summaryrefslogtreecommitdiff
path: root/ntpd/refclock_irig.c
diff options
context:
space:
mode:
Diffstat (limited to 'ntpd/refclock_irig.c')
-rw-r--r--ntpd/refclock_irig.c1045
1 files changed, 1045 insertions, 0 deletions
diff --git a/ntpd/refclock_irig.c b/ntpd/refclock_irig.c
new file mode 100644
index 0000000..46c01fb
--- /dev/null
+++ b/ntpd/refclock_irig.c
@@ -0,0 +1,1045 @@
+/*
+ * refclock_irig - audio IRIG-B/E demodulator/decoder
+ */
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#if defined(REFCLOCK) && defined(CLOCK_IRIG)
+
+#include "ntpd.h"
+#include "ntp_io.h"
+#include "ntp_refclock.h"
+#include "ntp_calendar.h"
+#include "ntp_stdlib.h"
+
+#include <stdio.h>
+#include <ctype.h>
+#include <math.h>
+#ifdef HAVE_SYS_IOCTL_H
+#include <sys/ioctl.h>
+#endif /* HAVE_SYS_IOCTL_H */
+
+#include "audio.h"
+
+/*
+ * Audio IRIG-B/E demodulator/decoder
+ *
+ * This driver synchronizes the computer time using data encoded in
+ * IRIG-B/E signals commonly produced by GPS receivers and other timing
+ * devices. The IRIG signal is an amplitude-modulated carrier with
+ * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
+ * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
+ * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
+ & format is in use.
+ *
+ * The driver requires an audio codec or sound card with sampling rate 8
+ * kHz and mu-law companding. This is the same standard as used by the
+ * telephone industry and is supported by most hardware and operating
+ * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
+ * implementation, only one audio driver and codec can be supported on a
+ * single machine.
+ *
+ * The program processes 8000-Hz mu-law companded samples using separate
+ * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
+ * detector and automatic threshold corrector. Cycle crossings relative
+ * to the corrected slice level determine the width of each pulse and
+ * its value - zero, one or position identifier.
+ *
+ * The data encode 20 BCD digits which determine the second, minute,
+ * hour and day of the year and sometimes the year and synchronization
+ * condition. The comb filter exponentially averages the corresponding
+ * samples of successive baud intervals in order to reliably identify
+ * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
+ * additional integration and interpolation to accurately determine the
+ * zero crossing of that cycle, which determines the reference
+ * timestamp. A pulse-width discriminator demodulates the data pulses,
+ * which are then encoded as the BCD digits of the timecode.
+ *
+ * The timecode and reference timestamp are updated once each second
+ * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
+ * saved for later processing. At poll intervals of 64 s, the saved
+ * samples are processed by a trimmed-mean filter and used to update the
+ * system clock.
+ *
+ * An automatic gain control feature provides protection against
+ * overdriven or underdriven input signal amplitudes. It is designed to
+ * maintain adequate demodulator signal amplitude while avoiding
+ * occasional noise spikes. In order to assure reliable capture, the
+ * decompanded input signal amplitude must be greater than 100 units and
+ * the codec sample frequency error less than 250 PPM (.025 percent).
+ *
+ * Monitor Data
+ *
+ * The timecode format used for debugging and data recording includes
+ * data helpful in diagnosing problems with the IRIG signal and codec
+ * connections. The driver produces one line for each timecode in the
+ * following format:
+ *
+ * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
+ *
+ * If clockstats is enabled, the most recent line is written to the
+ * clockstats file every 64 s. If verbose recording is enabled (fudge
+ * flag 4) each line is written as generated.
+ *
+ * The first field containes the error flags in hex, where the hex bits
+ * are interpreted as below. This is followed by the year of century,
+ * day of year and time of day. Note that the time of day is for the
+ * previous minute, not the current time. The status indicator and year
+ * are not produced by some IRIG devices and appear as zeros. Following
+ * these fields are the carrier amplitude (0-3000), codec gain (0-255),
+ * modulation index (0-1), time constant (4-10), carrier phase error
+ * +-.5) and carrier frequency error (PPM). The last field is the on-
+ * time timestamp in NTP format.
+ *
+ * The error flags are defined as follows in hex:
+ *
+ * x01 Low signal. The carrier amplitude is less than 100 units. This
+ * is usually the result of no signal or wrong input port.
