef HAVE_AUDIO
+/*
+ * chu_audio_receive - receive data from the audio device
+ */
+static void
+chu_audio_receive(
+ struct recvbuf *rbufp /* receive buffer structure pointer */
+ )
+{
+ struct chuunit *up;
+ struct refclockproc *pp;
+ struct peer *peer;
+
+ double sample; /* codec sample */
+ u_char *dpt; /* buffer pointer */
+ int bufcnt; /* buffer counter */
+ l_fp ltemp; /* l_fp temp */
+
+ peer = rbufp->recv_peer;
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Main loop - read until there ain't no more. Note codec
+ * samples are bit-inverted.
+ */
+ DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
+ L_SUB(&rbufp->recv_time, &ltemp);
+ up->timestamp = rbufp->recv_time;
+ dpt = rbufp->recv_buffer;
+ for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
+ sample = up->comp[~*dpt++ & 0xff];
+
+ /*
+ * Clip noise spikes greater than MAXAMP. If no clips,
+ * increase the gain a tad; if the clips are too high,
+ * decrease a tad.
+ */
+ if (sample > MAXAMP) {
+ sample = MAXAMP;
+ up->clipcnt++;
+ } else if (sample < -MAXAMP) {
+ sample = -MAXAMP;
+ up->clipcnt++;
+ }
+ chu_rf(peer, sample);
+ L_ADD(&up->timestamp, &up->tick);
+
+ /*
+ * Once each second ride gain.
+ */
+ up->seccnt = (up->seccnt + 1) % SECOND;
+ if (up->seccnt == 0) {
+ chu_gain(peer);
+ }
+ }
+
+ /*
+ * Set the input port and monitor gain for the next buffer.
+ */
+ if (pp->sloppyclockflag & CLK_FLAG2)
+ up->port = 2;
+ else
+ up->port = 1;
+ if (pp->sloppyclockflag & CLK_FLAG3)
+ up->mongain = MONGAIN;
+ else
+ up->mongain = 0;
+}
+
+
+/*
+ * chu_rf - filter and demodulate the FSK signal
+ *
+ * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
+ * and space 2025 Hz. It uses a bandpass filter followed by a soft
+ * limiter, FM discriminator and lowpass filter. A maximum-likelihood
+ * decoder samples the baseband signal at eight times the baud rate and
+ * detects the start bit of each character.
+ *
+ * The filters are built for speed, which explains the rather clumsy
+ * code. Hopefully, the compiler will efficiently implement the move-
+ * and-muiltiply-and-add operations.
+ */
+static void
+chu_rf(
+ struct peer *peer, /* peer structure pointer */
+ double sample /* analog sample */
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+ struct surv *sp;
+
+ /*
+ * Local variables
+ */
+ double signal; /* bandpass signal */
+ double limit; /* limiter signal */
+ double disc; /* discriminator signal */
+ double lpf; /* lowpass signal */
+ double dist; /* UART signal distance */
+ int i, j;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
+ * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB,
+ * phase delay 0.24 ms.
+ */
+ signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
+ signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
+ signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
+ signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
+ signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
+ signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
+ signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
+ signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
+ up->bpf[0] = sample - signal;
+ signal = up->bpf[0] * 6.176213e-03
+ + up->bpf[1] * 3.156599e-03
+ + up->bpf[2] * 7.567487e-03
+ + up->bpf[3] * 4.344580e-03
+ + up->bpf[4] * 1.190128e-02
+ + up->bpf[5] * 4.344580e-03
+ + up->bpf[6] * 7.567487e-03
+ + up->bpf[7] * 3.156599e-03
+ + up->bpf[8] * 6.176213e-03;
+
+ up->monitor = signal / 4.; /* note monitor after filter */
+
+ /*
+ * Soft limiter/discriminator. The 11-sample discriminator lag
+ * interval corresponds to three cycles of 2125 Hz, which
+ * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
+ * Hz. The discriminator output varies +-0.5 interval for input
+ * frequency 2025-2225 Hz. However, we don't get to sample at
+ * this frequency, so the discriminator output is biased. Life
+ * at 8000 Hz sucks.
