summaryrefslogtreecommitdiff
path: root/util/tg.c
blob: 8a96a816ad296ded5749a1cd5fcf194e26ba3b90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/*
 * tg.c generate WWV or IRIG signals for test
 */
/*
 * This program can generate audio signals that simulate the WWV/H
 * broadcast timecode. Alternatively, it can generate the IRIG-B
 * timecode commonly used to synchronize laboratory equipment. It is
 * intended to test the WWV/H driver (refclock_wwv.c) and the IRIG
 * driver (refclock_irig.c) in the NTP driver collection.
 *
 * Besides testing the drivers themselves, this program can be used to
 * synchronize remote machines over audio transmission lines or program
 * feeds. The program reads the time on the local machine and sets the
 * initial epoch of the signal generator within one millisecond.
 * Alernatively, the initial epoch can be set to an arbitrary time. This
 * is useful when searching for bugs and testing for correct response to
 * a leap second in UTC. Note however, the ultimate accuracy is limited
 * by the intrinsic frequency error of the codec sample clock, which can
 # reach well over 100 PPM.
 *
 * The default is to route generated signals to the line output
 * jack; the s option on the command line routes these signals to the
 * internal speaker as well. The v option controls the speaker volume
 * over the range 0-255. The signal generator by default uses WWV
 * format; the h option switches to WWVH format and the i option
 * switches to IRIG-B format.
 *
 * Once started the program runs continuously. The default initial epoch
 * for the signal generator is read from the computer system clock when
 * the program starts. The y option specifies an alternate epoch using a
 * string yydddhhmmss, where yy is the year of century, ddd the day of
 * year, hh the hour of day and mm the minute of hour. For instance,
 * 1946Z on 1 January 2006 is 060011946. The l option lights the leap
 * warning bit in the WWV/H timecode, so is handy to check for correct
 * behavior at the next leap second epoch. The remaining options are
 * specified below under the Parse Options heading. Most of these are
 * for testing.
 *
 * During operation the program displays the WWV/H timecode (9 digits)
 * or IRIG timecode (20 digits) as each new string is constructed. The
 * display is followed by the BCD binary bits as transmitted. Note that
 * the transmissionorder is low-order first as the frame is processed
 * left to right. For WWV/H The leap warning L preceeds the first bit.
 * For IRIG the on-time marker M preceeds the first (units) bit, so its
 * code is delayed one bit and the next digit (tens) needs only three
 * bits.
 *
 * The program has been tested with the Sun Blade 1500 running Solaris
 * 10, but not yet with other machines. It uses no special features and
 * should be readily portable to other hardware and operating systems.
 */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/audio.h>
#include <math.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>

#define	SECOND	8000		/* one second of 125-us samples */
#define BUFLNG	400		/* buffer size */
#define	DEVICE	"/dev/audio"	/* default audio device */
#define	WWV	0		/* WWV encoder */
#define	IRIG	1		/* IRIG-B encoder */
#define	OFF	0		/* zero amplitude */
#define	LOW	1		/* low amplitude */
#define	HIGH	2		/* high amplitude */
#define	DATA0	200		/* WWV/H 0 pulse */
#define	DATA1	500		/* WWV/H 1 pulse */
#define PI	800		/* WWV/H PI pulse */
#define	M2	2		/* IRIG 0 pulse */
#define	M5	5		/* IRIG 1 pulse */
#define	M8	8		/* IRIG PI pulse */

/*
 * Companded sine table amplitude 3000 units
 */
int c3000[] = {1, 48, 63, 70, 78, 82, 85, 89, 92, 94,	/* 0-9 */
     96,  98,  99, 100, 101, 101, 102, 103, 103, 103,	/* 10-19 */
    103, 103, 103, 103, 102, 101, 101, 100,  99,  98,	/* 20-29 */
     96,  94,  92,  89,  85,  82,  78,  70,  63,  48,	/* 30-39 */
    129, 176, 191, 198, 206, 210, 213, 217, 220, 222,	/* 40-49 */
    224, 226, 227, 228, 229, 229, 230, 231, 231, 231, 	/* 50-59 */
    231, 231, 231, 231, 230, 229, 229, 228, 227, 226,	/* 60-69 */
    224, 222, 220, 217, 213, 210, 206, 198, 191, 176}; 	/* 70-79 */
/*
 * Companded sine table amplitude 6000 units
 */
int c6000[] = {1, 63, 78, 86, 93, 98, 101, 104, 107, 110, /* 0-9 */
    112, 113, 115, 116, 117, 117, 118, 118, 119, 119,	/* 10-19 */
    119, 119, 119, 118, 118, 117, 117, 116, 115, 113,	/* 20-29 */
    112, 110, 107, 104, 101,  98,  93,  86,  78,  63,	/* 30-39 */
    129, 191, 206, 214, 221, 226, 229, 232, 235, 238,	/* 40-49 */
    240, 241, 243, 244, 245, 245, 246, 246, 247, 247, 	/* 50-59 */
    247, 247, 247, 246, 246, 245, 245, 244, 243, 241,	/* 60-69 */
    240, 238, 235, 232, 229, 226, 221, 214, 206, 191}; 	/* 70-79 */