+ * x02 Frequency error. The codec frequency error is greater than 250
+ * PPM. This may be due to wrong signal format or (rarely)
+ * defective codec.
+ * x04 Modulation error. The IRIG modulation index is less than 0.5.
+ * This is usually the result of an overdriven codec, wrong signal
+ * format or wrong input port.
+ * x08 Frame synch error. The decoder frame does not match the IRIG
+ * frame. This is usually the result of an overdriven codec, wrong
+ * signal format or noisy IRIG signal. It may also be the result of
+ * an IRIG signature check which indicates a failure of the IRIG
+ * signal synchronization source.
+ * x10 Data bit error. The data bit length is out of tolerance. This is
+ * usually the result of an overdriven codec, wrong signal format
+ * or noisy IRIG signal.
+ * x20 Seconds numbering discrepancy. The decoder second does not match
+ * the IRIG second. This is usually the result of an overdriven
+ * codec, wrong signal format or noisy IRIG signal.
+ * x40 Codec error (overrun). The machine is not fast enough to keep up
+ * with the codec.
+ * x80 Device status error (Spectracom).
+ *
+ *
+ * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
+ * within a few tens of microseconds relative to the IRIG-B signal.
+ * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
+ * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
+ * modulation.
+ *
+ * Unlike other drivers, which can have multiple instantiations, this
+ * one supports only one. It does not seem likely that more than one
+ * audio codec would be useful in a single machine. More than one would
+ * probably chew up too much CPU time anyway.
+ *
+ * Fudge factors
+ *
+ * Fudge flag4 causes the dubugging output described above to be
+ * recorded in the clockstats file. Fudge flag2 selects the audio input
+ * port, where 0 is the mike port (default) and 1 is the line-in port.
+ * It does not seem useful to select the compact disc player port. Fudge
+ * flag3 enables audio monitoring of the input signal. For this purpose,
+ * the monitor gain is set t a default value. Fudgetime2 is used as a
+ * frequency vernier for broken codec sample frequency.
+ *
+ * Alarm codes
+ *
+ * CEVNT_BADTIME invalid date or time
+ * CEVNT_TIMEOUT no IRIG data since last poll
+ */
+/*
+ * Interface definitions
+ */
+#define DEVICE_AUDIO "/dev/audio" /* audio device name */
+#define PRECISION (-17) /* precision assumed (about 10 us) */
+#define REFID "IRIG" /* reference ID */
+#define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */
+#define AUDIO_BUFSIZ 320 /* audio buffer size (40 ms) */
+#define SECOND 8000 /* nominal sample rate (Hz) */
+#define BAUD 80 /* samples per baud interval */
+#define OFFSET 128 /* companded sample offset */
+#define SIZE 256 /* decompanding table size */
+#define CYCLE 8 /* samples per bit */
+#define SUBFLD 10 /* bits per frame */
+#define FIELD 100 /* bits per second */
+#define MINTC 2 /* min PLL time constant */
+#define MAXTC 10 /* max PLL time constant max */
+#define MAXAMP 3000. /* maximum signal amplitude */
+#define MINAMP 2000. /* minimum signal amplitude */
+#define DRPOUT 100. /* dropout signal amplitude */
+#define MODMIN 0.5 /* minimum modulation index */
+#define MAXFREQ (250e-6 * SECOND) /* freq tolerance (.025%) */
+
+/*
+ * The on-time synchronization point is the positive-going zero crossing
+ * of the first cycle of the second. The IIR baseband filter phase delay
+ * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
+ * due to the codec and other causes was determined by calibrating to a
+ * PPS signal from a GPS receiver.
+ *
+ * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
+ * within .02 ms short-term with .02 ms jitter. The processor load due
+ * to the driver is 0.51 percent.
