summaryrefslogtreecommitdiff
path: root/ntpd/refclock_wwv.c
diff options
context:
space:
mode:
Diffstat (limited to 'ntpd/refclock_wwv.c')
-rw-r--r--ntpd/refclock_wwv.c2709
1 files changed, 2709 insertions, 0 deletions
diff --git a/ntpd/refclock_wwv.c b/ntpd/refclock_wwv.c
new file mode 100644
index 0000000..14183b4
--- /dev/null
+++ b/ntpd/refclock_wwv.c
@@ -0,0 +1,2709 @@
+/*
+ * refclock_wwv - clock driver for NIST WWV/H time/frequency station
+ */
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#if defined(REFCLOCK) && defined(CLOCK_WWV)
+
+#include "ntpd.h"
+#include "ntp_io.h"
+#include "ntp_refclock.h"
+#include "ntp_calendar.h"
+#include "ntp_stdlib.h"
+#include "audio.h"
+
+#include <stdio.h>
+#include <ctype.h>
+#include <math.h>
+#ifdef HAVE_SYS_IOCTL_H
+# include <sys/ioctl.h>
+#endif /* HAVE_SYS_IOCTL_H */
+
+#define ICOM 1
+
+#ifdef ICOM
+#include "icom.h"
+#endif /* ICOM */
+
+/*
+ * Audio WWV/H demodulator/decoder
+ *
+ * This driver synchronizes the computer time using data encoded in
+ * radio transmissions from NIST time/frequency stations WWV in Boulder,
+ * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
+ * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
+ * ordinary AM shortwave receiver can be tuned manually to one of these
+ * frequencies or, in the case of ICOM receivers, the receiver can be
+ * tuned automatically using this program as propagation conditions
+ * change throughout the weasons, both day and night.
+ *
+ * The driver requires an audio codec or sound card with sampling rate 8
+ * kHz and mu-law companding. This is the same standard as used by the
+ * telephone industry and is supported by most hardware and operating
+ * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
+ * implementation, only one audio driver and codec can be supported on a
+ * single machine.
+ *
+ * The demodulation and decoding algorithms used in this driver are
+ * based on those developed for the TAPR DSP93 development board and the
+ * TI 320C25 digital signal processor described in: Mills, D.L. A
+ * precision radio clock for WWV transmissions. Electrical Engineering
+ * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
+ * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
+ * in this report have been modified somewhat to improve performance
+ * under weak signal conditions and to provide an automatic station
+ * identification feature.
+ *
+ * The ICOM code is normally compiled in the driver. It isn't used,
+ * unless the mode keyword on the server configuration command specifies
+ * a nonzero ICOM ID select code. The C-IV trace is turned on if the
+ * debug level is greater than one.
+ *
+ * Fudge factors
+ *
+ * Fudge flag4 causes the debugging output described above to be
+ * recorded in the clockstats file. Fudge flag2 selects the audio input
+ * port, where 0 is the mike port (default) and 1 is the line-in port.
+ * It does not seem useful to select the compact disc player port. Fudge
+ * flag3 enables audio monitoring of the input signal. For this purpose,
+ * the monitor gain is set to a default value.
+ *
+ * CEVNT_BADTIME invalid date or time
+ * CEVNT_PROP propagation failure - no stations heard
+ * CEVNT_TIMEOUT timeout (see newgame() below)
+ */
+/*
+ * General definitions. These ordinarily do not need to be changed.
+ */
+#define DEVICE_AUDIO "/dev/audio" /* audio device name */
+#define AUDIO_BUFSIZ 320 /* audio buffer size (50 ms) */
+#define PRECISION (-10) /* precision assumed (about 1 ms) */
+#define DESCRIPTION "WWV/H Audio Demodulator/Decoder" /* WRU */
+#define WWV_SEC 8000 /* second epoch (sample rate) (Hz) */
+#define WWV_MIN (WWV_SEC * 60) /* minute epoch */
+#define OFFSET 128 /* companded sample offset */
+#define SIZE 256 /* decompanding table size */
+#define MAXAMP 6000. /* max signal level reference */
+#define MAXCLP 100 /* max clips above reference per s */
+#define MAXSNR 40. /* max SNR reference */
+#define MAXFREQ 1.5 /* max frequency tolerance (187 PPM) */
+#define DATCYC 170 /* data filter cycles */
+#define DATSIZ (DATCYC * MS) /* data filter size */
+#define SYNCYC 800 /* minute filter cycles */
+#define SYNSIZ (SYNCYC * MS) /* minute filter size */
+#define TCKCYC 5 /* tick filter cycles */
+#define TCKSIZ (TCKCYC * MS) /* tick filter size */
+#define NCHAN 5 /* number of radio channels */
+#define AUDIO_PHI 5e-6 /* dispersion growth factor */
+#define TBUF 128 /* max monitor line length */
+
+/*
+ * Tunable parameters. The DGAIN parameter can be changed to fit the
+ * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
+ * is transmitted at about 20 percent percent modulation; the matched
+ * filter boosts it by a factor of 17 and the receiver response does
+ * what it does. The compromise value works for ICOM radios. If the
+ * radio is not tunable, the DCHAN parameter can be changed to fit the
+ * expected best propagation frequency: higher if further from the
+ * transmitter, lower if nearer. The compromise value works for the US
+ * right coast.
+ */
+#define DCHAN 3 /* default radio channel (15 Mhz) */
+#define DGAIN 5. /* subcarrier gain */
+
+/*
+ * General purpose status bits (status)
+ *
+ * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
+ * on signal loss. SSYNC is set when the second sync pulse has been
+ * acquired and cleared by signal loss. MSYNC is set when the minute
+ * sync pulse has been acquired. DSYNC is set when the units digit has
+ * has reached the threshold and INSYNC is set when all nine digits have
+ * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
+ * only by timeout, upon which the driver starts over from scratch.
+ *
+ * DGATE is lit if the data bit amplitude or SNR is below thresholds and
+ * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
+ * LEPSEC is set during the last minute of the leap day. At the end of
+ * this minute the driver inserts second 60 in the seconds state machine
+ * and the minute sync slips a second.
+ */
+#define MSYNC 0x0001 /* minute epoch sync */
+#define SSYNC 0x0002 /* second epoch sync */
+#define DSYNC 0x0004 /* minute units sync */
+#define INSYNC 0x0008 /* clock synchronized */
+#define FGATE 0x0010 /* frequency gate */
+#define DGATE 0x0020 /* data pulse amplitude error */
+#define BGATE 0x0040 /* data pulse width error */
+#define METRIC 0x0080 /* one or more stations heard */
+#define LEPSEC 0x1000 /* leap minute */
+
+/*
+ * Station scoreboard bits
+ *
+ * These are used to establish the signal quality for each of the five
+ * frequencies and two stations.
+ */
+#define SELV 0x0100 /* WWV station select */
+#define SELH 0x0200 /* WWVH station select */
+
+/*
+ * Alarm status bits (alarm)
+ *
+ * These bits indicate various alarm conditions, which are decoded to
+ * form the quality character included in the timecode.
+ */
+#define CMPERR 0x1 /* digit or misc bit compare error */
+#define LOWERR 0x2 /* low bit or digit amplitude or SNR */
+#define NINERR 0x4 /* less than nine digits in minute */
+#define SYNERR 0x8 /* not tracking second sync */
+
+/*
+ * Watchcat timeouts (watch)
+ *
+ * If these timeouts expire, the status bits are mashed to zero and the
+ * driver starts from scratch. Suitably more refined procedures may be
+ * developed in future. All these are in minutes.
+ */
+#define ACQSN 6 /* station acquisition timeout */
+#define DATA 15 /* unit minutes timeout */
+#define SYNCH 40 /* station sync timeout */
+#define PANIC (2 * 1440) /* panic timeout */
+
+/*
+ * Thresholds. These establish the minimum signal level, minimum SNR and
+ * maximum jitter thresholds which establish the error and false alarm
+ * rates of the driver. The values defined here may be on the
+ * adventurous side in the interest of the highest sensitivity.
+ */
+#define MTHR 13. /* minute sync gate (percent) */
+#define TTHR 50. /* minute sync threshold (percent) */
+#define AWND 20 /* minute sync jitter threshold (ms) */
+#define ATHR 2500. /* QRZ minute sync threshold */
+#define ASNR 20. /* QRZ minute sync SNR threshold (dB) */
+#define QTHR 2500. /* QSY minute sync threshold */
+#define QSNR 20. /* QSY minute sync SNR threshold (dB) */
+#define STHR 2500. /* second sync threshold */
+#define SSNR 15. /* second sync SNR threshold (dB) */
+#define SCMP 10 /* second sync compare threshold */
+#define DTHR 1000. /* bit threshold */
+#define DSNR 10. /* bit SNR threshold (dB) */
+#define AMIN 3 /* min bit count */
+#define AMAX 6 /* max bit count */
+#define BTHR 1000. /* digit threshold */
+#define BSNR 3. /* digit likelihood threshold (dB) */
+#define BCMP 3 /* digit compare threshold */
+#define MAXERR 40 /* maximum error alarm */
+
+/*
+ * Tone frequency definitions. The increments are for 4.5-deg sine
+ * table.
+ */
+#define MS (WWV_SEC / 1000) /* samples per millisecond */
+#define IN100 ((100 * 80) / WWV_SEC) /* 100 Hz increment */
+#define IN1000 ((1000 * 80) / WWV_SEC) /* 1000 Hz increment */
+#define IN1200 ((1200 * 80) / WWV_SEC) /* 1200 Hz increment */
+
+/*
+ * Acquisition and tracking time constants
+ */
+#define MINAVG 8 /* min averaging time */
+#define MAXAVG 1024 /* max averaging time */
+#define FCONST 3 /* frequency time constant */
+#define TCONST 16 /* data bit/digit time constant */
+
+/*
+ * Miscellaneous status bits (misc)
+ *
+ * These bits correspond to designated bits in the WWV/H timecode. The
+ * bit probabilities are exponentially averaged over several minutes and
+ * processed by a integrator and threshold.
+ */
+#define DUT1 0x01 /* 56 DUT .1 */
+#define DUT2 0x02 /* 57 DUT .2 */
+#define DUT4 0x04 /* 58 DUT .4 */
+#define DUTS 0x08 /* 50 DUT sign */
+#define DST1 0x10 /* 55 DST1 leap warning */
+#define DST2 0x20 /* 2 DST2 DST1 delayed one day */
+#define SECWAR 0x40 /* 3 leap second warning */
+
+/*
+ * The on-time synchronization point is the positive-going zero crossing
+ * of the first cycle of the 5-ms second pulse. The IIR baseband filter
+ * phase delay is 0.91 ms, while the receiver delay is approximately 4.7
+ * ms at 1000 Hz. The fudge value -0.45 ms due to the codec and other
+ * causes was determined by calibrating to a PPS signal from a GPS
+ * receiver. The additional propagation delay specific to each receiver
+ * location can be programmed in the fudge time1 and time2 values for
+ * WWV and WWVH, respectively.
+ *
+ * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
+ * generally within .02 ms short-term with .02 ms jitter. The long-term
+ * offsets vary up to 0.3 ms due to ionosperhic layer height variations.
+ * The processor load due to the driver is 5.8 percent.
+ */
+#define PDELAY ((.91 + 4.7 - 0.45) / 1000) /* system delay (s) */
+
+/*
+ * Table of sine values at 4.5-degree increments. This is used by the
+ * synchronous matched filter demodulators.