/*
 * Decoder operations at the end of each second are driven by a state
 * machine. The transition matrix consists of a dispatch table indexed
 * by second number. Each entry in the table contains a case switch
 * number and argument.
 */
struct progx {
	int sw;			/* case switch number */
	int arg;		/* argument */
};

/*
 * Case switch numbers
 */
#define DATA	0		/* send data (0, 1, PI) */
#define COEF	1		/* send BCD bit */
#define	DEC	2		/* decrement to next digit */
#define	MIN	3		/* minute pulse */
#define	LEAP	4		/* leap warning */
#define	DUT1	5		/* DUT1 bits */
#define	DST1	6		/* DST1 bit */
#define	DST2	7		/* DST2 bit */

/*
 * WWV/H format (100-Hz, 9 digits, 1 m frame)
 */
struct progx progx[] = {
	{MIN,	800},		/* 0 minute sync pulse */
	{DATA,	DATA0},		/* 1 */
	{DST2,	0},		/* 2 DST2 */
	{LEAP,	0},		/* 3 leap warning */
	{COEF,	1},		/* 4 1 year units */
	{COEF,	2},		/* 5 2 */
	{COEF,	4},		/* 6 4 */
	{COEF,	8},		/* 7 8 */
	{DEC,	DATA0},		/* 8 */
	{DATA,	PI},		/* 9 p1 */
	{COEF,	1},		/* 10 1 minute units */
	{COEF,	2},		/* 11 2 */
	{COEF,	4},		/* 12 4 */
	{COEF,	8},		/* 13 8 */
	{DEC,	DATA0},		/* 14 */
	{COEF,	1},		/* 15 10 minute tens */
	{COEF,	2},		/* 16 20 */
	{COEF,	4},		/* 17 40 */
	{COEF,	8},		/* 18 80 (not used) */
	{DEC,	PI},		/* 19 p2 */
	{COEF,	1},		/* 20 1 hour units */
	{COEF,	2},		/* 21 2 */
	{COEF,	4},		/* 22 4 */
	{COEF,	8},		/* 23 8 */
	{DEC,	DATA0},		/* 24 */
	{COEF,	1},		/* 25 10 hour tens */
	{COEF,	2},		/* 26 20 */
	{COEF,	4},		/* 27 40 (not used) */
	{COEF,	8},		/* 28 80 (not used) */
	{DEC,	PI},		/* 29 p3 */
	{COEF,	1},		/* 30 1 day units */
	{COEF,	2},		/* 31 2 */
	{COEF,	4},		/* 32 4 */
	{COEF,	8},		/* 33 8 */
	{DEC,	DATA0},		/* 34 not used */
	{COEF,	1},		/* 35 10 day tens */
	{COEF,	2},		/* 36 20 */
	{COEF,	4},		/* 37 40 */
	{COEF,	8},		/* 38 80 */
	{DEC,	PI},		/* 39 p4 */
	{COEF,	1},		/* 40 100 day hundreds */
	{COEF,	2},		/* 41 200 */
	{COEF,	4},		/* 42 400 (not used) */
	{COEF,	8},		/* 43 800 (not used) */
	{DEC,	DATA0},		/* 44 */
	{DATA,	DATA0},		/* 45 */
	{DATA,	DATA0},		/* 46 */
	{DATA,	DATA0},		/* 47 */
	{DATA,	DATA0},		/* 48 */
	{DATA,	PI},		/* 49 p5 */
	{DUT1,	8},		/* 50 DUT1 sign */
	{COEF,	1},		/* 51 10 year tens */
	{COEF,	2},		/* 52 20 */
	{COEF,	4},		/* 53 40 */
	{COEF,	8},		/* 54 80 */
	{DST1,	0},		/* 55 DST1 */
	{DUT1,	1},		/* 56 0.1 DUT1 fraction */
	{DUT1,	2},		/* 57 0.2 */
	{DUT1,	4},		/* 58 0.4 */
	{DATA,	PI},		/* 59 p6 */
	{DATA,	DATA0},		/* 60 leap */
};

