summaryrefslogtreecommitdiff
path: root/stdlib/set.ml
diff options
context:
space:
mode:
Diffstat (limited to 'stdlib/set.ml')
-rw-r--r--stdlib/set.ml226
1 files changed, 0 insertions, 226 deletions
diff --git a/stdlib/set.ml b/stdlib/set.ml
deleted file mode 100644
index 84a8a942c8..0000000000
--- a/stdlib/set.ml
+++ /dev/null
@@ -1,226 +0,0 @@
-(* Sets over ordered types *)
-
-module type OrderedType =
- sig
- type t
- val compare: t -> t -> int
- end
-
-module type S =
- sig
- type elt
- type t
- val empty: t
- val is_empty: t -> bool
- val mem: elt -> t -> bool
- val add: elt -> t -> t
- val remove: elt -> t -> t
- val union: t -> t -> t
- val inter: t -> t -> t
- val diff: t -> t -> t
- val compare: t -> t -> int
- val equal: t -> t -> bool
- val iter: (elt -> 'a) -> t -> unit
- val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a
- val elements: t -> elt list
- val choose: t -> elt
- end
-
-module Make(Ord: OrderedType): (S with elt = Ord.t) =
- struct
- type elt = Ord.t
- type t = Empty | Node of t * elt * t * int
-
- (* Sets are represented by balanced binary trees (the heights of the
- children differ by at most 2 *)
-
- let height = function
- Empty -> 0
- | Node(_, _, _, h) -> h
-
- (* Creates a new node with left son l, value x and right son r.
- l and r must be balanced and | height l - height r | <= 2.
- Inline expansion of height for better speed. *)
-
- let new l x r =
- let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
- let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
- Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))
-
- (* Same as new, but performs one step of rebalancing if necessary.
- Assumes l and r balanced.
- Inline expansion of new for better speed in the most frequent case
- where no rebalancing is required. *)
-
- let bal l x r =
- let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
- let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
- if hl > hr + 2 then begin
- match l with
- Empty -> invalid_arg "Set.bal"
- | Node(ll, lv, lr, _) ->
- if height ll >= height lr then
- new ll lv (new lr x r)
- else begin
- match lr with
- Empty -> invalid_arg "Set.bal"
- | Node(lrl, lrv, lrr, _)->
- new (new ll lv lrl) lrv (new lrr x r)
- end
- end else if hr > hl + 2 then begin
- match r with
- Empty -> invalid_arg "Set.bal"
- | Node(rl, rv, rr, _) ->
- if height rr >= height rl then
- new (new l x rl) rv rr
- else begin
- match rl with
- Empty -> invalid_arg "Set.bal"
- | Node(rll, rlv, rlr, _) ->
- new (new l x rll) rlv (new rlr rv rr)
- end
- end else
- Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))
-
- (* Same as bal, but repeat rebalancing until the final result
- is balanced. *)
-
- let rec join l x r =
- match bal l x r with
- Empty -> invalid_arg "Set.join"
- | Node(l', x', r', _) as t' ->
- let d = height l' - height r' in
- if d < -2 or d > 2 then join l' x' r' else t'
-
- (* Merge two trees l and r into one.
- All elements of l must precede the elements of r.
- Assumes | height l - height r | <= 2. *)
-
- let rec merge t1 t2 =
- match (t1, t2) with
- (Empty, t) -> t
- | (t, Empty) -> t
- | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
- bal l1 v1 (bal (merge r1 l2) v2 r2)
-
- (* Same as merge, but does not assume anything about l and r. *)
-
- let rec concat t1 t2 =
- match (t1, t2) with
- (Empty, t) -> t
- | (t, Empty) -> t
- | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
- join l1 v1 (join (concat r1 l2) v2 r2)
-
- (* Splitting *)
-
- let rec split x = function
- Empty ->
- (Empty, None, Empty)
- | Node(l, v, r, _) ->
- let c = Ord.compare x v in
- if c = 0 then (l, Some v, r)
- else if c < 0 then
- let (ll, vl, rl) = split x l in (ll, vl, join rl v r)
- else
- let (lr, vr, rr) = split x r in (join l v lr, vr, rr)
-
- (* Implementation of the set operations *)
-
- let empty = Empty
-
- let is_empty = function Empty -> true | _ -> false
-
- let rec mem x = function
- Empty -> false
- | Node(l, v, r, _) ->
- let c = Ord.compare x v in
- if c = 0 then true else
- if c < 0 then mem x l else mem x r
-
- let rec add x = function
- Empty -> Node(Empty, x, Empty, 1)
- | Node(l, v, r, _) as t ->
- let c = Ord.compare x v in
- if c = 0 then t else
- if c < 0 then bal (add x l) v r else bal l v (add x r)
-
- let rec remove x = function
- Empty -> Empty
- | Node(l, v, r, _) ->
- let c = Ord.compare x v in
- if c = 0 then merge l r else
- if c < 0 then bal (remove x l) v r else bal l v (remove x r)
-
- let rec union s1 s2 =
- match (s1, s2) with
- (Empty, t2) -> t2
- | (t1, Empty) -> t1
- | (Node(l1, v1, r1, _), t2) ->
- let (l2, _, r2) = split v1 t2 in
- join (union l1 l2) v1 (union r1 r2)
-
- let rec inter s1 s2 =
- match (s1, s2) with
- (Empty, t2) -> Empty
- | (t1, Empty) -> Empty
- | (Node(l1, v1, r1, _), t2) ->
- match split v1 t2 with
- (l2, None, r2) ->
- concat (inter l1 l2) (inter r1 r2)
- | (l2, Some _, r2) ->
- join (inter l1 l2) v1 (inter r1 r2)
-
- let rec diff s1 s2 =
- match (s1, s2) with
- (Empty, t2) -> Empty
- | (t1, Empty) -> t1
- | (Node(l1, v1, r1, _), t2) ->
- match split v1 t2 with
- (l2, None, r2) ->
- join (diff l1 l2) v1 (diff r1 r2)
- | (l2, Some _, r2) ->
- concat (diff l1 l2) (diff r1 r2)
-
- let rec compare_aux l1 l2 =
- match (l1, l2) with
- ([], []) -> 0
- | ([], _) -> -1
- | (_, []) -> 1
- | (Empty :: t1, Empty :: t2) ->
- compare_aux t1 t2
- | (Node(Empty, v1, r1, _) :: t1, Node(Empty, v2, r2, _) :: t2) ->
- let c = Ord.compare v1 v2 in
- if c <> 0 then c else compare_aux (r1::t1) (r2::t2)
- | (Node(l1, v1, r1, _) :: t1, t2) ->
- compare_aux (l1 :: Node(Empty, v1, r1, 0) :: t1) t2
- | (t1, Node(l2, v2, r2, _) :: t2) ->
- compare_aux t1 (l2 :: Node(Empty, v2, r2, 0) :: t2)
-
- let compare s1 s2 =
- compare_aux [s1] [s2]
-
- let equal s1 s2 =
- compare s1 s2 = 0
-
- let rec iter f = function
- Empty -> ()
- | Node(l, v, r, _) -> iter f l; f v; iter f r
-
- let rec fold f s accu =
- match s with
- Empty -> accu
- | Node(l, v, r, _) -> fold f l (f v (fold f r accu))
-
- let rec elements_aux accu = function
- Empty -> accu
- | Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l
-
- let elements s =
- elements_aux [] s
-
- let rec choose = function
- Empty -> raise Not_found
- | Node(Empty, v, r, _) -> v
- | Node(l, v, r, _) -> choose l
- end