+ */
+double sintab[] = {
+ 0.000000e+00, 7.845910e-02, 1.564345e-01, 2.334454e-01, /* 0-3 */
+ 3.090170e-01, 3.826834e-01, 4.539905e-01, 5.224986e-01, /* 4-7 */
+ 5.877853e-01, 6.494480e-01, 7.071068e-01, 7.604060e-01, /* 8-11 */
+ 8.090170e-01, 8.526402e-01, 8.910065e-01, 9.238795e-01, /* 12-15 */
+ 9.510565e-01, 9.723699e-01, 9.876883e-01, 9.969173e-01, /* 16-19 */
+ 1.000000e+00, 9.969173e-01, 9.876883e-01, 9.723699e-01, /* 20-23 */
+ 9.510565e-01, 9.238795e-01, 8.910065e-01, 8.526402e-01, /* 24-27 */
+ 8.090170e-01, 7.604060e-01, 7.071068e-01, 6.494480e-01, /* 28-31 */
+ 5.877853e-01, 5.224986e-01, 4.539905e-01, 3.826834e-01, /* 32-35 */
+ 3.090170e-01, 2.334454e-01, 1.564345e-01, 7.845910e-02, /* 36-39 */
+-0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
+-3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
+-5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
+-8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
+-9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
+-1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
+-9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
+-8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
+-5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
+-3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
+ 0.000000e+00}; /* 80 */
+
+/*
+ * Decoder operations at the end of each second are driven by a state
+ * machine. The transition matrix consists of a dispatch table indexed
+ * by second number. Each entry in the table contains a case switch
+ * number and argument.
+ */
+struct progx {
+ int sw; /* case switch number */
+ int arg; /* argument */
+};
+
+/*
+ * Case switch numbers
+ */
+#define IDLE 0 /* no operation */
+#define COEF 1 /* BCD bit */
+#define COEF1 2 /* BCD bit for minute unit */
+#define COEF2 3 /* BCD bit not used */
+#define DECIM9 4 /* BCD digit 0-9 */
+#define DECIM6 5 /* BCD digit 0-6 */
+#define DECIM3 6 /* BCD digit 0-3 */
+#define DECIM2 7 /* BCD digit 0-2 */
+#define MSCBIT 8 /* miscellaneous bit */
+#define MSC20 9 /* miscellaneous bit */
+#define MSC21 10 /* QSY probe channel */
+#define MIN1 11 /* latch time */
+#define MIN2 12 /* leap second */
+#define SYNC2 13 /* latch minute sync pulse */
+#define SYNC3 14 /* latch data pulse */
+
+/*
+ * Offsets in decoding matrix
+ */
+#define MN 0 /* minute digits (2) */
+#define HR 2 /* hour digits (2) */
+#define DA 4 /* day digits (3) */
+#define YR 7 /* year digits (2) */
+
+struct progx progx[] = {
+ {SYNC2, 0}, /* 0 latch minute sync pulse */
+ {SYNC3, 0}, /* 1 latch data pulse */
+ {MSCBIT, DST2}, /* 2 dst2 */
+ {MSCBIT, SECWAR}, /* 3 lw */
+ {COEF, 0}, /* 4 1 year units */
+ {COEF, 1}, /* 5 2 */
+ {COEF, 2}, /* 6 4 */
+ {COEF, 3}, /* 7 8 */
+ {DECIM9, YR}, /* 8 */
+ {IDLE, 0}, /* 9 p1 */
+ {COEF1, 0}, /* 10 1 minute units */
+ {COEF1, 1}, /* 11 2 */
+ {COEF1, 2}, /* 12 4 */
+ {COEF1, 3}, /* 13 8 */
+ {DECIM9, MN}, /* 14 */
+ {COEF, 0}, /* 15 10 minute tens */
+ {COEF, 1}, /* 16 20 */
+ {COEF, 2}, /* 17 40 */
+ {COEF2, 3}, /* 18 80 (not used) */
+ {DECIM6, MN + 1}, /* 19 p2 */
+ {COEF, 0}, /* 20 1 hour units */
+ {COEF, 1}, /* 21 2 */
+ {COEF, 2}, /* 22 4 */
+ {COEF, 3}, /* 23 8 */
+ {DECIM9, HR}, /* 24 */
+ {COEF, 0}, /* 25 10 hour tens */
+ {COEF, 1}, /* 26 20 */
+ {COEF2, 2}, /* 27 40 (not used) */
+ {COEF2, 3}, /* 28 80 (not used) */
+ {DECIM2, HR + 1}, /* 29 p3 */
+ {COEF, 0}, /* 30 1 day units */
+ {COEF, 1}, /* 31 2 */
+ {COEF, 2}, /* 32 4 */
+ {COEF, 3}, /* 33 8 */
+ {DECIM9, DA}, /* 34 */
+ {COEF, 0}, /* 35 10 day tens */
+ {COEF, 1}, /* 36 20 */
+ {COEF, 2}, /* 37 40 */
+ {COEF, 3}, /* 38 80 */
+ {DECIM9, DA + 1}, /* 39 p4 */
+ {COEF, 0}, /* 40 100 day hundreds */
+ {COEF, 1}, /* 41 200 */
+ {COEF2, 2}, /* 42 400 (not used) */
+ {COEF2, 3}, /* 43 800 (not used) */
+ {DECIM3, DA + 2}, /* 44 */
+ {IDLE, 0}, /* 45 */
+ {IDLE, 0}, /* 46 */
+ {IDLE, 0}, /* 47 */
+ {IDLE, 0}, /* 48 */
+ {IDLE, 0}, /* 49 p5 */
+ {MSCBIT, DUTS}, /* 50 dut+- */
+ {COEF, 0}, /* 51 10 year tens */
+ {COEF, 1}, /* 52 20 */
+ {COEF, 2}, /* 53 40 */
+ {COEF, 3}, /* 54 80 */
+ {MSC20, DST1}, /* 55 dst1 */
+ {MSCBIT, DUT1}, /* 56 0.1 dut */
+ {MSCBIT, DUT2}, /* 57 0.2 */
+ {MSC21, DUT4}, /* 58 0.4 QSY probe channel */
+ {MIN1, 0}, /* 59 p6 latch time */
+ {MIN2, 0} /* 60 leap second */
+};
+
+/*
+ * BCD coefficients for maximum-likelihood digit decode
+ */
+#define P15 1. /* max positive number */
+#define N15 -1. /* max negative number */
+
+/*
+ * Digits 0-9
+ */
+#define P9 (P15 / 4) /* mark (+1) */
+#define N9 (N15 / 4) /* space (-1) */
+
+double bcd9[][4] = {
+ {N9, N9, N9, N9}, /* 0 */
+ {P9, N9, N9, N9}, /* 1 */
+ {N9, P9, N9, N9}, /* 2 */
+ {P9, P9, N9, N9}, /* 3 */
+ {N9, N9, P9, N9}, /* 4 */
+ {P9, N9, P9, N9}, /* 5 */
+ {N9, P9, P9, N9}, /* 6 */
+ {P9, P9, P9, N9}, /* 7 */
+ {N9, N9, N9, P9}, /* 8 */
+ {P9, N9, N9, P9}, /* 9 */
+ {0, 0, 0, 0} /* backstop */
+};
+
+/*
+ * Digits 0-6 (minute tens)
+ */
+#define P6 (P15 / 3) /* mark (+1) */
+#define N6 (N15 / 3) /* space (-1) */
+
+double bcd6[][4] = {
+ {N6, N6, N6, 0}, /* 0 */
+ {P6, N6, N6, 0}, /* 1 */
+ {N6, P6, N6, 0}, /* 2 */
+ {P6, P6, N6, 0}, /* 3 */
+ {N6, N6, P6, 0}, /* 4 */
+ {P6, N6, P6, 0}, /* 5 */
+ {N6, P6, P6, 0}, /* 6 */
+ {0, 0, 0, 0} /* backstop */
+};
+
+/*
+ * Digits 0-3 (day hundreds)
+ */
+#define P3 (P15 / 2) /* mark (+1) */
+#define N3 (N15 / 2) /* space (-1) */
+
+double bcd3[][4] = {
+ {N3, N3, 0, 0}, /* 0 */
+ {P3, N3, 0, 0}, /* 1 */
+ {N3, P3, 0, 0}, /* 2 */
+ {P3, P3, 0, 0}, /* 3 */
+ {0, 0, 0, 0} /* backstop */
+};
+
+/*
+ * Digits 0-2 (hour tens)
+ */
+#define P2 (P15 / 2) /* mark (+1) */
+#define N2 (N15 / 2) /* space (-1) */
+
+double bcd2[][4] = {
+ {N2, N2, 0, 0}, /* 0 */
+ {P2, N2, 0, 0}, /* 1 */
+ {N2, P2, 0, 0}, /* 2 */
+ {0, 0, 0, 0} /* backstop */
+};
+
+/*
+ * DST decode (DST2 DST1) for prettyprint
+ */
+char dstcod[] = {
+ 'S', /* 00 standard time */
+ 'I', /* 01 set clock ahead at 0200 local */
+ 'O', /* 10 set clock back at 0200 local */
+ 'D' /* 11 daylight time */
+};
+
+/*
+ * The decoding matrix consists of nine row vectors, one for each digit
+ * of the timecode. The digits are stored from least to most significant
+ * order. The maximum-likelihood timecode is formed from the digits
+ * corresponding to the maximum-likelihood values reading in the
+ * opposite order: yy ddd hh:mm.
+ */
+struct decvec {
+ int radix; /* radix (3, 4, 6, 10) */
+ int digit; /* current clock digit */
+ int count; /* match count */
+ double digprb; /* max digit probability */
+ double digsnr; /* likelihood function (dB) */
+ double like[10]; /* likelihood integrator 0-9 */
+};
+
+/*
+ * The station structure (sp) is used to acquire the minute pulse from
+ * WWV and/or WWVH. These stations are distinguished by the frequency
+ * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
+ * Hz for WWVH. Other than frequency, the format is the same.
+ */
+struct sync {
+ double epoch; /* accumulated epoch differences */
+ double maxeng; /* sync max energy */
+ double noieng; /* sync noise energy */
+ long pos; /* max amplitude position */
+ long lastpos; /* last max position */
+ long mepoch; /* minute synch epoch */
+
+ double amp; /* sync signal */
+ double syneng; /* sync signal max */
+ double synmax; /* sync signal max latched at 0 s */
+ double synsnr; /* sync signal SNR */
+ double metric; /* signal quality metric */
+ int reach; /* reachability register */
+ int count; /* bit counter */
+ int select; /* select bits */
+ char refid[5]; /* reference identifier */
+};
+
+/*
+ * The channel structure (cp) is used to mitigate between channels.