+ */
+#define IRIG_B ((1.03 + 2.68) / 1000) /* IRIG-B system delay (s) */
+#define IRIG_E ((3.47 + 2.68) / 1000) /* IRIG-E system delay (s) */
+
+/*
+ * Data bit definitions
+ */
+#define BIT0 0 /* zero */
+#define BIT1 1 /* one */
+#define BITP 2 /* position identifier */
+
+/*
+ * Error flags
+ */
+#define IRIG_ERR_AMP 0x01 /* low carrier amplitude */
+#define IRIG_ERR_FREQ 0x02 /* frequency tolerance exceeded */
+#define IRIG_ERR_MOD 0x04 /* low modulation index */
+#define IRIG_ERR_SYNCH 0x08 /* frame synch error */
+#define IRIG_ERR_DECODE 0x10 /* frame decoding error */
+#define IRIG_ERR_CHECK 0x20 /* second numbering discrepancy */
+#define IRIG_ERR_ERROR 0x40 /* codec error (overrun) */
+#define IRIG_ERR_SIGERR 0x80 /* IRIG status error (Spectracom) */
+
+static char hexchar[] = "0123456789abcdef";
+
+/*
+ * IRIG unit control structure
+ */
+struct irigunit {
+ u_char timecode[2 * SUBFLD + 1]; /* timecode string */
+ l_fp timestamp; /* audio sample timestamp */
+ l_fp tick; /* audio sample increment */
+ l_fp refstamp; /* reference timestamp */
+ l_fp chrstamp; /* baud timestamp */
+ l_fp prvstamp; /* previous baud timestamp */
+ double integ[BAUD]; /* baud integrator */
+ double phase, freq; /* logical clock phase and frequency */
+ double zxing; /* phase detector integrator */
+ double yxing; /* cycle phase */
+ double exing; /* envelope phase */
+ double modndx; /* modulation index */
+ double irig_b; /* IRIG-B signal amplitude */
+ double irig_e; /* IRIG-E signal amplitude */
+ int errflg; /* error flags */
+ /*
+ * Audio codec variables
+ */
+ double comp[SIZE]; /* decompanding table */
+ double signal; /* peak signal for AGC */
+ int port; /* codec port */
+ int gain; /* codec gain */
+ int mongain; /* codec monitor gain */
+ int seccnt; /* second interval counter */
+
+ /*
+ * RF variables
+ */
+ double bpf[9]; /* IRIG-B filter shift register */
+ double lpf[5]; /* IRIG-E filter shift register */
+ double envmin, envmax; /* envelope min and max */
+ double slice; /* envelope slice level */
+ double intmin, intmax; /* integrated envelope min and max */
+ double maxsignal; /* integrated peak amplitude */
+ double noise; /* integrated noise amplitude */
+ double lastenv[CYCLE]; /* last cycle amplitudes */
+ double lastint[CYCLE]; /* last integrated cycle amplitudes */
+ double lastsig; /* last carrier sample */
+ double fdelay; /* filter delay */
+ int decim; /* sample decimation factor */
+ int envphase; /* envelope phase */
+ int envptr; /* envelope phase pointer */
+ int envsw; /* envelope state */
+ int envxing; /* envelope slice crossing */
+ int tc; /* time constant */
+ int tcount; /* time constant counter */
+ int badcnt; /* decimation interval counter */
+
+ /*
+ * Decoder variables
+ */
+ int pulse; /* cycle counter */
+ int cycles; /* carrier cycles */
+ int dcycles; /* data cycles */
+ int lastbit; /* last code element */
+ int second; /* previous second */
+ int bitcnt; /* bit count in frame */
+ int frmcnt; /* bit count in second */
+ int xptr; /* timecode pointer */
+ int bits; /* demodulated bits */
+};
+
+/*
+ * Function prototypes
+ */
+static int irig_start (int, struct peer *);
+static void irig_shutdown (int, struct peer *);
+static void irig_receive (struct recvbuf *);
+static void irig_poll (int, struct peer *);
+
+/*
+ * More function prototypes
+ */
+static void irig_base (struct peer *, double);
+static void irig_rf (struct peer *, double);
+static void irig_baud (struct peer *, int);
+static void irig_decode (struct peer *, int);
+static void irig_gain (struct peer *);
+
+/*
+ * Transfer vector
+ */
+struct refclock refclock_irig = {
+ irig_start, /* start up driver */
+ irig_shutdown, /* shut down driver */
