summaryrefslogtreecommitdiff
path: root/ntpd/refclock_heath.c
diff options
context:
space:
mode:
Diffstat (limited to 'ntpd/refclock_heath.c')
-rw-r--r--ntpd/refclock_heath.c450
1 files changed, 450 insertions, 0 deletions
diff --git a/ntpd/refclock_heath.c b/ntpd/refclock_heath.c
new file mode 100644
index 0000000..435d8f6
--- /dev/null
+++ b/ntpd/refclock_heath.c
@@ -0,0 +1,450 @@
+/*
+ * refclock_heath - clock driver for Heath GC-1000
+ * (but no longer the GC-1001 Model II, which apparently never worked)
+ */
+
+#ifdef HAVE_CONFIG_H
+# include <config.h>
+#endif
+
+#if defined(REFCLOCK) && defined(CLOCK_HEATH)
+
+#include "ntpd.h"
+#include "ntp_io.h"
+#include "ntp_refclock.h"
+#include "ntp_stdlib.h"
+
+#include <stdio.h>
+#include <ctype.h>
+
+#ifdef HAVE_SYS_IOCTL_H
+# include <sys/ioctl.h>
+#endif /* not HAVE_SYS_IOCTL_H */
+
+/*
+ * This driver supports the Heath GC-1000 Most Accurate Clock, with
+ * RS232C Output Accessory. This is a WWV/WWVH receiver somewhat less
+ * robust than other supported receivers. Its claimed accuracy is 100 ms
+ * when actually synchronized to the broadcast signal, but this doesn't
+ * happen even most of the time, due to propagation conditions, ambient
+ * noise sources, etc. When not synchronized, the accuracy is at the
+ * whim of the internal clock oscillator, which can wander into the
+ * sunset without warning. Since the indicated precision is 100 ms,
+ * expect a host synchronized only to this thing to wander to and fro,
+ * occasionally being rudely stepped when the offset exceeds the default
+ * clock_max of 128 ms.
+ *
+ * There were two GC-1000 versions supported by this driver. The original
+ * GC-1000 with RS-232 output first appeared in 1983, but dissapeared
+ * from the market a few years later. The GC-1001 II with RS-232 output
+ * first appeared circa 1990, but apparently is no longer manufactured.
+ * The two models differ considerably, both in interface and commands.
+ * The GC-1000 has a pseudo-bipolar timecode output triggered by a RTS
+ * transition. The timecode includes both the day of year and time of
+ * day. The GC-1001 II has a true bipolar output and a complement of
+ * single character commands. The timecode includes only the time of
+ * day.
+ *
+ * The GC-1001 II was apparently never tested and, based on a Coverity
+ * scan, apparently never worked [Bug 689]. Related code has been disabled.
+ *
+ * GC-1000
+ *
+ * The internal DIPswitches should be set to operate in MANUAL mode. The
+ * external DIPswitches should be set to GMT and 24-hour format.
+ *
+ * In MANUAL mode the clock responds to a rising edge of the request to
+ * send (RTS) modem control line by sending the timecode. Therefore, it
+ * is necessary that the operating system implement the TIOCMBIC and
+ * TIOCMBIS ioctl system calls and TIOCM_RTS control bit. Present
+ * restrictions require the use of a POSIX-compatible programming
+ * interface, although other interfaces may work as well.
+ *
+ * A simple hardware modification to the clock can be made which
+ * prevents the clock hearing the request to send (RTS) if the HI SPEC
+ * lamp is out. Route the HISPEC signal to the tone decoder board pin
+ * 19, from the display, pin 19. Isolate pin 19 of the decoder board
+ * first, but maintain connection with pin 10. Also isolate pin 38 of
+ * the CPU on the tone board, and use half an added 7400 to gate the
+ * original signal to pin 38 with that from pin 19.
+ *
+ * The clock message consists of 23 ASCII printing characters in the
+ * following format:
+ *
+ * hh:mm:ss.f AM dd/mm/yr<cr>
+ *
+ * hh:mm:ss.f = hours, minutes, seconds
+ * f = deciseconds ('?' when out of spec)
+ * AM/PM/bb = blank in 24-hour mode
+ * dd/mm/yr = day, month, year
+ *
+ * The alarm condition is indicated by '?', rather than a digit, at f.