+ */
+struct chan {
+ int gain; /* audio gain */
+ struct sync wwv; /* wwv station */
+ struct sync wwvh; /* wwvh station */
+};
+
+/*
+ * WWV unit control structure (up)
+ */
+struct wwvunit {
+ l_fp timestamp; /* audio sample timestamp */
+ l_fp tick; /* audio sample increment */
+ double phase, freq; /* logical clock phase and frequency */
+ double monitor; /* audio monitor point */
+ double pdelay; /* propagation delay (s) */
+#ifdef ICOM
+ int fd_icom; /* ICOM file descriptor */
+#endif /* ICOM */
+ int errflg; /* error flags */
+ int watch; /* watchcat */
+
+ /*
+ * Audio codec variables
+ */
+ double comp[SIZE]; /* decompanding table */
+ int port; /* codec port */
+ int gain; /* codec gain */
+ int mongain; /* codec monitor gain */
+ int clipcnt; /* sample clipped count */
+
+ /*
+ * Variables used to establish basic system timing
+ */
+ int avgint; /* master time constant */
+ int yepoch; /* sync epoch */
+ int repoch; /* buffered sync epoch */
+ double epomax; /* second sync amplitude */
+ double eposnr; /* second sync SNR */
+ double irig; /* data I channel amplitude */
+ double qrig; /* data Q channel amplitude */
+ int datapt; /* 100 Hz ramp */
+ double datpha; /* 100 Hz VFO control */
+ int rphase; /* second sample counter */
+ long mphase; /* minute sample counter */
+
+ /*
+ * Variables used to mitigate which channel to use
+ */
+ struct chan mitig[NCHAN]; /* channel data */
+ struct sync *sptr; /* station pointer */
+ int dchan; /* data channel */
+ int schan; /* probe channel */
+ int achan; /* active channel */
+
+ /*
+ * Variables used by the clock state machine
+ */
+ struct decvec decvec[9]; /* decoding matrix */
+ int rsec; /* seconds counter */
+ int digcnt; /* count of digits synchronized */
+
+ /*
+ * Variables used to estimate signal levels and bit/digit
+ * probabilities
+ */
+ double datsig; /* data signal max */
+ double datsnr; /* data signal SNR (dB) */
+
+ /*
+ * Variables used to establish status and alarm conditions
+ */
+ int status; /* status bits */
+ int alarm; /* alarm flashers */
+ int misc; /* miscellaneous timecode bits */
+ int errcnt; /* data bit error counter */
+};
+
+/*
+ * Function prototypes
+ */
+static int wwv_start (int, struct peer *);
+static void wwv_shutdown (int, struct peer *);
+static void wwv_receive (struct recvbuf *);
+static void wwv_poll (int, struct peer *);
+
+/*
+ * More function prototypes
+ */
+static void wwv_epoch (struct peer *);
+static void wwv_rf (struct peer *, double);
+static void wwv_endpoc (struct peer *, int);
+static void wwv_rsec (struct peer *, double);
+static void wwv_qrz (struct peer *, struct sync *, int);
+static void wwv_corr4 (struct peer *, struct decvec *,
+ double [], double [][4]);
+static void wwv_gain (struct peer *);
+static void wwv_tsec (struct peer *);
+static int timecode (struct wwvunit *, char *, size_t);
+static double wwv_snr (double, double);
+static int carry (struct decvec *);
+static int wwv_newchan (struct peer *);
+static void wwv_newgame (struct peer *);
+static double wwv_metric (struct sync *);
+static void wwv_clock (struct peer *);
+#ifdef ICOM
+static int wwv_qsy (struct peer *, int);
+#endif /* ICOM */
+
+static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
+
+/*
+ * Transfer vector
+ */
+struct refclock refclock_wwv = {
+ wwv_start, /* start up driver */
+ wwv_shutdown, /* shut down driver */
+ wwv_poll, /* transmit poll message */
+ noentry, /* not used (old wwv_control) */
+ noentry, /* initialize driver (not used) */
+ noentry, /* not used (old wwv_buginfo) */
+ NOFLAGS /* not used */
+};
+
+
+/*
+ * wwv_start - open the devices and initialize data for processing
+ */
+static int
+wwv_start(
+ int unit, /* instance number (used by PCM) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+#ifdef ICOM
+ int temp;
+#endif /* ICOM */
+
+ /*
+ * Local variables
+ */
+ int fd; /* file descriptor */
+ int i; /* index */
+ double step; /* codec adjustment */
+
+ /*
+ * Open audio device
+ */
+ fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
+ if (fd < 0)
+ return (0);
+#ifdef DEBUG
+ if (debug)
+ audio_show();
+#endif /* DEBUG */
+
+ /*
+ * Allocate and initialize unit structure
+ */
+ up = emalloc_zero(sizeof(*up));
+ pp = peer->procptr;
+ pp->io.clock_recv = wwv_receive;
+ pp->io.srcclock = peer;
+ pp->io.datalen = 0;
+ pp->io.fd = fd;
+ if (!io_addclock(&pp->io)) {
+ close(fd);
+ free(up);
+ return (0);
+ }
+ pp->unitptr = up;
+
+ /*
+ * Initialize miscellaneous variables
+ */
+ peer->precision = PRECISION;
+ pp->clockdesc = DESCRIPTION;
+
+ /*
+ * The companded samples are encoded sign-magnitude. The table
+ * contains all the 256 values in the interest of speed.
+ */
+ up->comp[0] = up->comp[OFFSET] = 0.;
+ up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
+ up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
+ step = 2.;
+ for (i = 3; i < OFFSET; i++) {
+ up->comp[i] = up->comp[i - 1] + step;
+ up->comp[OFFSET + i] = -up->comp[i];
+ if (i % 16 == 0)
+ step *= 2.;
+ }
+ DTOLFP(1. / WWV_SEC, &up->tick);
+
+ /*
+ * Initialize the decoding matrix with the radix for each digit
+ * position.
+ */
+ up->decvec[MN].radix = 10; /* minutes */
+ up->decvec[MN + 1].radix = 6;
+ up->decvec[HR].radix = 10; /* hours */
+ up->decvec[HR + 1].radix = 3;
+ up->decvec[DA].radix = 10; /* days */
+ up->decvec[DA + 1].radix = 10;
+ up->decvec[DA + 2].radix = 4;
+ up->decvec[YR].radix = 10; /* years */
+ up->decvec[YR + 1].radix = 10;
+
+#ifdef ICOM
+ /*
+ * Initialize autotune if available. Note that the ICOM select
+ * code must be less than 128, so the high order bit can be used
+ * to select the line speed 0 (9600 bps) or 1 (1200 bps). Note
+ * we don't complain if the ICOM device is not there; but, if it
+ * is, the radio better be working.
+ */
+ temp = 0;
+#ifdef DEBUG
+ if (debug > 1)
+ temp = P_TRACE;
+#endif /* DEBUG */
+ if (peer->ttl != 0) {
+ if (peer->ttl & 0x80)
+ up->fd_icom = icom_init("/dev/icom", B1200,
+ temp);
+ else
+ up->fd_icom = icom_init("/dev/icom", B9600,
+ temp);
+ }
+ if (up->fd_icom > 0) {
+ if (wwv_qsy(peer, DCHAN) != 0) {
+ msyslog(LOG_NOTICE, "icom: radio not found");
+ close(up->fd_icom);
+ up->fd_icom = 0;
+ } else {
+ msyslog(LOG_NOTICE, "icom: autotune enabled");
+ }
+ }
+#endif /* ICOM */
+
+ /*
+ * Let the games begin.
+ */
+ wwv_newgame(peer);
+ return (1);
+}
+
+
+/*
+ * wwv_shutdown - shut down the clock
+ */
+static void
+wwv_shutdown(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+ if (up == NULL)
+ return;
+
+ io_closeclock(&pp->io);
+#ifdef ICOM
+ if (up->fd_icom > 0)
+ close(up->fd_icom);
+#endif /* ICOM */
+ free(up);
+}
+
+
+/*
+ * wwv_receive - receive data from the audio device
+ *
+ * This routine reads input samples and adjusts the logical clock to
+ * track the A/D sample clock by dropping or duplicating codec samples.
+ * It also controls the A/D signal level with an AGC loop to mimimize
+ * quantization noise and avoid overload.
+ */
+static void
+wwv_receive(
+ struct recvbuf *rbufp /* receive buffer structure pointer */
+ )
+{
+ struct peer *peer;
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ /*
+ * Local variables
+ */
+ double sample; /* codec sample */
+ u_char *dpt; /* buffer pointer */
+ int bufcnt; /* buffer counter */
+ l_fp ltemp;
+
+ peer = rbufp->recv_peer;
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Main loop - read until there ain't no more. Note codec
+ * samples are bit-inverted.
+ */
+ DTOLFP((double)rbufp->recv_length / WWV_SEC, &ltemp);
+ L_SUB(&rbufp->recv_time, &ltemp);
+ up->timestamp = rbufp->recv_time;
+ dpt = rbufp->recv_buffer;
+ for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
+ sample = up->comp[~*dpt++ & 0xff];
+
+ /*
+ * Clip noise spikes greater than MAXAMP (6000) and
+ * record the number of clips to be used later by the
+ * AGC.
+ */
+ if (sample > MAXAMP) {
+ sample = MAXAMP;
+ up->clipcnt++;
+ } else if (sample < -MAXAMP) {
+ sample = -MAXAMP;
+ up->clipcnt++;
+ }
+
+ /*
+ * Variable frequency oscillator. The codec oscillator
+ * runs at the nominal rate of 8000 samples per second,
+ * or 125 us per sample. A frequency change of one unit
+ * results in either duplicating or deleting one sample
+ * per second, which results in a frequency change of
+ * 125 PPM.
+ */
+ up->phase += (up->freq + clock_codec) / WWV_SEC;
+ if (up->phase >= .5) {
+ up->phase -= 1.;
+ } else if (up->phase < -.5) {
+ up->phase += 1.;
+ wwv_rf(peer, sample);
+ wwv_rf(peer, sample);
+ } else {
+ wwv_rf(peer, sample);
+ }
+ L_ADD(&up->timestamp, &up->tick);
+ }
+
+ /*
+ * Set the input port and monitor gain for the next buffer.
+ */
+ if (pp->sloppyclockflag & CLK_FLAG2)
+ up->port = 2;
+ else
+ up->port = 1;
+ if (pp->sloppyclockflag & CLK_FLAG3)
+ up->mongain = MONGAIN;
+ else
+ up->mongain = 0;
+}
+
+
+/*
+ * wwv_poll - called by the transmit procedure
+ *
+ * This routine keeps track of status. If no offset samples have been
+ * processed during a poll interval, a timeout event is declared. If
+ * errors have have occurred during the interval, they are reported as
+ * well.
+ */
+static void
+wwv_poll(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+ if (up->errflg)
+ refclock_report(peer, up->errflg);
+ up->errflg = 0;
+ pp->polls++;
+}
+
+
+/*
+ * wwv_rf - process signals and demodulate to baseband
+ *
+ * This routine grooms and filters decompanded raw audio samples. The
+ * output signal is the 100-Hz filtered baseband data signal in
+ * quadrature phase. The routine also determines the minute synch epoch,
+ * as well as certain signal maxima, minima and related values.
+ *
+ * There are two 1-s ramps used by this program. Both count the 8000
+ * logical clock samples spanning exactly one second. The epoch ramp
+ * counts the samples starting at an arbitrary time. The rphase ramp
+ * counts the samples starting at the 5-ms second sync pulse found
+ * during the epoch ramp.
+ *
+ * There are two 1-m ramps used by this program. The mphase ramp counts
+ * the 480,000 logical clock samples spanning exactly one minute and
+ * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
+ * the minute starting at the 800-ms minute sync pulse found during the
+ * mphase ramp. The rsec ramp drives the seconds state machine to
+ * determine the bits and digits of the timecode.
+ *
+ * Demodulation operations are based on three synthesized quadrature
+ * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
+ * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
+ * matched filters for the data signal (170 ms at 100 Hz), WWV minute
+ * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
+ * at 1200 Hz). Two additional matched filters are switched in
+ * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
+ * WWVH second sync signal (6 cycles at 1200 Hz).