+ */
+ limit = signal;
+ if (limit > LIMIT)
+ limit = LIMIT;
+ else if (limit < -LIMIT)
+ limit = -LIMIT;
+ disc = up->disc[up->discptr] * -limit;
+ up->disc[up->discptr] = limit;
+ up->discptr = (up->discptr + 1 ) % LAG;
+ if (disc >= 0)
+ disc = SQRT(disc);
+ else
+ disc = -SQRT(-disc);
+
+ /*
+ * Lowpass filter. Raised cosine FIR, Ts = 1 / 300, beta = 0.1.
+ */
+ lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
+ lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
+ lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
+ lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
+ lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
+ lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
+ lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
+ lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
+ lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
+ lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
+ lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
+ lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
+ lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
+ lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
+ lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
+ lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
+ lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
+ lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
+ lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
+ lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
+ lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
+ lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
+ lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
+ lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
+ lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
+ lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
+ lpf += up->lpf[0] = disc * 2.538771e-02;
+
+ /*
+ * Maximum-likelihood decoder. The UART updates each of the
+ * eight survivors and determines the span, slice level and
+ * tentative decoded character. Valid 11-bit characters are
+ * framed so that bit 10 and bit 11 (stop bits) are mark and bit
+ * 1 (start bit) is space. When a valid character is found, the
+ * survivor with maximum distance determines the final decoded
+ * character.
+ */
+ up->baud += 1. / SECOND;
+ if (up->baud > 1. / (BAUD * 8.)) {
+ up->baud -= 1. / (BAUD * 8.);
+ up->decptr = (up->decptr + 1) % 8;
+ sp = &up->surv[up->decptr];
+ sp->cstamp = up->timestamp;
+ chu_uart(sp, -lpf * AGAIN);
+ if (up->dbrk > 0) {
+ up->dbrk--;
+ if (up->dbrk > 0)
+ return;
+
+ up->decpha = up->decptr;
+ }
+ if (up->decptr != up->decpha)
+ return;
+
+ dist = 0;
+ j = -1;
+ for (i = 0; i < 8; i++) {
+
+ /*
+ * The timestamp is taken at the last bit, so
+ * for correct decoding we reqire sufficient
+ * span and correct start bit and two stop bits.
+ */
+ if ((up->surv[i].uart & 0x601) != 0x600 ||
+ up->surv[i].span < SPAN)
+ continue;
+
+ if (up->surv[i].dist > dist) {
+ dist = up->surv[i].dist;
+ j = i;
+ }
+ }
+ if (j < 0)
+ return;
+
+ /*
+ * Process the character, then blank the decoder until
+ * the end of the next character.This sets the decoding
+ * phase of the entire burst from the phase of the first
+ * character.
+ */
+ up->maxsignal = up->surv[j].span;
+ chu_decode(peer, (up->surv[j].uart >> 1) & 0xff,
+ up->surv[j].cstamp);
+ up->dbrk = 88;
+ }
+}
+
+
+/*
+ * chu_uart - maximum-likelihood UART
+ *
+ * This routine updates a shift register holding the last 11 envelope
+ * samples. It then computes the slice level and span over these samples
+ * and determines the tentative data bits and distance. The calling
+ * program selects over the last eight survivors the one with maximum
+ * distance to determine the decoded character.
+ */
+static void
+chu_uart(
+ struct surv *sp, /* survivor structure pointer */
+ double sample /* baseband signal */
+ )
+{
+ double es_max, es_min; /* max/min envelope */
+ double slice; /* slice level */
+ double dist; /* distance */
+ double dtemp;
+ int i;
+
+ /*
+ * Save the sample and shift right. At the same time, measure
+ * the maximum and minimum over all eleven samples.
+ */
+ es_max = -1e6;
+ es_min = 1e6;
+ sp->shift[0] = sample;
+ for (i = 11; i > 0; i--) {
+ sp->shift[i] = sp->shift[i - 1];
+ if (sp->shift[i] > es_max)
+ es_max = sp->shift[i];
+ if (sp->shift[i] < es_min)
+ es_min = sp->shift[i];
+ }
+
+ /*
+ * Determine the span as the maximum less the minimum and the
+ * slice level as the minimum plus a fraction of the span. Note
+ * the slight bias toward mark to correct for the modem tendency
+ * to make more mark than space errors. Compute the distance on
+ * the assumption the last two bits must be mark, the first
+ * space and the rest either mark or space.