+ * Note that 0?:??:??.? is displayed before synchronization is first
+ * established and hh:mm:ss.? once synchronization is established and
+ * then lost again for about a day.
+ *
+ * GC-1001 II
+ *
+ * Commands consist of a single letter and are case sensitive. When
+ * enterred in lower case, a description of the action performed is
+ * displayed. When enterred in upper case the action is performed.
+ * Following is a summary of descriptions as displayed by the clock:
+ *
+ * The clock responds with a command The 'A' command returns an ASCII
+ * local time string: HH:MM:SS.T xx<CR>, where
+ *
+ * HH = hours
+ * MM = minutes
+ * SS = seconds
+ * T = tenths-of-seconds
+ * xx = 'AM', 'PM', or ' '
+ * <CR> = carriage return
+ *
+ * The 'D' command returns 24 pairs of bytes containing the variable
+ * divisor value at the end of each of the previous 24 hours. This
+ * allows the timebase trimming process to be observed. UTC hour 00 is
+ * always returned first. The first byte of each pair is the high byte
+ * of (variable divisor * 16); the second byte is the low byte of
+ * (variable divisor * 16). For example, the byte pair 3C 10 would be
+ * returned for a divisor of 03C1 hex (961 decimal).
+ *
+ * The 'I' command returns: | TH | TL | ER | DH | DL | U1 | I1 | I2 | ,
+ * where
+ *
+ * TH = minutes since timebase last trimmed (high byte)
+ * TL = minutes since timebase last trimmed (low byte)
+ * ER = last accumulated error in 1.25 ms increments
+ * DH = high byte of (current variable divisor * 16)
+ * DL = low byte of (current variable divisor * 16)
+ * U1 = UT1 offset (/.1 s): | + | 4 | 2 | 1 | 0 | 0 | 0 | 0 |
+ * I1 = information byte 1: | W | C | D | I | U | T | Z | 1 | ,
+ * where
+ *
+ * W = set by WWV(H)
+ * C = CAPTURE LED on
+ * D = TRIM DN LED on
+ * I = HI SPEC LED on
+ * U = TRIM UP LED on
+ * T = DST switch on
+ * Z = UTC switch on
+ * 1 = UT1 switch on
+ *
+ * I2 = information byte 2: | 8 | 8 | 4 | 2 | 1 | D | d | S | ,
+ * where
+ *
+ * 8, 8, 4, 2, 1 = TIME ZONE switch settings
+ * D = DST bit (#55) in last-received frame
+ * d = DST bit (#2) in last-received frame
+ * S = clock is in simulation mode
+ *
+ * The 'P' command returns 24 bytes containing the number of frames
+ * received without error during UTC hours 00 through 23, providing an
+ * indication of hourly propagation. These bytes are updated each hour
+ * to reflect the previous 24 hour period. UTC hour 00 is always
+ * returned first.
+ *
+ * The 'T' command returns the UTC time: | HH | MM | SS | T0 | , where
+ * HH = tens-of-hours and hours (packed BCD)
+ * MM = tens-of-minutes and minutes (packed BCD)
+ * SS = tens-of-seconds and seconds (packed BCD)
+ * T = tenths-of-seconds (BCD)
+ *
+ * Fudge Factors
+ *
+ * A fudge time1 value of .04 s appears to center the clock offset
+ * residuals. The fudge time2 parameter is the local time offset east of
+ * Greenwich, which depends on DST. Sorry about that, but the clock
+ * gives no hint on what the DIPswitches say.
+ */
+
+/*
+ * Interface definitions
+ */
+#define DEVICE "/dev/heath%d" /* device name and unit */
+#define PRECISION (-4) /* precision assumed (about 100 ms) */
+#define REFID "WWV\0" /* reference ID */
+#define DESCRIPTION "Heath GC-1000 Most Accurate Clock" /* WRU */
+
+#define LENHEATH1 23 /* min timecode length */
+#if 0 /* BUG 689 */
+#define LENHEATH2 13 /* min timecode length */
+#endif
+
+/*
+ * Tables to compute the ddd of year form icky dd/mm timecode. Viva la
+ * leap.
+ */
+static int day1tab[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
+static int day2tab[] = {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
+
+/*
+ * Baud rate table. The GC-1000 supports 1200, 2400 and 4800; the
+ * GC-1001 II supports only 9600.