+ */
+static void
+wwv_rf(
+ struct peer *peer, /* peerstructure pointer */
+ double isig /* input signal */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ struct sync *sp, *rp;
+
+ static double lpf[5]; /* 150-Hz lpf delay line */
+ double data; /* lpf output */
+ static double bpf[9]; /* 1000/1200-Hz bpf delay line */
+ double syncx; /* bpf output */
+ static double mf[41]; /* 1000/1200-Hz mf delay line */
+ double mfsync; /* mf output */
+
+ static int iptr; /* data channel pointer */
+ static double ibuf[DATSIZ]; /* data I channel delay line */
+ static double qbuf[DATSIZ]; /* data Q channel delay line */
+
+ static int jptr; /* sync channel pointer */
+ static int kptr; /* tick channel pointer */
+
+ static int csinptr; /* wwv channel phase */
+ static double cibuf[SYNSIZ]; /* wwv I channel delay line */
+ static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
+ static double ciamp; /* wwv I channel amplitude */
+ static double cqamp; /* wwv Q channel amplitude */
+
+ static double csibuf[TCKSIZ]; /* wwv I tick delay line */
+ static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
+ static double csiamp; /* wwv I tick amplitude */
+ static double csqamp; /* wwv Q tick amplitude */
+
+ static int hsinptr; /* wwvh channel phase */
+ static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
+ static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
+ static double hiamp; /* wwvh I channel amplitude */
+ static double hqamp; /* wwvh Q channel amplitude */
+
+ static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
+ static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
+ static double hsiamp; /* wwvh I tick amplitude */
+ static double hsqamp; /* wwvh Q tick amplitude */
+
+ static double epobuf[WWV_SEC]; /* second sync comb filter */
+ static double epomax, nxtmax; /* second sync amplitude buffer */
+ static int epopos; /* epoch second sync position buffer */
+
+ static int iniflg; /* initialization flag */
+ int epoch; /* comb filter index */
+ double dtemp;
+ int i;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ if (!iniflg) {
+ iniflg = 1;
+ memset((char *)lpf, 0, sizeof(lpf));
+ memset((char *)bpf, 0, sizeof(bpf));
+ memset((char *)mf, 0, sizeof(mf));
+ memset((char *)ibuf, 0, sizeof(ibuf));
+ memset((char *)qbuf, 0, sizeof(qbuf));
+ memset((char *)cibuf, 0, sizeof(cibuf));
+ memset((char *)cqbuf, 0, sizeof(cqbuf));
+ memset((char *)csibuf, 0, sizeof(csibuf));
+ memset((char *)csqbuf, 0, sizeof(csqbuf));
+ memset((char *)hibuf, 0, sizeof(hibuf));
+ memset((char *)hqbuf, 0, sizeof(hqbuf));
+ memset((char *)hsibuf, 0, sizeof(hsibuf));
+ memset((char *)hsqbuf, 0, sizeof(hsqbuf));
+ memset((char *)epobuf, 0, sizeof(epobuf));
+ }
+
+ /*
+ * Baseband data demodulation. The 100-Hz subcarrier is
+ * extracted using a 150-Hz IIR lowpass filter. This attenuates
+ * the 1000/1200-Hz sync signals, as well as the 440-Hz and
+ * 600-Hz tones and most of the noise and voice modulation
+ * components.
+ *
+ * The subcarrier is transmitted 10 dB down from the carrier.
+ * The DGAIN parameter can be adjusted for this and to
+ * compensate for the radio audio response at 100 Hz.
+ *
+ * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
+ * passband ripple, -50 dB stopband ripple, phase delay 0.97 ms.
+ */
+ data = (lpf[4] = lpf[3]) * 8.360961e-01;
+ data += (lpf[3] = lpf[2]) * -3.481740e+00;
+ data += (lpf[2] = lpf[1]) * 5.452988e+00;
+ data += (lpf[1] = lpf[0]) * -3.807229e+00;
+ lpf[0] = isig * DGAIN - data;
+ data = lpf[0] * 3.281435e-03
+ + lpf[1] * -1.149947e-02
+ + lpf[2] * 1.654858e-02
+ + lpf[3] * -1.149947e-02
+ + lpf[4] * 3.281435e-03;
+
+ /*
+ * The 100-Hz data signal is demodulated using a pair of
+ * quadrature multipliers, matched filters and a phase lock
+ * loop. The I and Q quadrature data signals are produced by
+ * multiplying the filtered signal by 100-Hz sine and cosine
+ * signals, respectively. The signals are processed by 170-ms
+ * synchronous matched filters to produce the amplitude and
+ * phase signals used by the demodulator. The signals are scaled
+ * to produce unit energy at the maximum value.
+ */
+ i = up->datapt;
+ up->datapt = (up->datapt + IN100) % 80;
+ dtemp = sintab[i] * data / (MS / 2. * DATCYC);
+ up->irig -= ibuf[iptr];
+ ibuf[iptr] = dtemp;
+ up->irig += dtemp;
+
+ i = (i + 20) % 80;
+ dtemp = sintab[i] * data / (MS / 2. * DATCYC);
+ up->qrig -= qbuf[iptr];
+ qbuf[iptr] = dtemp;
+ up->qrig += dtemp;
+ iptr = (iptr + 1) % DATSIZ;
+
+ /*
+ * Baseband sync demodulation. The 1000/1200 sync signals are
+ * extracted using a 600-Hz IIR bandpass filter. This removes
+ * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
+ * tones and most of the noise and voice modulation components.
+ *
+ * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
+ * passband ripple, -50 dB stopband ripple, phase delay 0.91 ms.
+ */
+ syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
+ syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
+ syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
+ syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
+ syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
+ syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
+ syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
+ syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
+ bpf[0] = isig - syncx;
+ syncx = bpf[0] * 8.203628e-03
+ + bpf[1] * -2.375732e-02
+ + bpf[2] * 3.353214e-02
+ + bpf[3] * -4.080258e-02
+ + bpf[4] * 4.605479e-02
+ + bpf[5] * -4.080258e-02
+ + bpf[6] * 3.353214e-02
+ + bpf[7] * -2.375732e-02
+ + bpf[8] * 8.203628e-03;
+
+ /*
+ * The 1000/1200 sync signals are demodulated using a pair of
+ * quadrature multipliers and matched filters. However,
+ * synchronous demodulation at these frequencies is impractical,
+ * so only the signal amplitude is used. The I and Q quadrature
+ * sync signals are produced by multiplying the filtered signal
+ * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
+ * respectively. The WWV and WWVH signals are processed by 800-
+ * ms synchronous matched filters and combined to produce the
+ * minute sync signal and detect which one (or both) the WWV or
+ * WWVH signal is present. The WWV and WWVH signals are also
+ * processed by 5-ms synchronous matched filters and combined to
+ * produce the second sync signal. The signals are scaled to
+ * produce unit energy at the maximum value.
+ *
+ * Note the master timing ramps, which run continuously. The
+ * minute counter (mphase) counts the samples in the minute,
+ * while the second counter (epoch) counts the samples in the
+ * second.
+ */
+ up->mphase = (up->mphase + 1) % WWV_MIN;
+ epoch = up->mphase % WWV_SEC;
+
+ /*
+ * WWV
+ */
+ i = csinptr;
+ csinptr = (csinptr + IN1000) % 80;
+
+ dtemp = sintab[i] * syncx / (MS / 2.);
+ ciamp -= cibuf[jptr];
+ cibuf[jptr] = dtemp;
+ ciamp += dtemp;
+ csiamp -= csibuf[kptr];
+ csibuf[kptr] = dtemp;
+ csiamp += dtemp;
+
+ i = (i + 20) % 80;
+ dtemp = sintab[i] * syncx / (MS / 2.);
+ cqamp -= cqbuf[jptr];
+ cqbuf[jptr] = dtemp;
+ cqamp += dtemp;
+ csqamp -= csqbuf[kptr];
+ csqbuf[kptr] = dtemp;
+ csqamp += dtemp;
+
+ sp = &up->mitig[up->achan].wwv;
+ sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
+ if (!(up->status & MSYNC))
+ wwv_qrz(peer, sp, (int)(pp->fudgetime1 * WWV_SEC));
+
+ /*
+ * WWVH
+ */
+ i = hsinptr;
+ hsinptr = (hsinptr + IN1200) % 80;
+
+ dtemp = sintab[i] * syncx / (MS / 2.);
+ hiamp -= hibuf[jptr];
+ hibuf[jptr] = dtemp;
+ hiamp += dtemp;
+ hsiamp -= hsibuf[kptr];
+ hsibuf[kptr] = dtemp;
+ hsiamp += dtemp;
+
+ i = (i + 20) % 80;
+ dtemp = sintab[i] * syncx / (MS / 2.);
+ hqamp -= hqbuf[jptr];
+ hqbuf[jptr] = dtemp;
+ hqamp += dtemp;
+ hsqamp -= hsqbuf[kptr];
+ hsqbuf[kptr] = dtemp;
+ hsqamp += dtemp;
+
+ rp = &up->mitig[up->achan].wwvh;
+ rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
+ if (!(up->status & MSYNC))
+ wwv_qrz(peer, rp, (int)(pp->fudgetime2 * WWV_SEC));
+ jptr = (jptr + 1) % SYNSIZ;
+ kptr = (kptr + 1) % TCKSIZ;
+
+ /*
+ * The following section is called once per minute. It does
+ * housekeeping and timeout functions and empties the dustbins.
+ */
+ if (up->mphase == 0) {
+ up->watch++;
+ if (!(up->status & MSYNC)) {
+
+ /*
+ * If minute sync has not been acquired before
+ * ACQSN timeout (6 min), or if no signal is
+ * heard, the program cycles to the next
+ * frequency and tries again.
+ */
+ if (!wwv_newchan(peer))
+ up->watch = 0;
+ } else {
+
+ /*
+ * If the leap bit is set, set the minute epoch
+ * back one second so the station processes
+ * don't miss a beat.
+ */
+ if (up->status & LEPSEC) {
+ up->mphase -= WWV_SEC;
+ if (up->mphase < 0)
+ up->mphase += WWV_MIN;
+ }
+ }
+ }
+
+ /*
+ * When the channel metric reaches threshold and the second
+ * counter matches the minute epoch within the second, the
+ * driver has synchronized to the station. The second number is
+ * the remaining seconds until the next minute epoch, while the
+ * sync epoch is zero. Watch out for the first second; if
+ * already synchronized to the second, the buffered sync epoch
+ * must be set.
+ *
+ * Note the guard interval is 200 ms; if for some reason the
+ * clock drifts more than that, it might wind up in the wrong
+ * second. If the maximum frequency error is not more than about
+ * 1 PPM, the clock can go as much as two days while still in
+ * the same second.
+ */
+ if (up->status & MSYNC) {
+ wwv_epoch(peer);
+ } else if (up->sptr != NULL) {
+ sp = up->sptr;
+ if (sp->metric >= TTHR && epoch == sp->mepoch % WWV_SEC)
+ {
+ up->rsec = (60 - sp->mepoch / WWV_SEC) % 60;
+ up->rphase = 0;
+ up->status |= MSYNC;
+ up->watch = 0;
+ if (!(up->status & SSYNC))
+ up->repoch = up->yepoch = epoch;
+ else
+ up->repoch = up->yepoch;
+
+ }
+ }
+
+ /*
+ * The second sync pulse is extracted using 5-ms (40 sample) FIR
+ * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
+ * pulse is used for the most precise synchronization, since if
+ * provides a resolution of one sample (125 us). The filters run
+ * only if the station has been reliably determined.
+ */
+ if (up->status & SELV)
+ mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
+ TCKCYC;
+ else if (up->status & SELH)
+ mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
+ TCKCYC;
+ else
+ mfsync = 0;
+
+ /*
+ * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
+ * filter. Correct for the FIR matched filter delay, which is 5
+ * ms for both the WWV and WWVH filters, and also for the
+ * propagation delay. Once each second look for second sync. If
+ * not in minute sync, fiddle the codec gain. Note the SNR is
+ * computed from the maximum sample and the envelope of the
+ * sample 6 ms before it, so if we slip more than a cycle the
+ * SNR should plummet. The signal is scaled to produce unit
+ * energy at the maximum value.