+ */
+ sp->span = es_max - es_min;
+ slice = es_min + .45 * sp->span;
+ dist = 0;
+ sp->uart = 0;
+ for (i = 1; i < 12; i++) {
+ sp->uart <<= 1;
+ dtemp = sp->shift[i];
+ if (dtemp > slice)
+ sp->uart |= 0x1;
+ if (i == 1 || i == 2) {
+ dist += dtemp - es_min;
+ } else if (i == 11) {
+ dist += es_max - dtemp;
+ } else {
+ if (dtemp > slice)
+ dist += dtemp - es_min;
+ else
+ dist += es_max - dtemp;
+ }
+ }
+ sp->dist = dist / (11 * sp->span);
+}
+#endif /* HAVE_AUDIO */
+
+
+/*
+ * chu_serial_receive - receive data from the serial device
+ */
+static void
+chu_serial_receive(
+ struct recvbuf *rbufp /* receive buffer structure pointer */
+ )
+{
+ struct chuunit *up;
+ struct refclockproc *pp;
+ struct peer *peer;
+
+ u_char *dpt; /* receive buffer pointer */
+
+ peer = rbufp->recv_peer;
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ dpt = (u_char *)&rbufp->recv_space;
+ chu_decode(peer, *dpt, rbufp->recv_time);
+}
+
+
+/*
+ * chu_decode - decode the character data
+ */
+static void
+chu_decode(
+ struct peer *peer, /* peer structure pointer */
+ int hexhex, /* data character */
+ l_fp cstamp /* data character timestamp */
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+
+ l_fp tstmp; /* timestamp temp */
+ double dtemp;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * If the interval since the last character is greater than the
+ * longest burst, process the last burst and start a new one. If
+ * the interval is less than this but greater than two
+ * characters, consider this a noise burst and reject it.
+ */
+ tstmp = up->timestamp;
+ if (L_ISZERO(&up->laststamp))
+ up->laststamp = up->timestamp;
+ L_SUB(&tstmp, &up->laststamp);
+ up->laststamp = up->timestamp;
+ LFPTOD(&tstmp, dtemp);
+ if (dtemp > BURST * CHAR) {
+ chu_burst(peer);
+ up->ndx = 0;
+ } else if (dtemp > 2.5 * CHAR) {
+ up->ndx = 0;
+ }
+
+ /*
+ * Append the character to the current burst and append the
+ * character timestamp to the timestamp list.
+ */
+ if (up->ndx < BURST) {
+ up->cbuf[up->ndx] = hexhex & 0xff;
+ up->cstamp[up->ndx] = cstamp;
+ up->ndx++;
+
+ }
+}
+
+
+/*
+ * chu_burst - search for valid burst format
+ */
+static void
+chu_burst(
+ struct peer *peer
+ )
+{
+ struct chuunit *up;
+ struct refclockproc *pp;
+
+ int i;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Correlate a block of five characters with the next block of
+ * five characters. The burst distance is defined as the number
+ * of bits that match in the two blocks for format A and that
+ * match the inverse for format B.
+ */
+ if (up->ndx < MINCHARS) {
+ up->status |= RUNT;
+ return;
+ }
+ up->burdist = 0;
+ for (i = 0; i < 5 && i < up->ndx - 5; i++)
+ up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
+
+ /*
+ * If the burst distance is at least MINDIST, this must be a
+ * format A burst; if the value is not greater than -MINDIST, it
+ * must be a format B burst. If the B burst is perfect, we
+ * believe it; otherwise, it is a noise burst and of no use to
+ * anybody.
+ */
+ if (up->burdist >= MINDIST) {
+ chu_a(peer, up->ndx);
+ } else if (up->burdist <= -MINDIST) {
+ chu_b(peer, up->ndx);
+ } else {
+ up->status |= NOISE;
+ return;
+ }
+
+ /*
+ * If this is a valid burst, wait a guard time of ten seconds to
+ * allow for more bursts, then arm the poll update routine to
+ * process the minute. Don't do this if this is called from the
+ * timer interrupt routine.