/*
 * IRIG format except first frame (1000 Hz, 20 digits, 1 s frame)
 */
struct progx progy[] = {
	{COEF,	1},		/* 0 1 units */
	{COEF,	2},		/* 1 2 */
	{COEF,	4},		/* 2 4 */
	{COEF,	8},		/* 3 8 */
	{DEC,	M2},		/* 4 im */
	{COEF,	1},		/* 5 10 tens */
	{COEF,	2},		/* 6 20 */
	{COEF,	4},		/* 7 40 */
	{COEF,	8},		/* 8 80 */
	{DEC,	M8},		/* 9 pi */
};

/*
 * IRIG format first frame (1000 Hz, 20 digits, 1 s frame)
 */
struct progx progz[] = {
	{MIN,	M8},		/* 0 pi (second) */
	{COEF,	1},		/* 1 1 units */
	{COEF,	2},		/* 2 2 */
	{COEF,	4},		/* 3 4 */
	{COEF,	8},		/* 4 8 */
	{DEC,	M2},		/* 5 im */
	{COEF,	1},		/* 6 10 tens */
	{COEF,	2},		/* 7 20 */
	{COEF,	4},		/* 8 40 */
	{DEC,	M8},		/* 9 pi */
};

/*
 * Forward declarations
 */
void	sec(int);		/* send second */
void	digit(int);		/* encode digit */
void	peep(int, int, int);	/* send cycles */
void	delay(int);		/* delay samples */

/*
 * Global variables
 */
char	buffer[BUFLNG];		/* output buffer */
int	bufcnt = 0;		/* buffer counter */
int	second = 0;		/* seconds counter */
int	fd;			/* audio codec file descriptor */
int	tone = 1000;		/* WWV sync frequency */
int	level = AUDIO_MAX_GAIN / 8; /* output level */
int	port = AUDIO_LINE_OUT;	/* output port */
int	encode = WWV;		/* encoder select */
int	leap = 0;		/* leap indicator */
int	dst = 0;		/* winter/summer time */
int	dut1 = 0;		/* DUT1 correction (sign, magnitude) */
int	utc = 0;		/* option epoch */

/*
 * Main program
 */
int
main(
	int	argc,		/* command line options */
	char	**argv		/* poiniter to list of tokens */
	)
{
	struct timeval tv;	/* system clock at startup */
	audio_info_t info;	/* Sun audio structure */
	struct tm *tm = NULL;	/* structure returned by gmtime */
	char	device[50];	/* audio device */
	char	code[100];	/* timecode */
	int	rval, temp, arg, sw, ptr;
	int	minute, hour, day, year;
	int	i;

	/*
	 * Parse options
	 */
	strlcpy(device, DEVICE, sizeof(device));
	year = 0;
	while ((temp = getopt(argc, argv, "a:dhilsu:v:y:")) != -1) {
		switch (temp) {

		case 'a':	/* specify audio device (/dev/audio) */
			strlcpy(device, optarg, sizeof(device));
			break;

		case 'd':	/* set DST for summer (WWV/H only) */
			dst++;
			break;

		case 'h':	/* select WWVH sync frequency */
			tone = 1200;
			break;

		case 'i':	/* select irig format */
			encode = IRIG;
			break;

		case 'l':	/* set leap warning bit (WWV/H only) */
			leap++;
			break;

		case 's':	/* enable speaker */
			port |= AUDIO_SPEAKER;
			break;

		case 'u':	/* set DUT1 offset (-7 to +7) */
			sscanf(optarg, "%d", &dut1);
			if (dut1 < 0)
				dut1 = abs(dut1);
			else
				dut1 |= 0x8;
			break;

		case 'v':	/* set output level (0-255) */
			sscanf(optarg, "%d", &level);
			break;

		case 'y':	/* set initial date and time */
			sscanf(optarg, "%2d%3d%2d%2d", &year, &day,
			    &hour, &minute);
			utc++;
			break;