+ irig_poll, /* transmit poll message */
+ noentry, /* not used (old irig_control) */
+ noentry, /* initialize driver (not used) */
+ noentry, /* not used (old irig_buginfo) */
+ NOFLAGS /* not used */
+};
+
+
+/*
+ * irig_start - open the devices and initialize data for processing
+ */
+static int
+irig_start(
+ int unit, /* instance number (used for PCM) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ /*
+ * Local variables
+ */
+ int fd; /* file descriptor */
+ int i; /* index */
+ double step; /* codec adjustment */
+
+ /*
+ * Open audio device
+ */
+ fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
+ if (fd < 0)
+ return (0);
+#ifdef DEBUG
+ if (debug)
+ audio_show();
+#endif
+
+ /*
+ * Allocate and initialize unit structure
+ */
+ up = emalloc_zero(sizeof(*up));
+ pp = peer->procptr;
+ pp->io.clock_recv = irig_receive;
+ pp->io.srcclock = peer;
+ pp->io.datalen = 0;
+ pp->io.fd = fd;
+ if (!io_addclock(&pp->io)) {
+ close(fd);
+ pp->io.fd = -1;
+ free(up);
+ return (0);
+ }
+ pp->unitptr = up;
+
+ /*
+ * Initialize miscellaneous variables
+ */
+ peer->precision = PRECISION;
+ pp->clockdesc = DESCRIPTION;
+ memcpy((char *)&pp->refid, REFID, 4);
+ up->tc = MINTC;
+ up->decim = 1;
+ up->gain = 127;
+
+ /*
+ * The companded samples are encoded sign-magnitude. The table
+ * contains all the 256 values in the interest of speed.
+ */
+ up->comp[0] = up->comp[OFFSET] = 0.;
+ up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
+ up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
+ step = 2.;
+ for (i = 3; i < OFFSET; i++) {
+ up->comp[i] = up->comp[i - 1] + step;
+ up->comp[OFFSET + i] = -up->comp[i];
+ if (i % 16 == 0)
+ step *= 2.;
+ }
+ DTOLFP(1. / SECOND, &up->tick);
+ return (1);
+}
+
+
+/*
+ * irig_shutdown - shut down the clock
+ */
+static void
+irig_shutdown(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+ if (-1 != pp->io.fd)
+ io_closeclock(&pp->io);
+ if (NULL != up)
+ free(up);
+}
+
+
+/*
+ * irig_receive - receive data from the audio device
+ *
+ * This routine reads input samples and adjusts the logical clock to
+ * track the irig clock by dropping or duplicating codec samples.
+ */
+static void
+irig_receive(
+ struct recvbuf *rbufp /* receive buffer structure pointer */
+ )
+{
+ struct peer *peer;
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ /*
+ * Local variables
+ */
+ double sample; /* codec sample */
+ u_char *dpt; /* buffer pointer */
+ int bufcnt; /* buffer counter */
+ l_fp ltemp; /* l_fp temp */
+
+ peer = rbufp->recv_peer;
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Main loop - read until there ain't no more. Note codec
+ * samples are bit-inverted.
+ */
+ DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
+ L_SUB(&rbufp->recv_time, &ltemp);
+ up->timestamp = rbufp->recv_time;
+ dpt = rbufp->recv_buffer;
+ for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
+ sample = up->comp[~*dpt++ & 0xff];
+
+ /*
+ * Variable frequency oscillator. The codec oscillator
+ * runs at the nominal rate of 8000 samples per second,
+ * or 125 us per sample. A frequency change of one unit
+ * results in either duplicating or deleting one sample
+ * per second, which results in a frequency change of
+ * 125 PPM.
+ */
+ up->phase += (up->freq + clock_codec) / SECOND;
+ up->phase += pp->fudgetime2 / 1e6;
+ if (up->phase >= .5) {
+ up->phase -= 1.;
+ } else if (up->phase < -.5) {
+ up->phase += 1.;
+ irig_rf(peer, sample);
+ irig_rf(peer, sample);
+ } else {
+ irig_rf(peer, sample);
+ }
+ L_ADD(&up->timestamp, &up->tick);
+ sample = fabs(sample);
+ if (sample > up->signal)
+ up->signal = sample;
+ up->signal += (sample - up->signal) /
+ 1000;
+
+ /*
+ * Once each second, determine the IRIG format and gain.