+ */
+static int speed[] = {B1200, B2400, B4800, B9600};
+
+/*
+ * Function prototypes
+ */
+static int heath_start (int, struct peer *);
+static void heath_shutdown (int, struct peer *);
+static void heath_receive (struct recvbuf *);
+static void heath_poll (int, struct peer *);
+
+/*
+ * Transfer vector
+ */
+struct refclock refclock_heath = {
+ heath_start, /* start up driver */
+ heath_shutdown, /* shut down driver */
+ heath_poll, /* transmit poll message */
+ noentry, /* not used (old heath_control) */
+ noentry, /* initialize driver */
+ noentry, /* not used (old heath_buginfo) */
+ NOFLAGS /* not used */
+};
+
+
+/*
+ * heath_start - open the devices and initialize data for processing
+ */
+static int
+heath_start(
+ int unit,
+ struct peer *peer
+ )
+{
+ struct refclockproc *pp;
+ int fd;
+ char device[20];
+
+ /*
+ * Open serial port
+ */
+ snprintf(device, sizeof(device), DEVICE, unit);
+ fd = refclock_open(device, speed[peer->ttl & 0x3],
+ LDISC_REMOTE);
+ if (fd <= 0)
+ return (0);
+ pp = peer->procptr;
+ pp->io.clock_recv = heath_receive;
+ pp->io.srcclock = peer;
+ pp->io.datalen = 0;
+ pp->io.fd = fd;
+ if (!io_addclock(&pp->io)) {
+ close(fd);
+ pp->io.fd = -1;
+ return (0);
+ }
+
+ /*
+ * Initialize miscellaneous variables
+ */
+ peer->precision = PRECISION;
+ pp->clockdesc = DESCRIPTION;
+ memcpy(&pp->refid, REFID, 4);
+ return (1);
+}
+
+
+/*
+ * heath_shutdown - shut down the clock
+ */
+static void
+heath_shutdown(
+ int unit,
+ struct peer *peer
+ )
+{
+ struct refclockproc *pp;
+
+ pp = peer->procptr;
+ if (-1 != pp->io.fd)
+ io_closeclock(&pp->io);
+}
+
+
+/*
+ * heath_receive - receive data from the serial interface
+ */
+static void
+heath_receive(
+ struct recvbuf *rbufp
+ )
+{
+ struct refclockproc *pp;
+ struct peer *peer;
+ l_fp trtmp;
+ int month, day;
+ int i;
+ char dsec, a[5];
+
+ /*
+ * Initialize pointers and read the timecode and timestamp
+ */
+ peer = rbufp->recv_peer;
+ pp = peer->procptr;
+ pp->lencode = refclock_gtlin(rbufp, pp->a_lastcode, BMAX,
+ &trtmp);
+
+ /*
+ * We get down to business, check the timecode format and decode
+ * its contents. If the timecode has invalid length or is not in
+ * proper format, we declare bad format and exit.
+ */
+ switch (pp->lencode) {
+
+ /*
+ * GC-1000 timecode format: "hh:mm:ss.f AM mm/dd/yy"
+ * GC-1001 II timecode format: "hh:mm:ss.f "
+ */
+ case LENHEATH1:
+ if (sscanf(pp->a_lastcode,
+ "%2d:%2d:%2d.%c%5c%2d/%2d/%2d", &pp->hour,
+ &pp->minute, &pp->second, &dsec, a, &month, &day,
+ &pp->year) != 8) {
+ refclock_report(peer, CEVNT_BADREPLY);
+ return;
+ }
+ break;
+
+#if 0 /* BUG 689 */
+ /*
+ * GC-1001 II timecode format: "hh:mm:ss.f "
+ */
+ case LENHEATH2:
+ if (sscanf(pp->a_lastcode, "%2d:%2d:%2d.%c", &pp->hour,
+ &pp->minute, &pp->second, &dsec) != 4) {
+ refclock_report(peer, CEVNT_BADREPLY);
+ return;
+ } else {
+ struct tm *tm_time_p;
+ time_t now;
+
+ time(&now); /* we should grab 'now' earlier */
+ tm_time_p = gmtime(&now);
+ /*
+ * There is a window of time around midnight
+ * where this will Do The Wrong Thing.