+ */
+ dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
+ up->avgint);
+ if (dtemp > epomax) {
+ int j;
+
+ epomax = dtemp;
+ epopos = epoch;
+ j = epoch - 6 * MS;
+ if (j < 0)
+ j += WWV_SEC;
+ nxtmax = fabs(epobuf[j]);
+ }
+ if (epoch == 0) {
+ up->epomax = epomax;
+ up->eposnr = wwv_snr(epomax, nxtmax);
+ epopos -= TCKCYC * MS;
+ if (epopos < 0)
+ epopos += WWV_SEC;
+ wwv_endpoc(peer, epopos);
+ if (!(up->status & SSYNC))
+ up->alarm |= SYNERR;
+ epomax = 0;
+ if (!(up->status & MSYNC))
+ wwv_gain(peer);
+ }
+}
+
+
+/*
+ * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
+ *
+ * This routine implements a virtual station process used to acquire
+ * minute sync and to mitigate among the ten frequency and station
+ * combinations. During minute sync acquisition the process probes each
+ * frequency and station in turn for the minute pulse, which
+ * involves searching through the entire 480,000-sample minute. The
+ * process finds the maximum signal and RMS noise plus signal. Then, the
+ * actual noise is determined by subtracting the energy of the matched
+ * filter.
+ *
+ * Students of radar receiver technology will discover this algorithm
+ * amounts to a range-gate discriminator. A valid pulse must have peak
+ * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
+ * difference between the current and previous epoch must be less than
+ * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
+ * into the second, so the timing is retarded to the previous second
+ * epoch.
+ */
+static void
+wwv_qrz(
+ struct peer *peer, /* peer structure pointer */
+ struct sync *sp, /* sync channel structure */
+ int pdelay /* propagation delay (samples) */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ char tbuf[TBUF]; /* monitor buffer */
+ long epoch;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Find the sample with peak amplitude, which defines the minute
+ * epoch. Accumulate all samples to determine the total noise
+ * energy.
+ */
+ epoch = up->mphase - pdelay - SYNSIZ;
+ if (epoch < 0)
+ epoch += WWV_MIN;
+ if (sp->amp > sp->maxeng) {
+ sp->maxeng = sp->amp;
+ sp->pos = epoch;
+ }
+ sp->noieng += sp->amp;
+
+ /*
+ * At the end of the minute, determine the epoch of the minute
+ * sync pulse, as well as the difference between the current and
+ * previous epoches due to the intrinsic frequency error plus
+ * jitter. When calculating the SNR, subtract the pulse energy
+ * from the total noise energy and then normalize.
+ */
+ if (up->mphase == 0) {
+ sp->synmax = sp->maxeng;
+ sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
+ sp->synmax) / WWV_MIN);
+ if (sp->count == 0)
+ sp->lastpos = sp->pos;
+ epoch = (sp->pos - sp->lastpos) % WWV_MIN;
+ sp->reach <<= 1;
+ if (sp->reach & (1 << AMAX))
+ sp->count--;
+ if (sp->synmax > ATHR && sp->synsnr > ASNR) {
+ if (abs(epoch) < AWND * MS) {
+ sp->reach |= 1;
+ sp->count++;
+ sp->mepoch = sp->lastpos = sp->pos;
+ } else if (sp->count == 1) {
+ sp->lastpos = sp->pos;
+ }
+ }
+ if (up->watch > ACQSN)
+ sp->metric = 0;
+ else
+ sp->metric = wwv_metric(sp);
+ if (pp->sloppyclockflag & CLK_FLAG4) {
+ snprintf(tbuf, sizeof(tbuf),
+ "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %ld %ld",
+ up->status, up->gain, sp->refid,
+ sp->reach & 0xffff, sp->metric, sp->synmax,
+ sp->synsnr, sp->pos % WWV_SEC, epoch);
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
+ }
+ sp->maxeng = sp->noieng = 0;
+ }
+}
+
+
+/*
+ * wwv_endpoc - identify and acquire second sync pulse
+ *
+ * This routine is called at the end of the second sync interval. It
+ * determines the second sync epoch position within the second and
+ * disciplines the sample clock using a frequency-lock loop (FLL).
+ *
+ * Second sync is determined in the RF input routine as the maximum
+ * over all 8000 samples in the second comb filter. To assure accurate
+ * and reliable time and frequency discipline, this routine performs a
+ * great deal of heavy-handed heuristic data filtering and grooming.
+ */
+static void
+wwv_endpoc(
+ struct peer *peer, /* peer structure pointer */
+ int epopos /* epoch max position */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ static int epoch_mf[3]; /* epoch median filter */
+ static int tepoch; /* current second epoch */
+ static int xepoch; /* last second epoch */
+ static int zepoch; /* last run epoch */
+ static int zcount; /* last run end time */
+ static int scount; /* seconds counter */
+ static int syncnt; /* run length counter */
+ static int maxrun; /* longest run length */
+ static int mepoch; /* longest run end epoch */
+ static int mcount; /* longest run end time */
+ static int avgcnt; /* averaging interval counter */
+ static int avginc; /* averaging ratchet */
+ static int iniflg; /* initialization flag */
+ char tbuf[TBUF]; /* monitor buffer */
+ double dtemp;
+ int tmp2;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+ if (!iniflg) {
+ iniflg = 1;
+ ZERO(epoch_mf);
+ }
+
+ /*
+ * If the signal amplitude or SNR fall below thresholds, dim the
+ * second sync lamp and wait for hotter ions. If no stations are
+ * heard, we are either in a probe cycle or the ions are really
+ * cold.
+ */
+ scount++;
+ if (up->epomax < STHR || up->eposnr < SSNR) {
+ up->status &= ~(SSYNC | FGATE);
+ avgcnt = syncnt = maxrun = 0;
+ return;
+ }
+ if (!(up->status & (SELV | SELH)))
+ return;
+
+ /*
+ * A three-stage median filter is used to help denoise the
+ * second sync pulse. The median sample becomes the candidate
+ * epoch.
+ */
+ epoch_mf[2] = epoch_mf[1];
+ epoch_mf[1] = epoch_mf[0];
+ epoch_mf[0] = epopos;
+ if (epoch_mf[0] > epoch_mf[1]) {
+ if (epoch_mf[1] > epoch_mf[2])
+ tepoch = epoch_mf[1]; /* 0 1 2 */
+ else if (epoch_mf[2] > epoch_mf[0])
+ tepoch = epoch_mf[0]; /* 2 0 1 */
+ else
+ tepoch = epoch_mf[2]; /* 0 2 1 */
+ } else {
+ if (epoch_mf[1] < epoch_mf[2])
+ tepoch = epoch_mf[1]; /* 2 1 0 */
+ else if (epoch_mf[2] < epoch_mf[0])
+ tepoch = epoch_mf[0]; /* 1 0 2 */
+ else
+ tepoch = epoch_mf[2]; /* 1 2 0 */
+ }
+
+
+ /*
+ * If the epoch candidate is the same as the last one, increment
+ * the run counter. If not, save the length, epoch and end
+ * time of the current run for use later and reset the counter.
+ * The epoch is considered valid if the run is at least SCMP
+ * (10) s, the minute is synchronized and the interval since the
+ * last epoch is not greater than the averaging interval. Thus,
+ * after a long absence, the program will wait a full averaging
+ * interval while the comb filter charges up and noise
+ * dissapates..
+ */
+ tmp2 = (tepoch - xepoch) % WWV_SEC;
+ if (tmp2 == 0) {
+ syncnt++;
+ if (syncnt > SCMP && up->status & MSYNC && (up->status &
+ FGATE || scount - zcount <= up->avgint)) {
+ up->status |= SSYNC;
+ up->yepoch = tepoch;
+ }
+ } else if (syncnt >= maxrun) {
+ maxrun = syncnt;
+ mcount = scount;
+ mepoch = xepoch;
+ syncnt = 0;
+ }
+ if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
+ MSYNC)) {
+ snprintf(tbuf, sizeof(tbuf),
+ "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
+ up->status, up->gain, tepoch, up->epomax,
+ up->eposnr, tmp2, avgcnt, syncnt,
+ maxrun);
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
+ }
+ avgcnt++;
+ if (avgcnt < up->avgint) {
+ xepoch = tepoch;
+ return;
+ }
+
+ /*
+ * The sample clock frequency is disciplined using a first-order
+ * feedback loop with time constant consistent with the Allan
+ * intercept of typical computer clocks. During each averaging
+ * interval the candidate epoch at the end of the longest run is
+ * determined. If the longest run is zero, all epoches in the
+ * interval are different, so the candidate epoch is the current
+ * epoch. The frequency update is computed from the candidate
+ * epoch difference (125-us units) and time difference (seconds)
+ * between updates.
+ */
+ if (syncnt >= maxrun) {
+ maxrun = syncnt;
+ mcount = scount;
+ mepoch = xepoch;
+ }
+ xepoch = tepoch;
+ if (maxrun == 0) {
+ mepoch = tepoch;
+ mcount = scount;
+ }
+
+ /*
+ * The master clock runs at the codec sample frequency of 8000
+ * Hz, so the intrinsic time resolution is 125 us. The frequency
+ * resolution ranges from 18 PPM at the minimum averaging
+ * interval of 8 s to 0.12 PPM at the maximum interval of 1024
+ * s. An offset update is determined at the end of the longest
+ * run in each averaging interval. The frequency adjustment is
+ * computed from the difference between offset updates and the
+ * interval between them.
+ *
+ * The maximum frequency adjustment ranges from 187 PPM at the
+ * minimum interval to 1.5 PPM at the maximum. If the adjustment
+ * exceeds the maximum, the update is discarded and the
+ * hysteresis counter is decremented. Otherwise, the frequency
+ * is incremented by the adjustment, but clamped to the maximum
+ * 187.5 PPM. If the update is less than half the maximum, the
+ * hysteresis counter is incremented. If the counter increments
+ * to +3, the averaging interval is doubled and the counter set
+ * to zero; if it decrements to -3, the interval is halved and
+ * the counter set to zero.
+ */
+ dtemp = (mepoch - zepoch) % WWV_SEC;
+ if (up->status & FGATE) {
+ if (abs(dtemp) < MAXFREQ * MINAVG) {
+ up->freq += (dtemp / 2.) / ((mcount - zcount) *
+ FCONST);
+ if (up->freq > MAXFREQ)
+ up->freq = MAXFREQ;
+ else if (up->freq < -MAXFREQ)
+ up->freq = -MAXFREQ;
+ if (abs(dtemp) < MAXFREQ * MINAVG / 2.) {
+ if (avginc < 3) {
+ avginc++;
+ } else {
+ if (up->avgint < MAXAVG) {
+ up->avgint <<= 1;
+ avginc = 0;
+ }
+ }
+ }
+ } else {
+ if (avginc > -3) {
+ avginc--;
+ } else {
+ if (up->avgint > MINAVG) {
+ up->avgint >>= 1;
+ avginc = 0;
+ }
+ }
+ }
+ }
+ if (pp->sloppyclockflag & CLK_FLAG4) {
+ snprintf(tbuf, sizeof(tbuf),
+ "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
+ up->status, up->epomax, up->eposnr, mepoch,
+ up->avgint, maxrun, mcount - zcount, dtemp,
+ up->freq * 1e6 / WWV_SEC);
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
+ }
+
+ /*
+ * This is a valid update; set up for the next interval.
+ */
+ up->status |= FGATE;
+ zepoch = mepoch;
+ zcount = mcount;
+ avgcnt = syncnt = maxrun = 0;
+}
+
+
+/*
+ * wwv_epoch - epoch scanner
+ *
+ * This routine extracts data signals from the 100-Hz subcarrier. It
+ * scans the receiver second epoch to determine the signal amplitudes
+ * and pulse timings. Receiver synchronization is determined by the
+ * minute sync pulse detected in the wwv_rf() routine and the second
+ * sync pulse detected in the wwv_epoch() routine. The transmitted
+ * signals are delayed by the propagation delay, receiver delay and
+ * filter delay of this program. Delay corrections are introduced
+ * separately for WWV and WWVH.