+ */
+ if (peer->outdate != current_time)
+ peer->nextdate = current_time + 10;
+}
+
+
+/*
+ * chu_b - decode format B burst
+ */
+static void
+chu_b(
+ struct peer *peer,
+ int nchar
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+
+ u_char code[11]; /* decoded timecode */
+ char tbuf[80]; /* trace buffer */
+ char * p;
+ size_t chars;
+ size_t cb;
+ int i;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * In a format B burst, a character is considered valid only if
+ * the first occurence matches the last occurence. The burst is
+ * considered valid only if all characters are valid; that is,
+ * only if the distance is 40. Note that once a valid frame has
+ * been found errors are ignored.
+ */
+ snprintf(tbuf, sizeof(tbuf), "chuB %04x %4.0f %2d %2d ",
+ up->status, up->maxsignal, nchar, -up->burdist);
+ cb = sizeof(tbuf);
+ p = tbuf;
+ for (i = 0; i < nchar; i++) {
+ chars = strlen(p);
+ if (cb < chars + 1) {
+ msyslog(LOG_ERR, "chu_b() fatal out buffer");
+ exit(1);
+ }
+ cb -= chars;
+ p += chars;
+ snprintf(p, cb, "%02x", up->cbuf[i]);
+ }
+ if (pp->sloppyclockflag & CLK_FLAG4)
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif
+ if (up->burdist > -40) {
+ up->status |= BFRAME;
+ return;
+ }
+
+ /*
+ * Convert the burst data to internal format. Don't bother with
+ * the timestamps.
+ */
+ for (i = 0; i < 5; i++) {
+ code[2 * i] = hexchar[up->cbuf[i] & 0xf];
+ code[2 * i + 1] = hexchar[(up->cbuf[i] >>
+ 4) & 0xf];
+ }
+ if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut,
+ &pp->year, &up->tai, &up->dst) != 5) {
+ up->status |= BFORMAT;
+ return;
+ }
+ up->status |= BVALID;
+ if (up->leap & 0x8)
+ up->dut = -up->dut;
+}
+
+
+/*
+ * chu_a - decode format A burst
+ */
+static void
+chu_a(
+ struct peer *peer,
+ int nchar
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+
+ char tbuf[80]; /* trace buffer */
+ char * p;
+ size_t chars;
+ size_t cb;
+ l_fp offset; /* timestamp offset */
+ int val; /* distance */
+ int temp;
+ int i, j, k;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Determine correct burst phase. There are three cases
+ * corresponding to in-phase, one character early or one
+ * character late. These cases are distinguished by the position
+ * of the framing digits 0x6 at positions 0 and 5 and 0x3 at
+ * positions 4 and 9. The correct phase is when the distance
+ * relative to the framing digits is maximum. The burst is valid
+ * only if the maximum distance is at least MINSYNC.
+ */
+ up->syndist = k = 0;
+ val = -16;
+ for (i = -1; i < 2; i++) {
+ temp = up->cbuf[i + 4] & 0xf;
+ if (i >= 0)
+ temp |= (up->cbuf[i] & 0xf) << 4;
+ val = chu_dist(temp, 0x63);
+ temp = (up->cbuf[i + 5] & 0xf) << 4;
+ if (i + 9 < nchar)
+ temp |= up->cbuf[i + 9] & 0xf;
+ val += chu_dist(temp, 0x63);
+ if (val > up->syndist) {
+ up->syndist = val;
+ k = i;
+ }
+ }
+
+ /*
+ * Extract the second number; it must be in the range 2 through
+ * 9 and the two repititions must be the same.
+ */
+ temp = (up->cbuf[k + 4] >> 4) & 0xf;
+ if (temp < 2 || temp > 9 || k + 9 >= nchar || temp !=
+ ((up->cbuf[k + 9] >> 4) & 0xf))
+ temp = 0;
+ snprintf(tbuf, sizeof(tbuf),
+ "chuA %04x %4.0f %2d %2d %2d %2d %1d ", up->status,
+ up->maxsignal, nchar, up->burdist, k, up->syndist,
+ temp);
+ cb = sizeof(tbuf);
+ p = tbuf;
+ for (i = 0; i < nchar; i++) {
+ chars = strlen(p);
+ if (cb < chars + 1) {
+ msyslog(LOG_ERR, "chu_a() fatal out buffer");
+ exit(1);
+ }
+ cb -= chars;
+ p += chars;
+ snprintf(p, cb, "%02x", up->cbuf[i]);
+ }
+ if (pp->sloppyclockflag & CLK_FLAG4)
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif
+ if (up->syndist < MINSYNC) {
+ up->status |= AFRAME;
+ return;
+ }
+
+ /*
+ * A valid burst requires the first seconds number to match the
+ * last seconds number. If so, the burst timestamps are
+ * corrected to the current minute and saved for later
+ * processing. In addition, the seconds decode is advanced from
+ * the previous burst to the current one.