+ */
+ if (tm_time_p) {
+ month = tm_time_p->tm_mon + 1;
+ day = tm_time_p->tm_mday;
+ } else {
+ refclock_report(peer, CEVNT_FAULT);
+ return;
+ }
+ }
+ break;
+#endif
+
+ default:
+ refclock_report(peer, CEVNT_BADREPLY);
+ return;
+ }
+
+ /*
+ * We determine the day of the year from the DIPswitches. This
+ * should be fixed, since somebody might forget to set them.
+ * Someday this hazard will be fixed by a fiendish scheme that
+ * looks at the timecode and year the radio shows, then computes
+ * the residue of the seconds mod the seconds in a leap cycle.
+ * If in the third year of that cycle and the third and later
+ * months of that year, add one to the day. Then, correct the
+ * timecode accordingly. Icky pooh. This bit of nonsense could
+ * be avoided if the engineers had been required to write a
+ * device driver before finalizing the timecode format.
+ */
+ if (month < 1 || month > 12 || day < 1) {
+ refclock_report(peer, CEVNT_BADTIME);
+ return;
+ }
+ if (pp->year % 4) {
+ if (day > day1tab[month - 1]) {
+ refclock_report(peer, CEVNT_BADTIME);
+ return;
+ }
+ for (i = 0; i < month - 1; i++)
+ day += day1tab[i];
+ } else {
+ if (day > day2tab[month - 1]) {
+ refclock_report(peer, CEVNT_BADTIME);
+ return;
+ }
+ for (i = 0; i < month - 1; i++)
+ day += day2tab[i];
+ }
+ pp->day = day;
+
+ /*
+ * Determine synchronization and last update
+ */
+ if (!isdigit((int)dsec))
+ pp->leap = LEAP_NOTINSYNC;
+ else {
+ pp->nsec = (dsec - '0') * 100000000;
+ pp->leap = LEAP_NOWARNING;
+ }
+ if (!refclock_process(pp))
+ refclock_report(peer, CEVNT_BADTIME);
+}
+
+
+/*
+ * heath_poll - called by the transmit procedure
+ */
+static void
+heath_poll(
+ int unit,
+ struct peer *peer
+ )
+{
+ struct refclockproc *pp;
+ int bits = TIOCM_RTS;
+
+ /*
+ * At each poll we check for timeout and toggle the RTS modem
+ * control line, then take a timestamp. Presumably, this is the
+ * event the radio captures to generate the timecode.
+ * Apparently, the radio takes about a second to make up its
+ * mind to send a timecode, so the receive timestamp is
+ * worthless.
+ */
+ pp = peer->procptr;
+
+ /*
+ * We toggle the RTS modem control lead (GC-1000) and sent a T
+ * (GC-1001 II) to kick a timecode loose from the radio. This
+ * code works only for POSIX and SYSV interfaces. With bsd you
+ * are on your own. We take a timestamp between the up and down
+ * edges to lengthen the pulse, which should be about 50 usec on
+ * a Sun IPC. With hotshot CPUs, the pulse might get too short.
+ * Later.
+ *
+ * Bug 689: Even though we no longer support the GC-1001 II,
+ * I'm leaving the 'T' write in for timing purposes.
+ */
+ if (ioctl(pp->io.fd, TIOCMBIC, (char *)&bits) < 0)
+ refclock_report(peer, CEVNT_FAULT);
+ get_systime(&pp->lastrec);
+ if (write(pp->io.fd, "T", 1) != 1)
+ refclock_report(peer, CEVNT_FAULT);
+ ioctl(pp->io.fd, TIOCMBIS, (char *)&bits);
+ if (pp->coderecv == pp->codeproc) {
+ refclock_report(peer, CEVNT_TIMEOUT);
+ return;
+ }
+ pp->lastref = pp->lastrec;
+ refclock_receive(peer);
+ record_clock_stats(&peer->srcadr, pp->a_lastcode);
+#ifdef DEBUG
+ if (debug)
+ printf("heath: timecode %d %s\n", pp->lencode,
+ pp->a_lastcode);
+#endif
+ pp->polls++;
+}
+
+#else
+int refclock_heath_bs;
+#endif /* REFCLOCK */