+ */
+ up->seccnt = (up->seccnt + 1) % SECOND;
+ if (up->seccnt == 0) {
+ if (up->irig_b > up->irig_e) {
+ up->decim = 1;
+ up->fdelay = IRIG_B;
+ } else {
+ up->decim = 10;
+ up->fdelay = IRIG_E;
+ }
+ up->irig_b = up->irig_e = 0;
+ irig_gain(peer);
+
+ }
+ }
+
+ /*
+ * Set the input port and monitor gain for the next buffer.
+ */
+ if (pp->sloppyclockflag & CLK_FLAG2)
+ up->port = 2;
+ else
+ up->port = 1;
+ if (pp->sloppyclockflag & CLK_FLAG3)
+ up->mongain = MONGAIN;
+ else
+ up->mongain = 0;
+}
+
+
+/*
+ * irig_rf - RF processing
+ *
+ * This routine filters the RF signal using a bandass filter for IRIG-B
+ * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
+ * decimated by a factor of ten. Note that the codec filters function as
+ * roofing filters to attenuate both the high and low ends of the
+ * passband. IIR filter coefficients were determined using Matlab Signal
+ * Processing Toolkit.
+ */
+static void
+irig_rf(
+ struct peer *peer, /* peer structure pointer */
+ double sample /* current signal sample */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ /*
+ * Local variables
+ */
+ double irig_b, irig_e; /* irig filter outputs */
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
+ * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
+ * phase delay 1.03 ms.
+ */
+ irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
+ irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
+ irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
+ irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
+ irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
+ irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
+ irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
+ irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
+ up->bpf[0] = sample - irig_b;
+ irig_b = up->bpf[0] * 4.952157e-003
+ + up->bpf[1] * -2.055878e-002
+ + up->bpf[2] * 4.401413e-002
+ + up->bpf[3] * -6.558851e-002
+ + up->bpf[4] * 7.462108e-002
+ + up->bpf[5] * -6.558851e-002
+ + up->bpf[6] * 4.401413e-002
+ + up->bpf[7] * -2.055878e-002
+ + up->bpf[8] * 4.952157e-003;
+ up->irig_b += irig_b * irig_b;
+
+ /*
+ * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
+ * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
+ * 3.47 ms.
+ */
+ irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
+ irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
+ irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
+ irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
+ up->lpf[0] = sample - irig_e;
+ irig_e = up->lpf[0] * 3.215696e-003
+ + up->lpf[1] * -1.174951e-002
+ + up->lpf[2] * 1.712074e-002
+ + up->lpf[3] * -1.174951e-002
+ + up->lpf[4] * 3.215696e-003;
+ up->irig_e += irig_e * irig_e;
+
+ /*
+ * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
+ */
+ up->badcnt = (up->badcnt + 1) % up->decim;
+ if (up->badcnt == 0) {
+ if (up->decim == 1)
+ irig_base(peer, irig_b);
+ else
+ irig_base(peer, irig_e);
+ }
+}
+
+/*
+ * irig_base - baseband processing
+ *
+ * This routine processes the baseband signal and demodulates the AM
+ * carrier using a synchronous detector. It then synchronizes to the
+ * data frame at the baud rate and decodes the width-modulated data
+ * pulses.
+ */
+static void
+irig_base(
+ struct peer *peer, /* peer structure pointer */
+ double sample /* current signal sample */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ /*
+ * Local variables
+ */
+ double lope; /* integrator output */
+ double env; /* envelope detector output */
+ double dtemp;
+ int carphase; /* carrier phase */
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Synchronous baud integrator. Corresponding samples of current
+ * and past baud intervals are integrated to refine the envelope
+ * amplitude and phase estimate. We keep one cycle (1 ms) of the
+ * raw data and one baud (10 ms) of the integrated data.
+ */
+ up->envphase = (up->envphase + 1) % BAUD;
+ up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
+ (5 * up->tc);
+ lope = up->integ[up->envphase];
+ carphase = up->envphase % CYCLE;
+ up->lastenv[carphase] = sample;
+ up->lastint[carphase] = lope;
+
+ /*
+ * Phase detector. Find the negative-going zero crossing
+ * relative to sample 4 in the 8-sample sycle. A phase change of
+ * 360 degrees produces an output change of one unit.
+ */
+ if (up->lastsig > 0 && lope <= 0)
+ up->zxing += (double)(carphase - 4) / CYCLE;
+ up->lastsig = lope;
+
+ /*
+ * End of the baud. Update signal/noise estimates and PLL
+ * phase, frequency and time constant.