+ */
+ if (temp == 0) {
+ up->status |= AFORMAT;
+ } else {
+ up->status |= AVALID;
+ up->second = pp->second = 30 + temp;
+ offset.l_ui = 30 + temp;
+ offset.l_uf = 0;
+ i = 0;
+ if (k < 0)
+ offset = up->charstamp;
+ else if (k > 0)
+ i = 1;
+ for (; i < nchar && i < k + 10; i++) {
+ up->tstamp[up->ntstamp] = up->cstamp[i];
+ L_SUB(&up->tstamp[up->ntstamp], &offset);
+ L_ADD(&offset, &up->charstamp);
+ if (up->ntstamp < MAXSTAGE - 1)
+ up->ntstamp++;
+ }
+ while (temp > up->prevsec) {
+ for (j = 15; j > 0; j--) {
+ up->decode[9][j] = up->decode[9][j - 1];
+ up->decode[19][j] =
+ up->decode[19][j - 1];
+ }
+ up->decode[9][j] = up->decode[19][j] = 0;
+ up->prevsec++;
+ }
+ }
+
+ /*
+ * Stash the data in the decoding matrix.
+ */
+ i = -(2 * k);
+ for (j = 0; j < nchar; j++) {
+ if (i < 0 || i > 18) {
+ i += 2;
+ continue;
+ }
+ up->decode[i][up->cbuf[j] & 0xf]++;
+ i++;
+ up->decode[i][(up->cbuf[j] >> 4) & 0xf]++;
+ i++;
+ }
+ up->burstcnt++;
+}
+
+
+/*
+ * chu_poll - called by the transmit procedure
+ */
+static void
+chu_poll(
+ int unit,
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+
+ pp = peer->procptr;
+ pp->polls++;
+}
+
+
+/*
+ * chu_second - process minute data
+ */
+static void
+chu_second(
+ int unit,
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+ l_fp offset;
+ char synchar, qual, leapchar;
+ int minset, i;
+ double dtemp;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * This routine is called once per minute to process the
+ * accumulated burst data. We do a bit of fancy footwork so that
+ * this doesn't run while burst data are being accumulated.
+ */
+ up->second = (up->second + 1) % 60;
+ if (up->second != 0)
+ return;
+
+ /*
+ * Process the last burst, if still in the burst buffer.
+ * If the minute contains a valid B frame with sufficient A
+ * frame metric, it is considered valid. However, the timecode
+ * is sent to clockstats even if invalid.
+ */
+ chu_burst(peer);
+ minset = ((current_time - peer->update) + 30) / 60;
+ dtemp = chu_major(peer);
+ qual = 0;
+ if (up->status & (BFRAME | AFRAME))
+ qual |= SYNERR;
+ if (up->status & (BFORMAT | AFORMAT))
+ qual |= FMTERR;
+ if (up->status & DECODE)
+ qual |= DECERR;
+ if (up->status & STAMP)
+ qual |= TSPERR;
+ if (up->status & BVALID && dtemp >= MINMETRIC)
+ up->status |= INSYNC;
+ synchar = leapchar = ' ';
+ if (!(up->status & INSYNC)) {
+ pp->leap = LEAP_NOTINSYNC;
+ synchar = '?';
+ } else if (up->leap & 0x2) {
+ pp->leap = LEAP_ADDSECOND;
+ leapchar = 'L';
+ } else if (up->leap & 0x4) {
+ pp->leap = LEAP_DELSECOND;
+ leapchar = 'l';
+ } else {
+ pp->leap = LEAP_NOWARNING;
+ }
+ snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
+ "%c%1X %04d %03d %02d:%02d:%02d %c%x %+d %d %d %s %.0f %d",
+ synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
+ pp->second, leapchar, up->dst, up->dut, minset, up->gain,
+ up->ident, dtemp, up->ntstamp);
+ pp->lencode = strlen(pp->a_lastcode);
+
+ /*
+ * If in sync and the signal metric is above threshold, the
+ * timecode is ipso fatso valid and can be selected to
+ * discipline the clock.