		defult:
			printf("invalid option %c\n", temp);
			break;
		}
	}

	/*
	 * Open audio device and set options
	 */
	fd = open("/dev/audio", O_WRONLY);
	if (fd <= 0) {
		printf("audio open %s\n", strerror(errno));
		exit(1);
	}
	rval = ioctl(fd, AUDIO_GETINFO, &info);
	if (rval < 0) {
		printf("audio control %s\n", strerror(errno));
		exit(0);
	}
	info.play.port = port;
	info.play.gain = level;
	info.play.sample_rate = SECOND;
	info.play.channels = 1;
	info.play.precision = 8;
	info.play.encoding = AUDIO_ENCODING_ULAW;
	printf("port %d gain %d rate %d chan %d prec %d encode %d\n",
	    info.play.port, info.play.gain, info.play.sample_rate,
	    info.play.channels, info.play.precision,
	    info.play.encoding);
	ioctl(fd, AUDIO_SETINFO, &info);

 	/*
	 * Unless specified otherwise, read the system clock and
	 * initialize the time.
	 */
	if (!utc) {
		gettimeofday(&tv, NULL);
		tm = gmtime(&tv.tv_sec);
		minute = tm->tm_min;
		hour = tm->tm_hour;
		day = tm->tm_yday + 1;
		year = tm->tm_year % 100;
		second = tm->tm_sec;

		/*
		 * Delay the first second so the generator is accurately
		 * aligned with the system clock within one sample (125
		 * microseconds ).
		 */
		delay(SECOND - tv.tv_usec * 8 / 1000);
	}
	memset(code, 0, sizeof(code));
	switch (encode) {

	/*
	 * For WWV/H and default time, carefully set the signal
	 * generator seconds number to agree with the current time.
	 */ 
	case WWV:
		printf("year %d day %d time %02d:%02d:%02d tone %d\n",
		    year, day, hour, minute, second, tone);
		snprintf(code, sizeof(code), "%01d%03d%02d%02d%01d",
		    year / 10, day, hour, minute, year % 10);
		printf("%s\n", code);
		ptr = 8;
		for (i = 0; i <= second; i++) {
			if (progx[i].sw == DEC)
				ptr--;
		}
		break;

	/*
	 * For IRIG the signal generator runs every second, so requires
	 * no additional alignment.
	 */
	case IRIG:
		printf("sbs %x year %d day %d time %02d:%02d:%02d\n",
		    0, year, day, hour, minute, second);
		break;
	}

	/*
	 * Run the signal generator to generate new timecode strings
	 * once per minute for WWV/H and once per second for IRIG.
	 */
	while(1) {

		/*
		 * Crank the state machine to propagate carries to the
		 * year of century. Note that we delayed up to one
		 * second for alignment after reading the time, so this
		 * is the next second.
		 */
		second = (second + 1) % 60;
		if (second == 0) {
			minute++;
			if (minute >= 60) {
				minute = 0;
				hour++;
			}
			if (hour >= 24) {
				hour = 0;
				day++;
			}

			/*
			 * At year rollover check for leap second.
			 */
			if (day >= (year & 0x3 ? 366 : 367)) {
				if (leap) {
					sec(DATA0);
					printf("\nleap!");
					leap = 0;
				}
				day = 1;
				year++;
			}
			if (encode == WWV) {
				snprintf(code, sizeof(code),
				    "%01d%03d%02d%02d%01d", year / 10,
				    day, hour, minute, year % 10);
				printf("\n%s\n", code);
				ptr = 8;
			}
		}
		if (encode == IRIG) {
			snprintf(code, sizeof(code),
			    "%04x%04d%06d%02d%02d%02d", 0, year, day,
			    hour, minute, second);
			printf("%s\n", code);
			ptr = 19;
		}