+ */
+ if (up->envphase == 0) {
+ up->maxsignal = up->intmax; up->noise = up->intmin;
+ up->intmin = 1e6; up->intmax = -1e6;
+ if (up->maxsignal < DRPOUT)
+ up->errflg |= IRIG_ERR_AMP;
+ if (up->maxsignal > 0)
+ up->modndx = (up->maxsignal - up->noise) /
+ up->maxsignal;
+ else
+ up->modndx = 0;
+ if (up->modndx < MODMIN)
+ up->errflg |= IRIG_ERR_MOD;
+ if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
+ IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
+ up->tc = MINTC;
+ up->tcount = 0;
+ }
+
+ /*
+ * Update PLL phase and frequency. The PLL time constant
+ * is set initially to stabilize the frequency within a
+ * minute or two, then increases to the maximum. The
+ * frequency is clamped so that the PLL capture range
+ * cannot be exceeded.
+ */
+ dtemp = up->zxing * up->decim / BAUD;
+ up->yxing = dtemp;
+ up->zxing = 0.;
+ up->phase += dtemp / up->tc;
+ up->freq += dtemp / (4. * up->tc * up->tc);
+ if (up->freq > MAXFREQ) {
+ up->freq = MAXFREQ;
+ up->errflg |= IRIG_ERR_FREQ;
+ } else if (up->freq < -MAXFREQ) {
+ up->freq = -MAXFREQ;
+ up->errflg |= IRIG_ERR_FREQ;
+ }
+ }
+
+ /*
+ * Synchronous demodulator. There are eight samples in the cycle
+ * and ten cycles in the baud. Since the PLL has aligned the
+ * negative-going zero crossing at sample 4, the maximum
+ * amplitude is at sample 2 and minimum at sample 6. The
+ * beginning of the data pulse is determined from the integrated
+ * samples, while the end of the pulse is determined from the
+ * raw samples. The raw data bits are demodulated relative to
+ * the slice level and left-shifted in the decoding register.
+ */
+ if (carphase != 7)
+ return;
+
+ lope = (up->lastint[2] - up->lastint[6]) / 2.;
+ if (lope > up->intmax)
+ up->intmax = lope;
+ if (lope < up->intmin)
+ up->intmin = lope;
+
+ /*
+ * Pulse code demodulator and reference timestamp. The decoder
+ * looks for a sequence of ten bits; the first two bits must be
+ * one, the last two bits must be zero. Frame synch is asserted
+ * when three correct frames have been found.
+ */
+ up->pulse = (up->pulse + 1) % 10;
+ up->cycles <<= 1;
+ if (lope >= (up->maxsignal + up->noise) / 2.)
+ up->cycles |= 1;
+ if ((up->cycles & 0x303c0f03) == 0x300c0300) {
+ if (up->pulse != 0)
+ up->errflg |= IRIG_ERR_SYNCH;
+ up->pulse = 0;
+ }
+
+ /*
+ * Assemble the baud and max/min to get the slice level for the
+ * next baud. The slice level is based on the maximum over the
+ * first two bits and the minimum over the last two bits, with
+ * the slice level halfway between the maximum and minimum.
+ */
+ env = (up->lastenv[2] - up->lastenv[6]) / 2.;
+ up->dcycles <<= 1;
+ if (env >= up->slice)
+ up->dcycles |= 1;
+ switch(up->pulse) {
+
+ case 0:
+ irig_baud(peer, up->dcycles);
+ if (env < up->envmin)
+ up->envmin = env;
+ up->slice = (up->envmax + up->envmin) / 2;
+ up->envmin = 1e6; up->envmax = -1e6;
+ break;
+
+ case 1:
+ up->envmax = env;
+ break;
+
+ case 2:
+ if (env > up->envmax)
+ up->envmax = env;
+ break;
+
+ case 9:
+ up->envmin = env;
+ break;
+ }
+}
+
+/*
+ * irig_baud - update the PLL and decode the pulse-width signal
+ */
+static void
+irig_baud(
+ struct peer *peer, /* peer structure pointer */
+ int bits /* decoded bits */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+ double dtemp;
+ l_fp ltemp;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * The PLL time constant starts out small, in order to
+ * sustain a frequency tolerance of 250 PPM. It
+ * gradually increases as the loop settles down. Note
+ * that small wiggles are not believed, unless they
+ * persist for lots of samples.