+ *
+ * Most communications radios use a highpass filter in the audio stages,
+ * which can do nasty things to the subcarrier phase relative to the
+ * sync pulses. Therefore, the data subcarrier reference phase is
+ * disciplined using the hardlimited quadrature-phase signal sampled at
+ * the same time as the in-phase signal. The phase tracking loop uses
+ * phase adjustments of plus-minus one sample (125 us).
+ */
+static void
+wwv_epoch(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ struct chan *cp;
+ static double sigmin, sigzer, sigone, engmax, engmin;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Find the maximum minute sync pulse energy for both the
+ * WWV and WWVH stations. This will be used later for channel
+ * and station mitigation. Also set the seconds epoch at 800 ms
+ * well before the end of the second to make sure we never set
+ * the epoch backwards.
+ */
+ cp = &up->mitig[up->achan];
+ if (cp->wwv.amp > cp->wwv.syneng)
+ cp->wwv.syneng = cp->wwv.amp;
+ if (cp->wwvh.amp > cp->wwvh.syneng)
+ cp->wwvh.syneng = cp->wwvh.amp;
+ if (up->rphase == 800 * MS)
+ up->repoch = up->yepoch;
+
+ /*
+ * Use the signal amplitude at epoch 15 ms as the noise floor.
+ * This gives a guard time of +-15 ms from the beginning of the
+ * second until the second pulse rises at 30 ms. There is a
+ * compromise here; we want to delay the sample as long as
+ * possible to give the radio time to change frequency and the
+ * AGC to stabilize, but as early as possible if the second
+ * epoch is not exact.
+ */
+ if (up->rphase == 15 * MS)
+ sigmin = sigzer = sigone = up->irig;
+
+ /*
+ * Latch the data signal at 200 ms. Keep this around until the
+ * end of the second. Use the signal energy as the peak to
+ * compute the SNR. Use the Q sample to adjust the 100-Hz
+ * reference oscillator phase.
+ */
+ if (up->rphase == 200 * MS) {
+ sigzer = up->irig;
+ engmax = sqrt(up->irig * up->irig + up->qrig *
+ up->qrig);
+ up->datpha = up->qrig / up->avgint;
+ if (up->datpha >= 0) {
+ up->datapt++;
+ if (up->datapt >= 80)
+ up->datapt -= 80;
+ } else {
+ up->datapt--;
+ if (up->datapt < 0)
+ up->datapt += 80;
+ }
+ }
+
+
+ /*
+ * Latch the data signal at 500 ms. Keep this around until the
+ * end of the second.
+ */
+ else if (up->rphase == 500 * MS)
+ sigone = up->irig;
+
+ /*
+ * At the end of the second crank the clock state machine and
+ * adjust the codec gain. Note the epoch is buffered from the
+ * center of the second in order to avoid jitter while the
+ * seconds synch is diddling the epoch. Then, determine the true
+ * offset and update the median filter in the driver interface.
+ *
+ * Use the energy at the end of the second as the noise to
+ * compute the SNR for the data pulse. This gives a better
+ * measurement than the beginning of the second, especially when
+ * returning from the probe channel. This gives a guard time of
+ * 30 ms from the decay of the longest pulse to the rise of the
+ * next pulse.
+ */
+ up->rphase++;
+ if (up->mphase % WWV_SEC == up->repoch) {
+ up->status &= ~(DGATE | BGATE);
+ engmin = sqrt(up->irig * up->irig + up->qrig *
+ up->qrig);
+ up->datsig = engmax;
+ up->datsnr = wwv_snr(engmax, engmin);
+
+ /*
+ * If the amplitude or SNR is below threshold, average a
+ * 0 in the the integrators; otherwise, average the
+ * bipolar signal. This is done to avoid noise polution.
+ */
+ if (engmax < DTHR || up->datsnr < DSNR) {
+ up->status |= DGATE;
+ wwv_rsec(peer, 0);
+ } else {
+ sigzer -= sigone;
+ sigone -= sigmin;
+ wwv_rsec(peer, sigone - sigzer);
+ }
+ if (up->status & (DGATE | BGATE))
+ up->errcnt++;
+ if (up->errcnt > MAXERR)
+ up->alarm |= LOWERR;
+ wwv_gain(peer);
+ cp = &up->mitig[up->achan];
+ cp->wwv.syneng = 0;
+ cp->wwvh.syneng = 0;
+ up->rphase = 0;
+ }
+}
+
+
+/*
+ * wwv_rsec - process receiver second
+ *
+ * This routine is called at the end of each receiver second to
+ * implement the per-second state machine. The machine assembles BCD
+ * digit bits, decodes miscellaneous bits and dances the leap seconds.
+ *
+ * Normally, the minute has 60 seconds numbered 0-59. If the leap
+ * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
+ * for leap years) or 31 December (day 365 or 366 for leap years) is
+ * augmented by one second numbered 60. This is accomplished by
+ * extending the minute interval by one second and teaching the state
+ * machine to ignore it.
+ */
+static void
+wwv_rsec(
+ struct peer *peer, /* peer structure pointer */
+ double bit
+ )
+{
+ static int iniflg; /* initialization flag */
+ static double bcddld[4]; /* BCD data bits */
+ static double bitvec[61]; /* bit integrator for misc bits */
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ struct chan *cp;
+ struct sync *sp, *rp;
+ char tbuf[TBUF]; /* monitor buffer */
+ int sw, arg, nsec;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+ if (!iniflg) {
+ iniflg = 1;
+ ZERO(bitvec);
+ }
+
+ /*
+ * The bit represents the probability of a hit on zero (negative
+ * values), a hit on one (positive values) or a miss (zero
+ * value). The likelihood vector is the exponential average of
+ * these probabilities. Only the bits of this vector
+ * corresponding to the miscellaneous bits of the timecode are
+ * used, but it's easier to do them all. After that, crank the
+ * seconds state machine.
+ */
+ nsec = up->rsec;
+ up->rsec++;
+ bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
+ sw = progx[nsec].sw;
+ arg = progx[nsec].arg;
+
+ /*
+ * The minute state machine. Fly off to a particular section as
+ * directed by the transition matrix and second number.
+ */
+ switch (sw) {
+
+ /*
+ * Ignore this second.
+ */
+ case IDLE: /* 9, 45-49 */
+ break;
+
+ /*
+ * Probe channel stuff
+ *
+ * The WWV/H format contains data pulses in second 59 (position
+ * identifier) and second 1, but not in second 0. The minute
+ * sync pulse is contained in second 0. At the end of second 58
+ * QSY to the probe channel, which rotates in turn over all
+ * WWV/H frequencies. At the end of second 0 measure the minute
+ * sync pulse. At the end of second 1 measure the data pulse and
+ * QSY back to the data channel. Note that the actions commented
+ * here happen at the end of the second numbered as shown.
+ *
+ * At the end of second 0 save the minute sync amplitude latched
+ * at 800 ms as the signal later used to calculate the SNR.
+ */
+ case SYNC2: /* 0 */
+ cp = &up->mitig[up->achan];
+ cp->wwv.synmax = cp->wwv.syneng;
+ cp->wwvh.synmax = cp->wwvh.syneng;
+ break;
+
+ /*
+ * At the end of second 1 use the minute sync amplitude latched
+ * at 800 ms as the noise to calculate the SNR. If the minute
+ * sync pulse and SNR are above thresholds and the data pulse
+ * amplitude and SNR are above thresolds, shift a 1 into the
+ * station reachability register; otherwise, shift a 0. The
+ * number of 1 bits in the last six intervals is a component of
+ * the channel metric computed by the wwv_metric() routine.
+ * Finally, QSY back to the data channel.
+ */
+ case SYNC3: /* 1 */
+ cp = &up->mitig[up->achan];
+
+ /*
+ * WWV station
+ */
+ sp = &cp->wwv;
+ sp->synsnr = wwv_snr(sp->synmax, sp->amp);
+ sp->reach <<= 1;
+ if (sp->reach & (1 << AMAX))
+ sp->count--;
+ if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
+ !(up->status & (DGATE | BGATE))) {
+ sp->reach |= 1;
+ sp->count++;
+ }
+ sp->metric = wwv_metric(sp);
+
+ /*
+ * WWVH station
+ */
+ rp = &cp->wwvh;
+ rp->synsnr = wwv_snr(rp->synmax, rp->amp);
+ rp->reach <<= 1;
+ if (rp->reach & (1 << AMAX))
+ rp->count--;
+ if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
+ !(up->status & (DGATE | BGATE))) {
+ rp->reach |= 1;
+ rp->count++;
+ }
+ rp->metric = wwv_metric(rp);
+ if (pp->sloppyclockflag & CLK_FLAG4) {
+ snprintf(tbuf, sizeof(tbuf),
+ "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
+ up->status, up->gain, up->yepoch,
+ up->epomax, up->eposnr, up->datsig,
+ up->datsnr,
+ sp->refid, sp->reach & 0xffff,
+ sp->metric, sp->synmax, sp->synsnr,
+ rp->refid, rp->reach & 0xffff,
+ rp->metric, rp->synmax, rp->synsnr);
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
+ }
+ up->errcnt = up->digcnt = up->alarm = 0;
+
+ /*
+ * If synchronized to a station, restart if no stations
+ * have been heard within the PANIC timeout (2 days). If
+ * not and the minute digit has been found, restart if
+ * not synchronized withing the SYNCH timeout (40 m). If
+ * not, restart if the unit digit has not been found
+ * within the DATA timeout (15 m).
+ */
+ if (up->status & INSYNC) {
+ if (up->watch > PANIC) {
+ wwv_newgame(peer);
+ return;
+ }
+ } else if (up->status & DSYNC) {
+ if (up->watch > SYNCH) {
+ wwv_newgame(peer);
+ return;
+ }
+ } else if (up->watch > DATA) {
+ wwv_newgame(peer);
+ return;
+ }
+ wwv_newchan(peer);
+ break;
+
+ /*
+ * Save the bit probability in the BCD data vector at the index
+ * given by the argument. Bits not used in the digit are forced
+ * to zero.
+ */
+ case COEF1: /* 4-7 */
+ bcddld[arg] = bit;
+ break;
+
+ case COEF: /* 10-13, 15-17, 20-23, 25-26,
+ 30-33, 35-38, 40-41, 51-54 */
+ if (up->status & DSYNC)
+ bcddld[arg] = bit;
+ else
+ bcddld[arg] = 0;
+ break;
+
+ case COEF2: /* 18, 27-28, 42-43 */
+ bcddld[arg] = 0;
+ break;
+
+ /*
+ * Correlate coefficient vector with each valid digit vector and
+ * save in decoding matrix. We step through the decoding matrix
+ * digits correlating each with the coefficients and saving the
+ * greatest and the next lower for later SNR calculation.
+ */
+ case DECIM2: /* 29 */
+ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
+ break;
+
+ case DECIM3: /* 44 */
+ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
+ break;
+
+ case DECIM6: /* 19 */
+ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
+ break;
+
+ case DECIM9: /* 8, 14, 24, 34, 39 */
+ wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
+ break;
+
+ /*
+ * Miscellaneous bits. If above the positive threshold, declare
+ * 1; if below the negative threshold, declare 0; otherwise
+ * raise the BGATE bit. The design is intended to avoid
+ * integrating noise under low SNR conditions.