+ */
+ if (up->status & INSYNC && !(up->status & (DECODE | STAMP)) &&
+ dtemp > MINMETRIC) {
+ if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
+ up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
+ up->errflg = CEVNT_BADTIME;
+ } else {
+ offset.l_uf = 0;
+ for (i = 0; i < up->ntstamp; i++)
+ refclock_process_offset(pp, offset,
+ up->tstamp[i], PDELAY +
+ pp->fudgetime1);
+ pp->lastref = up->timestamp;
+ refclock_receive(peer);
+ }
+ }
+ if (dtemp > 0)
+ record_clock_stats(&peer->srcadr, pp->a_lastcode);
+#ifdef DEBUG
+ if (debug)
+ printf("chu: timecode %d %s\n", pp->lencode,
+ pp->a_lastcode);
+#endif
+#ifdef ICOM
+ chu_newchan(peer, dtemp);
+#endif /* ICOM */
+ chu_clear(peer);
+ if (up->errflg)
+ refclock_report(peer, up->errflg);
+ up->errflg = 0;
+}
+
+
+/*
+ * chu_major - majority decoder
+ */
+static double
+chu_major(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+
+ u_char code[11]; /* decoded timecode */
+ int metric; /* distance metric */
+ int val1; /* maximum distance */
+ int synchar; /* stray cat */
+ int temp;
+ int i, j, k;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Majority decoder. Each burst encodes two replications at each
+ * digit position in the timecode. Each row of the decoding
+ * matrix encodes the number of occurences of each digit found
+ * at the corresponding position. The maximum over all
+ * occurrences at each position is the distance for this
+ * position and the corresponding digit is the maximum-
+ * likelihood candidate. If the distance is not more than half
+ * the total number of occurences, a majority has not been found
+ * and the data are discarded. The decoding distance is defined
+ * as the sum of the distances over the first nine digits. The
+ * tenth digit varies over the seconds, so we don't count it.
+ */
+ metric = 0;
+ for (i = 0; i < 9; i++) {
+ val1 = 0;
+ k = 0;
+ for (j = 0; j < 16; j++) {
+ temp = up->decode[i][j] + up->decode[i + 10][j];
+ if (temp > val1) {
+ val1 = temp;
+ k = j;
+ }
+ }
+ if (val1 <= up->burstcnt)
+ up->status |= DECODE;
+ metric += val1;
+ code[i] = hexchar[k];
+ }
+
+ /*
+ * Compute the timecode timestamp from the days, hours and
+ * minutes of the timecode. Use clocktime() for the aggregate
+ * minutes and the minute offset computed from the burst
+ * seconds. Note that this code relies on the filesystem time
+ * for the years and does not use the years of the timecode.
+ */
+ if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day,
+ &pp->hour, &pp->minute) != 4)
+ up->status |= DECODE;
+ if (up->ntstamp < MINSTAMP)
+ up->status |= STAMP;
+ return (metric);
+}
+
+
+/*
+ * chu_clear - clear decoding matrix
+ */
+static void
+chu_clear(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+ int i, j;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Clear stuff for the minute.
+ */
+ up->ndx = up->prevsec = 0;
+ up->burstcnt = up->ntstamp = 0;
+ up->status &= INSYNC | METRIC;
+ for (i = 0; i < 20; i++) {
+ for (j = 0; j < 16; j++)
+ up->decode[i][j] = 0;
+ }
+}
+
+#ifdef ICOM
+/*
+ * chu_newchan - called once per minute to find the best channel;
+ * returns zero on success, nonzero if ICOM error.
+ */
+static int
+chu_newchan(
+ struct peer *peer,
+ double met
+ )
+{
+ struct chuunit *up;
+ struct refclockproc *pp;
+ struct xmtr *sp;
+ int rval;
+ double metric;
+ int i;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * The radio can be tuned to three channels: 0 (3330 kHz), 1
+ * (7850 kHz) and 2 (14670 kHz). There are five one-minute
+ * dwells in each cycle. During the first dwell the radio is
+ * tuned to one of the three channels to measure the channel
+ * metric. The channel is selected as the one least recently
+ * measured. During the remaining four dwells the radio is tuned
+ * to the channel with the highest channel metric.