+ */
+ up->exing = -up->yxing;
+ if (fabs(up->envxing - up->envphase) <= 1) {
+ up->tcount++;
+ if (up->tcount > 20 * up->tc) {
+ up->tc++;
+ if (up->tc > MAXTC)
+ up->tc = MAXTC;
+ up->tcount = 0;
+ up->envxing = up->envphase;
+ } else {
+ up->exing -= up->envxing - up->envphase;
+ }
+ } else {
+ up->tcount = 0;
+ up->envxing = up->envphase;
+ }
+
+ /*
+ * Strike the baud timestamp as the positive zero crossing of
+ * the first bit, accounting for the codec delay and filter
+ * delay.
+ */
+ up->prvstamp = up->chrstamp;
+ dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
+ DTOLFP(dtemp, &ltemp);
+ up->chrstamp = up->timestamp;
+ L_SUB(&up->chrstamp, &ltemp);
+
+ /*
+ * The data bits are collected in ten-bit bauds. The first two
+ * bits are not used. The resulting patterns represent runs of
+ * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
+ * 8-bit run represents a soft error and is treated as 0.
+ */
+ switch (up->dcycles & 0xff) {
+
+ case 0x00: /* 0-1 bits (0) */
+ case 0x80:
+ irig_decode(peer, BIT0);
+ break;
+
+ case 0xc0: /* 2-4 bits (1) */
+ case 0xe0:
+ case 0xf0:
+ irig_decode(peer, BIT1);
+ break;
+
+ case 0xf8: /* (5-7 bits (PI) */
+ case 0xfc:
+ case 0xfe:
+ irig_decode(peer, BITP);
+ break;
+
+ default: /* 8 bits (error) */
+ irig_decode(peer, BIT0);
+ up->errflg |= IRIG_ERR_DECODE;
+ }
+}
+
+
+/*
+ * irig_decode - decode the data
+ *
+ * This routine assembles bauds into digits, digits into frames and
+ * frames into the timecode fields. Bits can have values of zero, one
+ * or position identifier. There are four bits per digit, ten digits per
+ * frame and ten frames per second.
+ */
+static void
+irig_decode(
+ struct peer *peer, /* peer structure pointer */
+ int bit /* data bit (0, 1 or 2) */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ /*
+ * Local variables
+ */
+ int syncdig; /* sync digit (Spectracom) */
+ char sbs[6 + 1]; /* binary seconds since 0h */
+ char spare[2 + 1]; /* mulligan digits */
+ int temp;
+
+ syncdig = 0;
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Assemble frame bits.
+ */
+ up->bits >>= 1;
+ if (bit == BIT1) {
+ up->bits |= 0x200;
+ } else if (bit == BITP && up->lastbit == BITP) {
+
+ /*
+ * Frame sync - two adjacent position identifiers, which
+ * mark the beginning of the second. The reference time
+ * is the beginning of the second position identifier,
+ * so copy the character timestamp to the reference
+ * timestamp.
+ */
+ if (up->frmcnt != 1)
+ up->errflg |= IRIG_ERR_SYNCH;
+ up->frmcnt = 1;
+ up->refstamp = up->prvstamp;
+ }
+ up->lastbit = bit;
+ if (up->frmcnt % SUBFLD == 0) {
+
+ /*
+ * End of frame. Encode two hexadecimal digits in
+ * little-endian timecode field. Note frame 1 is shifted
+ * right one bit to account for the marker PI.
+ */
+ temp = up->bits;
+ if (up->frmcnt == 10)
+ temp >>= 1;
+ if (up->xptr >= 2) {
+ up->timecode[--up->xptr] = hexchar[temp & 0xf];
+ up->timecode[--up->xptr] = hexchar[(temp >> 5) &
+ 0xf];
+ }
+ if (up->frmcnt == 0) {
+
+ /*
+ * End of second. Decode the timecode and wind
+ * the clock. Not all IRIG generators have the
+ * year; if so, it is nonzero after year 2000.
+ * Not all have the hardware status bit; if so,
+ * it is lit when the source is okay and dim
+ * when bad. We watch this only if the year is
+ * nonzero. Not all are configured for signature
+ * control. If so, all BCD digits are set to
+ * zero if the source is bad. In this case the
+ * refclock_process() will reject the timecode
+ * as invalid.