+ */
+ case MSC20: /* 55 */
+ wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
+ /* fall through */
+
+ case MSCBIT: /* 2-3, 50, 56-57 */
+ if (bitvec[nsec] > BTHR) {
+ if (!(up->misc & arg))
+ up->alarm |= CMPERR;
+ up->misc |= arg;
+ } else if (bitvec[nsec] < -BTHR) {
+ if (up->misc & arg)
+ up->alarm |= CMPERR;
+ up->misc &= ~arg;
+ } else {
+ up->status |= BGATE;
+ }
+ break;
+
+ /*
+ * Save the data channel gain, then QSY to the probe channel and
+ * dim the seconds comb filters. The www_newchan() routine will
+ * light them back up.
+ */
+ case MSC21: /* 58 */
+ if (bitvec[nsec] > BTHR) {
+ if (!(up->misc & arg))
+ up->alarm |= CMPERR;
+ up->misc |= arg;
+ } else if (bitvec[nsec] < -BTHR) {
+ if (up->misc & arg)
+ up->alarm |= CMPERR;
+ up->misc &= ~arg;
+ } else {
+ up->status |= BGATE;
+ }
+ up->status &= ~(SELV | SELH);
+#ifdef ICOM
+ if (up->fd_icom > 0) {
+ up->schan = (up->schan + 1) % NCHAN;
+ wwv_qsy(peer, up->schan);
+ } else {
+ up->mitig[up->achan].gain = up->gain;
+ }
+#else
+ up->mitig[up->achan].gain = up->gain;
+#endif /* ICOM */
+ break;
+
+ /*
+ * The endgames
+ *
+ * During second 59 the receiver and codec AGC are settling
+ * down, so the data pulse is unusable as quality metric. If
+ * LEPSEC is set on the last minute of 30 June or 31 December,
+ * the transmitter and receiver insert an extra second (60) in
+ * the timescale and the minute sync repeats the second. Once
+ * leaps occurred at intervals of about 18 months, but the last
+ * leap before the most recent leap in 1995 was in 1998.
+ */
+ case MIN1: /* 59 */
+ if (up->status & LEPSEC)
+ break;
+
+ /* fall through */
+
+ case MIN2: /* 60 */
+ up->status &= ~LEPSEC;
+ wwv_tsec(peer);
+ up->rsec = 0;
+ wwv_clock(peer);
+ break;
+ }
+ if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
+ DSYNC)) {
+ snprintf(tbuf, sizeof(tbuf),
+ "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
+ nsec, up->status, up->gain, up->yepoch, up->epomax,
+ up->eposnr, up->datsig, up->datsnr, bit);
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
+ }
+ pp->disp += AUDIO_PHI;
+}
+
+/*
+ * The radio clock is set if the alarm bits are all zero. After that,
+ * the time is considered valid if the second sync bit is lit. It should
+ * not be a surprise, especially if the radio is not tunable, that
+ * sometimes no stations are above the noise and the integrators
+ * discharge below the thresholds. We assume that, after a day of signal
+ * loss, the minute sync epoch will be in the same second. This requires
+ * the codec frequency be accurate within 6 PPM. Practical experience
+ * shows the frequency typically within 0.1 PPM, so after a day of
+ * signal loss, the time should be within 8.6 ms..
+ */
+static void
+wwv_clock(
+ struct peer *peer /* peer unit pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ l_fp offset; /* offset in NTP seconds */
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+ if (!(up->status & SSYNC))
+ up->alarm |= SYNERR;
+ if (up->digcnt < 9)
+ up->alarm |= NINERR;
+ if (!(up->alarm))
+ up->status |= INSYNC;
+ if (up->status & INSYNC && up->status & SSYNC) {
+ if (up->misc & SECWAR)
+ pp->leap = LEAP_ADDSECOND;
+ else
+ pp->leap = LEAP_NOWARNING;
+ pp->second = up->rsec;
+ pp->minute = up->decvec[MN].digit + up->decvec[MN +
+ 1].digit * 10;
+ pp->hour = up->decvec[HR].digit + up->decvec[HR +
+ 1].digit * 10;
+ pp->day = up->decvec[DA].digit + up->decvec[DA +
+ 1].digit * 10 + up->decvec[DA + 2].digit * 100;
+ pp->year = up->decvec[YR].digit + up->decvec[YR +
+ 1].digit * 10;
+ pp->year += 2000;
+ L_CLR(&offset);
+ if (!clocktime(pp->day, pp->hour, pp->minute,
+ pp->second, GMT, up->timestamp.l_ui,
+ &pp->yearstart, &offset.l_ui)) {
+ up->errflg = CEVNT_BADTIME;
+ } else {
+ up->watch = 0;
+ pp->disp = 0;
+ pp->lastref = up->timestamp;
+ refclock_process_offset(pp, offset,
+ up->timestamp, PDELAY + up->pdelay);
+ refclock_receive(peer);
+ }
+ }
+ pp->lencode = timecode(up, pp->a_lastcode,
+ sizeof(pp->a_lastcode));
+ record_clock_stats(&peer->srcadr, pp->a_lastcode);
+#ifdef DEBUG
+ if (debug)
+ printf("wwv: timecode %d %s\n", pp->lencode,
+ pp->a_lastcode);
+#endif /* DEBUG */
+}
+
+
+/*
+ * wwv_corr4 - determine maximum-likelihood digit
+ *
+ * This routine correlates the received digit vector with the BCD
+ * coefficient vectors corresponding to all valid digits at the given
+ * position in the decoding matrix. The maximum value corresponds to the
+ * maximum-likelihood digit, while the ratio of this value to the next
+ * lower value determines the likelihood function. Note that, if the
+ * digit is invalid, the likelihood vector is averaged toward a miss.
+ */
+static void
+wwv_corr4(
+ struct peer *peer, /* peer unit pointer */
+ struct decvec *vp, /* decoding table pointer */
+ double data[], /* received data vector */
+ double tab[][4] /* correlation vector array */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ double topmax, nxtmax; /* metrics */
+ double acc; /* accumulator */
+ char tbuf[TBUF]; /* monitor buffer */
+ int mldigit; /* max likelihood digit */
+ int i, j;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Correlate digit vector with each BCD coefficient vector. If
+ * any BCD digit bit is bad, consider all bits a miss. Until the
+ * minute units digit has been resolved, don't to anything else.
+ * Note the SNR is calculated as the ratio of the largest
+ * likelihood value to the next largest likelihood value.
+ */
+ mldigit = 0;
+ topmax = nxtmax = -MAXAMP;
+ for (i = 0; tab[i][0] != 0; i++) {
+ acc = 0;
+ for (j = 0; j < 4; j++)
+ acc += data[j] * tab[i][j];
+ acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
+ if (acc > topmax) {
+ nxtmax = topmax;
+ topmax = acc;
+ mldigit = i;
+ } else if (acc > nxtmax) {
+ nxtmax = acc;
+ }
+ }
+ vp->digprb = topmax;
+ vp->digsnr = wwv_snr(topmax, nxtmax);
+
+ /*
+ * The current maximum-likelihood digit is compared to the last
+ * maximum-likelihood digit. If different, the compare counter
+ * and maximum-likelihood digit are reset. When the compare
+ * counter reaches the BCMP threshold (3), the digit is assumed
+ * correct. When the compare counter of all nine digits have
+ * reached threshold, the clock is assumed correct.
+ *
+ * Note that the clock display digit is set before the compare
+ * counter has reached threshold; however, the clock display is
+ * not considered correct until all nine clock digits have
+ * reached threshold. This is intended as eye candy, but avoids
+ * mistakes when the signal is low and the SNR is very marginal.
+ */
+ if (vp->digprb < BTHR || vp->digsnr < BSNR) {
+ up->status |= BGATE;
+ } else {
+ if (vp->digit != mldigit) {
+ up->alarm |= CMPERR;
+ if (vp->count > 0)
+ vp->count--;
+ if (vp->count == 0)
+ vp->digit = mldigit;
+ } else {
+ if (vp->count < BCMP)
+ vp->count++;
+ if (vp->count == BCMP) {
+ up->status |= DSYNC;
+ up->digcnt++;
+ }
+ }
+ }
+ if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
+ INSYNC)) {
+ snprintf(tbuf, sizeof(tbuf),
+ "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
+ up->rsec - 1, up->status, up->gain, up->yepoch,
+ up->epomax, vp->radix, vp->digit, mldigit,
+ vp->count, vp->digprb, vp->digsnr);
+ record_clock_stats(&peer->srcadr, tbuf);
+#ifdef DEBUG
+ if (debug)
+ printf("%s\n", tbuf);
+#endif /* DEBUG */
+ }
+}
+
+
+/*
+ * wwv_tsec - transmitter minute processing
+ *
+ * This routine is called at the end of the transmitter minute. It
+ * implements a state machine that advances the logical clock subject to
+ * the funny rules that govern the conventional clock and calendar.
+ */
+static void
+wwv_tsec(
+ struct peer *peer /* driver structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ int minute, day, isleap;
+ int temp;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Advance minute unit of the day. Don't propagate carries until
+ * the unit minute digit has been found.
+ */
+ temp = carry(&up->decvec[MN]); /* minute units */
+ if (!(up->status & DSYNC))
+ return;
+
+ /*
+ * Propagate carries through the day.
+ */
+ if (temp == 0) /* carry minutes */
+ temp = carry(&up->decvec[MN + 1]);
+ if (temp == 0) /* carry hours */
+ temp = carry(&up->decvec[HR]);
+ if (temp == 0)
+ temp = carry(&up->decvec[HR + 1]);
+
+ /*
+ * Decode the current minute and day. Set leap day if the
+ * timecode leap bit is set on 30 June or 31 December. Set leap
+ * minute if the last minute on leap day, but only if the clock
+ * is syncrhronized. This code fails in 2400 AD.
+ */
+ minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
+ 10 + up->decvec[HR].digit * 60 + up->decvec[HR +
+ 1].digit * 600;
+ day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
+ up->decvec[DA + 2].digit * 100;
+
+ /*
+ * Set the leap bit on the last minute of the leap day.
+ */
+ isleap = up->decvec[YR].digit & 0x3;
+ if (up->misc & SECWAR && up->status & INSYNC) {
+ if ((day == (isleap ? 182 : 183) || day == (isleap ?
+ 365 : 366)) && minute == 1439)
+ up->status |= LEPSEC;
+ }
+
+ /*
+ * Roll the day if this the first minute and propagate carries
+ * through the year.
+ */
+ if (minute != 1440)
+ return;
+
+ minute = 0;
+ while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
+ while (carry(&up->decvec[HR + 1]) != 0);
+ day++;
+ temp = carry(&up->decvec[DA]); /* carry days */
+ if (temp == 0)
+ temp = carry(&up->decvec[DA + 1]);
+ if (temp == 0)
+ temp = carry(&up->decvec[DA + 2]);
+
+ /*
+ * Roll the year if this the first day and propagate carries
+ * through the century.
+ */
+ if (day != (isleap ? 365 : 366))
+ return;
+
+ day = 1;
+ while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
+ while (carry(&up->decvec[DA + 1]) != 0);
+ while (carry(&up->decvec[DA + 2]) != 0);
+ temp = carry(&up->decvec[YR]); /* carry years */
+ if (temp == 0)
+ carry(&up->decvec[YR + 1]);
+}
+
+
+/*
+ * carry - process digit
+ *
+ * This routine rotates a likelihood vector one position and increments
+ * the clock digit modulo the radix. It returns the new clock digit or
+ * zero if a carry occurred. Once synchronized, the clock digit will
+ * match the maximum-likelihood digit corresponding to that position.