+ */
+ if (up->fd_icom <= 0)
+ return (0);
+
+ /*
+ * Update the current channel metric and age of all channels.
+ * Scan all channels for the highest metric.
+ */
+ sp = &up->xmtr[up->chan];
+ sp->metric -= sp->integ[sp->iptr];
+ sp->integ[sp->iptr] = met;
+ sp->metric += sp->integ[sp->iptr];
+ sp->probe = 0;
+ sp->iptr = (sp->iptr + 1) % ISTAGE;
+ metric = 0;
+ for (i = 0; i < NCHAN; i++) {
+ up->xmtr[i].probe++;
+ if (up->xmtr[i].metric > metric) {
+ up->status |= METRIC;
+ metric = up->xmtr[i].metric;
+ up->chan = i;
+ }
+ }
+
+ /*
+ * Start the next dwell. If the first dwell or no stations have
+ * been heard, continue round-robin scan.
+ */
+ up->dwell = (up->dwell + 1) % DWELL;
+ if (up->dwell == 0 || metric == 0) {
+ rval = 0;
+ for (i = 0; i < NCHAN; i++) {
+ if (up->xmtr[i].probe > rval) {
+ rval = up->xmtr[i].probe;
+ up->chan = i;
+ }
+ }
+ }
+
+ /* Retune the radio at each dwell in case somebody nudges the
+ * tuning knob.
+ */
+ rval = icom_freq(up->fd_icom, peer->ttl & 0x7f, qsy[up->chan] +
+ TUNE);
+ snprintf(up->ident, sizeof(up->ident), "CHU%d", up->chan);
+ memcpy(&pp->refid, up->ident, 4);
+ memcpy(&peer->refid, up->ident, 4);
+ if (metric == 0 && up->status & METRIC) {
+ up->status &= ~METRIC;
+ refclock_report(peer, CEVNT_PROP);
+ }
+ return (rval);
+}
+#endif /* ICOM */
+
+
+/*
+ * chu_dist - determine the distance of two octet arguments
+ */
+static int
+chu_dist(
+ int x, /* an octet of bits */
+ int y /* another octet of bits */
+ )
+{
+ int val; /* bit count */
+ int temp;
+ int i;
+
+ /*
+ * The distance is determined as the weight of the exclusive OR
+ * of the two arguments. The weight is determined by the number
+ * of one bits in the result. Each one bit increases the weight,
+ * while each zero bit decreases it.
+ */
+ temp = x ^ y;
+ val = 0;
+ for (i = 0; i < 8; i++) {
+ if ((temp & 0x1) == 0)
+ val++;
+ else
+ val--;
+ temp >>= 1;
+ }
+ return (val);
+}
+
+
+#ifdef HAVE_AUDIO
+/*
+ * chu_gain - adjust codec gain
+ *
+ * This routine is called at the end of each second. During the second
+ * the number of signal clips above the MAXAMP threshold (6000). If
+ * there are no clips, the gain is bumped up; if there are more than
+ * MAXCLP clips (100), it is bumped down. The decoder is relatively
+ * insensitive to amplitude, so this crudity works just peachy. The
+ * routine also jiggles the input port and selectively mutes the
+ */
+static void
+chu_gain(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Apparently, the codec uses only the high order bits of the
+ * gain control field. Thus, it may take awhile for changes to
+ * wiggle the hardware bits.
+ */
+ if (up->clipcnt == 0) {
+ up->gain += 4;
+ if (up->gain > MAXGAIN)
+ up->gain = MAXGAIN;
+ } else if (up->clipcnt > MAXCLP) {
+ up->gain -= 4;
+ if (up->gain < 0)
+ up->gain = 0;
+ }
+ audio_gain(up->gain, up->mongain, up->port);
+ up->clipcnt = 0;
+}
+#endif /* HAVE_AUDIO */
+
+
+#else
+NONEMPTY_TRANSLATION_UNIT
+#endif /* REFCLOCK */