+ */
+ up->xptr = 2 * SUBFLD;
+ if (sscanf((char *)up->timecode,
+ "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
+ &syncdig, spare, &pp->day, &pp->hour,
+ &pp->minute, &pp->second) != 8)
+ pp->leap = LEAP_NOTINSYNC;
+ else
+ pp->leap = LEAP_NOWARNING;
+ up->second = (up->second + up->decim) % 60;
+
+ /*
+ * Raise an alarm if the day field is zero,
+ * which happens when signature control is
+ * enabled and the device has lost
+ * synchronization. Raise an alarm if the year
+ * field is nonzero and the sync indicator is
+ * zero, which happens when a Spectracom radio
+ * has lost synchronization. Raise an alarm if
+ * the expected second does not agree with the
+ * decoded second, which happens with a garbled
+ * IRIG signal. We are very particular.
+ */
+ if (pp->day == 0 || (pp->year != 0 && syncdig ==
+ 0))
+ up->errflg |= IRIG_ERR_SIGERR;
+ if (pp->second != up->second)
+ up->errflg |= IRIG_ERR_CHECK;
+ up->second = pp->second;
+
+ /*
+ * Wind the clock only if there are no errors
+ * and the time constant has reached the
+ * maximum.
+ */
+ if (up->errflg == 0 && up->tc == MAXTC) {
+ pp->lastref = pp->lastrec;
+ pp->lastrec = up->refstamp;
+ if (!refclock_process(pp))
+ refclock_report(peer,
+ CEVNT_BADTIME);
+ }
+ snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
+ "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
+ up->errflg, pp->year, pp->day,
+ pp->hour, pp->minute, pp->second,
+ up->maxsignal, up->gain, up->modndx,
+ up->tc, up->exing * 1e6 / SECOND, up->freq *
+ 1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
+ pp->lencode = strlen(pp->a_lastcode);
+ up->errflg = 0;
+ if (pp->sloppyclockflag & CLK_FLAG4) {
+ record_clock_stats(&peer->srcadr,
+ pp->a_lastcode);
+#ifdef DEBUG
+ if (debug)
+ printf("irig %s\n",
+ pp->a_lastcode);
+#endif /* DEBUG */
+ }
+ }
+ }
+ up->frmcnt = (up->frmcnt + 1) % FIELD;
+}
+
+
+/*
+ * irig_poll - called by the transmit procedure
+ *
+ * This routine sweeps up the timecode updates since the last poll. For
+ * IRIG-B there should be at least 60 updates; for IRIG-E there should
+ * be at least 6. If nothing is heard, a timeout event is declared.
+ */
+static void
+irig_poll(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ if (pp->coderecv == pp->codeproc) {
+ refclock_report(peer, CEVNT_TIMEOUT);
+ return;
+
+ }
+ refclock_receive(peer);
+ if (!(pp->sloppyclockflag & CLK_FLAG4)) {
+ record_clock_stats(&peer->srcadr, pp->a_lastcode);
+#ifdef DEBUG
+ if (debug)
+ printf("irig %s\n", pp->a_lastcode);
+#endif /* DEBUG */
+ }
+ pp->polls++;
+
+}
+
+
+/*
+ * irig_gain - adjust codec gain
+ *
+ * This routine is called at the end of each second. It uses the AGC to
+ * bradket the maximum signal level between MINAMP and MAXAMP to avoid
+ * hunting. The routine also jiggles the input port and selectively
+ * mutes the monitor.
+ */
+static void
+irig_gain(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Apparently, the codec uses only the high order bits of the
+ * gain control field. Thus, it may take awhile for changes to
+ * wiggle the hardware bits.
+ */
+ if (up->maxsignal < MINAMP) {
+ up->gain += 4;
+ if (up->gain > MAXGAIN)
+ up->gain = MAXGAIN;
+ } else if (up->maxsignal > MAXAMP) {
+ up->gain -= 4;
+ if (up->gain < 0)
+ up->gain = 0;
+ }
+ audio_gain(up->gain, up->mongain, up->port);
+}
+
+
+#else
+int refclock_irig_bs;
+#endif /* REFCLOCK */