+ */
+static int
+carry(
+ struct decvec *dp /* decoding table pointer */
+ )
+{
+ int temp;
+ int j;
+
+ dp->digit++;
+ if (dp->digit == dp->radix)
+ dp->digit = 0;
+ temp = dp->like[dp->radix - 1];
+ for (j = dp->radix - 1; j > 0; j--)
+ dp->like[j] = dp->like[j - 1];
+ dp->like[0] = temp;
+ return (dp->digit);
+}
+
+
+/*
+ * wwv_snr - compute SNR or likelihood function
+ */
+static double
+wwv_snr(
+ double signal, /* signal */
+ double noise /* noise */
+ )
+{
+ double rval;
+
+ /*
+ * This is a little tricky. Due to the way things are measured,
+ * either or both the signal or noise amplitude can be negative
+ * or zero. The intent is that, if the signal is negative or
+ * zero, the SNR must always be zero. This can happen with the
+ * subcarrier SNR before the phase has been aligned. On the
+ * other hand, in the likelihood function the "noise" is the
+ * next maximum down from the peak and this could be negative.
+ * However, in this case the SNR is truly stupendous, so we
+ * simply cap at MAXSNR dB (40).
+ */
+ if (signal <= 0) {
+ rval = 0;
+ } else if (noise <= 0) {
+ rval = MAXSNR;
+ } else {
+ rval = 20. * log10(signal / noise);
+ if (rval > MAXSNR)
+ rval = MAXSNR;
+ }
+ return (rval);
+}
+
+
+/*
+ * wwv_newchan - change to new data channel
+ *
+ * The radio actually appears to have ten channels, one channel for each
+ * of five frequencies and each of two stations (WWV and WWVH), although
+ * if not tunable only the DCHAN channel appears live. While the radio
+ * is tuned to the working data channel frequency and station for most
+ * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
+ * probe frequency in order to search for minute sync pulse and data
+ * subcarrier from other transmitters.
+ *
+ * The search for WWV and WWVH operates simultaneously, with WWV minute
+ * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
+ * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
+ * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
+ * on 25 MHz.
+ *
+ * This routine selects the best channel using a metric computed from
+ * the reachability register and minute pulse amplitude. Normally, the
+ * award goes to the the channel with the highest metric; but, in case
+ * of ties, the award goes to the channel with the highest minute sync
+ * pulse amplitude and then to the highest frequency.
+ *
+ * The routine performs an important squelch function to keep dirty data
+ * from polluting the integrators. In order to consider a station valid,
+ * the metric must be at least MTHR (13); otherwise, the station select
+ * bits are cleared so the second sync is disabled and the data bit
+ * integrators averaged to a miss.
+ */
+static int
+wwv_newchan(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ struct sync *sp, *rp;
+ double rank, dtemp;
+ int i, j, rval;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Search all five station pairs looking for the channel with
+ * maximum metric.
+ */
+ sp = NULL;
+ j = 0;
+ rank = 0;
+ for (i = 0; i < NCHAN; i++) {
+ rp = &up->mitig[i].wwvh;
+ dtemp = rp->metric;
+ if (dtemp >= rank) {
+ rank = dtemp;
+ sp = rp;
+ j = i;
+ }
+ rp = &up->mitig[i].wwv;
+ dtemp = rp->metric;
+ if (dtemp >= rank) {
+ rank = dtemp;
+ sp = rp;
+ j = i;
+ }
+ }
+
+ /*
+ * If the strongest signal is less than the MTHR threshold (13),
+ * we are beneath the waves, so squelch the second sync and
+ * advance to the next station. This makes sure all stations are
+ * scanned when the ions grow dim. If the strongest signal is
+ * greater than the threshold, tune to that frequency and
+ * transmitter QTH.
+ */
+ up->status &= ~(SELV | SELH);
+ if (rank < MTHR) {
+ up->dchan = (up->dchan + 1) % NCHAN;
+ if (up->status & METRIC) {
+ up->status &= ~METRIC;
+ refclock_report(peer, CEVNT_PROP);
+ }
+ rval = FALSE;
+ } else {
+ up->dchan = j;
+ up->sptr = sp;
+ memcpy(&pp->refid, sp->refid, 4);
+ peer->refid = pp->refid;
+ up->status |= METRIC;
+ if (sp->select & SELV) {
+ up->status |= SELV;
+ up->pdelay = pp->fudgetime1;
+ } else if (sp->select & SELH) {
+ up->status |= SELH;
+ up->pdelay = pp->fudgetime2;
+ } else {
+ up->pdelay = 0;
+ }
+ rval = TRUE;
+ }
+#ifdef ICOM
+ if (up->fd_icom > 0)
+ wwv_qsy(peer, up->dchan);
+#endif /* ICOM */
+ return (rval);
+}
+
+
+/*
+ * wwv_newgame - reset and start over
+ *
+ * There are three conditions resulting in a new game:
+ *
+ * 1 After finding the minute pulse (MSYNC lit), going 15 minutes
+ * (DATA) without finding the unit seconds digit.
+ *
+ * 2 After finding good data (DSYNC lit), going more than 40 minutes
+ * (SYNCH) without finding station sync (INSYNC lit).
+ *
+ * 3 After finding station sync (INSYNC lit), going more than 2 days
+ * (PANIC) without finding any station.
+ */
+static void
+wwv_newgame(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+ struct chan *cp;
+ int i;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Initialize strategic values. Note we set the leap bits
+ * NOTINSYNC and the refid "NONE".
+ */
+ if (up->status)
+ up->errflg = CEVNT_TIMEOUT;
+ peer->leap = LEAP_NOTINSYNC;
+ up->watch = up->status = up->alarm = 0;
+ up->avgint = MINAVG;
+ up->freq = 0;
+ up->gain = MAXGAIN / 2;
+
+ /*
+ * Initialize the station processes for audio gain, select bit,
+ * station/frequency identifier and reference identifier. Start
+ * probing at the strongest channel or the default channel if
+ * nothing heard.
+ */
+ memset(up->mitig, 0, sizeof(up->mitig));
+ for (i = 0; i < NCHAN; i++) {
+ cp = &up->mitig[i];
+ cp->gain = up->gain;
+ cp->wwv.select = SELV;
+ snprintf(cp->wwv.refid, sizeof(cp->wwv.refid), "WV%.0f",
+ floor(qsy[i]));
+ cp->wwvh.select = SELH;
+ snprintf(cp->wwvh.refid, sizeof(cp->wwvh.refid), "WH%.0f",
+ floor(qsy[i]));
+ }
+ up->dchan = (DCHAN + NCHAN - 1) % NCHAN;
+ wwv_newchan(peer);
+ up->schan = up->dchan;
+}
+
+/*
+ * wwv_metric - compute station metric
+ *
+ * The most significant bits represent the number of ones in the
+ * station reachability register. The least significant bits represent
+ * the minute sync pulse amplitude. The combined value is scaled 0-100.
+ */
+double
+wwv_metric(
+ struct sync *sp /* station pointer */
+ )
+{
+ double dtemp;
+
+ dtemp = sp->count * MAXAMP;
+ if (sp->synmax < MAXAMP)
+ dtemp += sp->synmax;
+ else
+ dtemp += MAXAMP - 1;
+ dtemp /= (AMAX + 1) * MAXAMP;
+ return (dtemp * 100.);
+}
+
+
+#ifdef ICOM
+/*
+ * wwv_qsy - Tune ICOM receiver
+ *
+ * This routine saves the AGC for the current channel, switches to a new
+ * channel and restores the AGC for that channel. If a tunable receiver
+ * is not available, just fake it.
+ */
+static int
+wwv_qsy(
+ struct peer *peer, /* peer structure pointer */
+ int chan /* channel */
+ )
+{
+ int rval = 0;
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+ if (up->fd_icom > 0) {
+ up->mitig[up->achan].gain = up->gain;
+ rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
+ qsy[chan]);
+ up->achan = chan;
+ up->gain = up->mitig[up->achan].gain;
+ }
+ return (rval);
+}
+#endif /* ICOM */
+
+
+/*
+ * timecode - assemble timecode string and length
+ *
+ * Prettytime format - similar to Spectracom
+ *
+ * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
+ *
+ * s sync indicator ('?' or ' ')
+ * q error bits (hex 0-F)
+ * yyyy year of century
+ * ddd day of year
+ * hh hour of day
+ * mm minute of hour
+ * ss second of minute)
+ * l leap second warning (' ' or 'L')
+ * d DST state ('S', 'D', 'I', or 'O')
+ * dut DUT sign and magnitude (0.1 s)
+ * lset minutes since last clock update
+ * agc audio gain (0-255)
+ * iden reference identifier (station and frequency)
+ * sig signal quality (0-100)
+ * errs bit errors in last minute
+ * freq frequency offset (PPM)
+ * avgt averaging time (s)
+ */
+static int
+timecode(
+ struct wwvunit *up, /* driver structure pointer */
+ char * tc, /* target string */
+ size_t tcsiz /* target max chars */
+ )
+{
+ struct sync *sp;
+ int year, day, hour, minute, second, dut;
+ char synchar, leapchar, dst;
+ char cptr[50];
+
+
+ /*
+ * Common fixed-format fields
+ */
+ synchar = (up->status & INSYNC) ? ' ' : '?';
+ year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
+ 2000;
+ day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
+ up->decvec[DA + 2].digit * 100;
+ hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
+ minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
+ second = 0;
+ leapchar = (up->misc & SECWAR) ? 'L' : ' ';
+ dst = dstcod[(up->misc >> 4) & 0x3];
+ dut = up->misc & 0x7;
+ if (!(up->misc & DUTS))
+ dut = -dut;
+ snprintf(tc, tcsiz, "%c%1X", synchar, up->alarm);
+ snprintf(cptr, sizeof(cptr),
+ " %4d %03d %02d:%02d:%02d %c%c %+d",
+ year, day, hour, minute, second, leapchar, dst, dut);
+ strlcat(tc, cptr, tcsiz);
+
+ /*
+ * Specific variable-format fields
+ */
+ sp = up->sptr;
+ snprintf(cptr, sizeof(cptr), " %d %d %s %.0f %d %.1f %d",
+ up->watch, up->mitig[up->dchan].gain, sp->refid,
+ sp->metric, up->errcnt, up->freq / WWV_SEC * 1e6,
+ up->avgint);
+ strlcat(tc, cptr, tcsiz);
+
+ return strlen(tc);
+}
+
+
+/*
+ * wwv_gain - adjust codec gain
+ *
+ * This routine is called at the end of each second. During the second
+ * the number of signal clips above the MAXAMP threshold (6000). If
+ * there are no clips, the gain is bumped up; if there are more than
+ * MAXCLP clips (100), it is bumped down. The decoder is relatively
+ * insensitive to amplitude, so this crudity works just peachy. The
+ * routine also jiggles the input port and selectively mutes the
+ * monitor.
+ */
+static void
+wwv_gain(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct wwvunit *up;
+
+ pp = peer->procptr;
+ up = pp->unitptr;
+
+ /*
+ * Apparently, the codec uses only the high order bits of the
+ * gain control field. Thus, it may take awhile for changes to
+ * wiggle the hardware bits.
+ */
+ if (up->clipcnt == 0) {
+ up->gain += 4;
+ if (up->gain > MAXGAIN)
+ up->gain = MAXGAIN;
+ } else if (up->clipcnt > MAXCLP) {
+ up->gain -= 4;
+ if (up->gain < 0)
+ up->gain = 0;
+ }
+ audio_gain(up->gain, up->mongain, up->port);
+ up->clipcnt = 0;
+#if DEBUG
+ if (debug > 1)
+ audio_show();
+#endif
+}
+
+
+#else
+int refclock_wwv_bs;
+#endif /* REFCLOCK */