		/*
		 * Generate data for the second
		 */
		switch(encode) {

		/*
		 * The IRIG second consists of 20 BCD digits of width-
		 * modulateod pulses at 2, 5 and 8 ms and modulated 50
		 * percent on the 1000-Hz carrier.
		 */
		case IRIG:
			for (i = 0; i < 100; i++) {
				if (i < 10) {
					sw = progz[i].sw;
					arg = progz[i].arg;
				} else {
					sw = progy[i % 10].sw;
					arg = progy[i % 10].arg;
				}
				switch(sw) {

				case COEF:	/* send BCD bit */
					if (code[ptr] & arg) {
						peep(M5, 1000, HIGH);
						peep(M5, 1000, LOW);
						printf("1");
					} else {
						peep(M2, 1000, HIGH);
						peep(M8, 1000, LOW);
						printf("0");
					}
					break;

				case DEC:	/* send IM/PI bit */
					ptr--;
					printf(" ");
					peep(arg, 1000, HIGH);
					peep(10 - arg, 1000, LOW);
					break;

				case MIN:	/* send data bit */
					peep(arg, 1000, HIGH);
					peep(10 - arg, 1000, LOW);
					printf("M ");
					break;
				}
				if (ptr < 0)
					break;
			}
			printf("\n");
			break;

		/*
		 * The WWV/H second consists of 9 BCD digits of width-
		 * modulateod pulses 200, 500 and 800 ms at 100-Hz.
		 */
		case WWV:
			sw = progx[second].sw;
			arg = progx[second].arg;
			switch(sw) {

			case DATA:		/* send data bit */
				sec(arg);
				break;

			case COEF:		/* send BCD bit */
				if (code[ptr] & arg) {
					sec(DATA1);
					printf("1");
				} else {
					sec(DATA0);
					printf("0");
				}
				break;

			case LEAP:		/* send leap bit */
				if (leap) {
					sec(DATA1);
					printf("L ");
				} else {
					sec(DATA0);
					printf("  ");
				}
				break;

			case DEC:		/* send data bit */
				ptr--;
				sec(arg);
				printf(" ");
				break;

			case MIN:		/* send minute sync */
				peep(arg, tone, HIGH);
				peep(1000 - arg, tone, OFF);
				break;

			case DUT1:		/* send DUT1 bits */
				if (dut1 & arg)
					sec(DATA1);
				else
					sec(DATA0);
				break;
				
			case DST1:		/* send DST1 bit */
				ptr--;
				if (dst)
					sec(DATA1);
				else
					sec(DATA0);
				printf(" ");
				break;

			case DST2:		/* send DST2 bit */
				if (dst)
					sec(DATA1);
				else
					sec(DATA0);
				break;
			}
		}
	}
}


/*
 * Generate WWV/H 0 or 1 data pulse.
 */
void sec(
	int	code		/* DATA0, DATA1, PI */
	)
{
	/*
	 * The WWV data pulse begins with 5 ms of 1000 Hz follwed by a
	 * guard time of 25 ms. The data pulse is 170, 570 or 770 ms at
	 * 100 Hz corresponding to 0, 1 or position indicator (PI),
	 * respectively. Note the 100-Hz data pulses are transmitted 6
	 * dB below the 1000-Hz sync pulses. Originally the data pulses
	 * were transmited 10 dB below the sync pulses, but the station
	 * engineers increased that to 6 dB because the Heath GC-1000
	 * WWV/H radio clock worked much better.
	 */
	peep(5, tone, HIGH);		/* send seconds tick */
	peep(25, tone, OFF);
	peep(code - 30, 100, LOW);	/* send data */
	peep(1000 - code, 100, OFF);
}


/*
 * Generate cycles of 100 Hz or any multiple of 100 Hz.
 */
void peep(
	int	pulse,		/* pulse length (ms) */
	int	freq,		/* frequency (Hz) */
	int	amp		/* amplitude */
	)
{
	int	increm;		/* phase increment */
	int	i, j;

	if (amp == OFF || freq == 0)
		increm = 10;
	else
		increm = freq / 100;
	j = 0;
	for (i = 0 ; i < pulse * 8; i++) {
		switch (amp) {

		case HIGH:
			buffer[bufcnt++] = ~c6000[j];
			break;

		case LOW:
			buffer[bufcnt++] = ~c3000[j];
			break;

		default:
			buffer[bufcnt++] = ~0;
		}
		if (bufcnt >= BUFLNG) {
			write(fd, buffer, BUFLNG);
			bufcnt = 0;
		}
		j = (j + increm) % 80;
	}
}


/*
 * Delay for initial phasing
 */
void delay (
	int	delay		/* delay in samples */
	)
{
	int	samples;	/* samples remaining */

	samples = delay;
	memset(buffer, 0, BUFLNG);
	while (samples >= BUFLNG) {
		write(fd, buffer, BUFLNG);
		samples -= BUFLNG;
	}
		write(fd, buffer, samples);
}