summaryrefslogtreecommitdiff
path: root/asmcomp/cmm_helpers.ml
blob: ca57632f4ab9855497f6d47468b63a8177429e76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

[@@@ocaml.warning "+a-4-9-40-41-42-44-45"]

module V = Backend_var
module VP = Backend_var.With_provenance
open Cmm
open Arch

(* Local binding of complex expressions *)

let bind name arg fn =
  match arg with
    Cvar _ | Cconst_int _ | Cconst_natint _ | Cconst_symbol _ -> fn arg
  | _ -> let id = V.create_local name in Clet(VP.create id, arg, fn (Cvar id))

let bind_load name arg fn =
  match arg with
  | Cop(Cload _, [Cvar _], _) -> fn arg
  | _ -> bind name arg fn

let bind_nonvar name arg fn =
  match arg with
    Cconst_int _ | Cconst_natint _ | Cconst_symbol _ -> fn arg
  | _ -> let id = V.create_local name in Clet(VP.create id, arg, fn (Cvar id))

let caml_black = Nativeint.shift_left (Nativeint.of_int 3) 8
    (* cf. runtime/caml/gc.h *)

(* Loads *)

let mk_load_immut memory_chunk =
  Cload {memory_chunk; mutability=Immutable; is_atomic=false}

let mk_load_mut memory_chunk =
  Cload {memory_chunk; mutability=Mutable; is_atomic=false}

let mk_load_atomic memory_chunk =
  Cload {memory_chunk; mutability=Mutable; is_atomic=true}

(* Block headers. Meaning of the tag field: see stdlib/obj.ml *)

let floatarray_tag dbg = Cconst_int (Obj.double_array_tag, dbg)

let block_header tag sz =
  Nativeint.add (Nativeint.shift_left (Nativeint.of_int sz) 10)
                (Nativeint.of_int tag)
(* Static data corresponding to "value"s must be marked black in case we are
   in no-naked-pointers mode.  See [caml_darken] and the code below that emits
   structured constants and static module definitions. *)
let black_block_header tag sz = Nativeint.logor (block_header tag sz) caml_black
let white_closure_header sz = block_header Obj.closure_tag sz
let black_closure_header sz = black_block_header Obj.closure_tag sz
let infix_header ofs = block_header Obj.infix_tag ofs
let float_header = block_header Obj.double_tag (size_float / size_addr)
let floatarray_header len =
  (* Zero-sized float arrays have tag zero for consistency with
     [caml_alloc_float_array]. *)
  assert (len >= 0);
  if len = 0 then block_header 0 0
  else block_header Obj.double_array_tag (len * size_float / size_addr)
let string_header len =
      block_header Obj.string_tag ((len + size_addr) / size_addr)
let boxedint32_header = block_header Obj.custom_tag 2
let boxedint64_header = block_header Obj.custom_tag (1 + 8 / size_addr)
let boxedintnat_header = block_header Obj.custom_tag 2
let caml_nativeint_ops = "caml_nativeint_ops"
let caml_int32_ops = "caml_int32_ops"
let caml_int64_ops = "caml_int64_ops"

let pos_arity_in_closinfo = 8 * size_addr - 8
       (* arity = the top 8 bits of the closinfo word *)

let closure_info ~arity ~startenv =
  assert (-128 <= arity && arity <= 127);
  assert (0 <= startenv && startenv < 1 lsl (pos_arity_in_closinfo - 1));
  Nativeint.(add (shift_left (of_int arity) pos_arity_in_closinfo)
                 (add (shift_left (of_int startenv) 1)
                      1n))

let alloc_float_header dbg = Cconst_natint (float_header, dbg)
let alloc_floatarray_header len dbg = Cconst_natint (floatarray_header len, dbg)
let alloc_closure_header sz dbg = Cconst_natint (white_closure_header sz, dbg)
let alloc_infix_header ofs dbg = Cconst_natint (infix_header ofs, dbg)
let alloc_closure_info ~arity ~startenv dbg =
  Cconst_natint (closure_info ~arity ~startenv, dbg)
let alloc_boxedint32_header dbg = Cconst_natint (boxedint32_header, dbg)
let alloc_boxedint64_header dbg = Cconst_natint (boxedint64_header, dbg)
let alloc_boxedintnat_header dbg = Cconst_natint (boxedintnat_header, dbg)

(* Integers *)

let max_repr_int = max_int asr 1
let min_repr_int = min_int asr 1

let int_const dbg n =
  if n <= max_repr_int && n >= min_repr_int
  then Cconst_int((n lsl 1) + 1, dbg)
  else Cconst_natint
          (Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n, dbg)

let natint_const_untagged dbg n =
  if n > Nativeint.of_int max_int
  || n < Nativeint.of_int min_int
  then Cconst_natint (n,dbg)
  else Cconst_int (Nativeint.to_int n, dbg)

let cint_const n =
  Cint(Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n)

let targetint_const n =
  Targetint.add (Targetint.shift_left (Targetint.of_int n) 1)
    Targetint.one

let add_no_overflow n x c dbg =
  let d = n + x in
  if d = 0 then c else Cop(Caddi, [c; Cconst_int (d, dbg)], dbg)

let rec add_const c n dbg =
  if n = 0 then c
  else match c with
  | Cconst_int (x, _) when Misc.no_overflow_add x n -> Cconst_int (x + n, dbg)
  | Cop(Caddi, [Cconst_int (x, _); c], _)
    when Misc.no_overflow_add n x ->
      add_no_overflow n x c dbg
  | Cop(Caddi, [c; Cconst_int (x, _)], _)
    when Misc.no_overflow_add n x ->
      add_no_overflow n x c dbg
  | Cop(Csubi, [Cconst_int (x, _); c], _) when Misc.no_overflow_add n x ->
      Cop(Csubi, [Cconst_int (n + x, dbg); c], dbg)
  | Cop(Csubi, [c; Cconst_int (x, _)], _) when Misc.no_overflow_sub n x ->
      add_const c (n - x) dbg
  | c -> Cop(Caddi, [c; Cconst_int (n, dbg)], dbg)

let incr_int c dbg = add_const c 1 dbg
let decr_int c dbg = add_const c (-1) dbg

let rec add_int c1 c2 dbg =
  match (c1, c2) with
  | (Cconst_int (n, _), c) | (c, Cconst_int (n, _)) ->
      add_const c n dbg
  | (Cop(Caddi, [c1; Cconst_int (n1, _)], _), c2) ->
      add_const (add_int c1 c2 dbg) n1 dbg
  | (c1, Cop(Caddi, [c2; Cconst_int (n2, _)], _)) ->
      add_const (add_int c1 c2 dbg) n2 dbg
  | (_, _) ->
      Cop(Caddi, [c1; c2], dbg)

let rec sub_int c1 c2 dbg =
  match (c1, c2) with
  | (c1, Cconst_int (n2, _)) when n2 <> min_int ->
      add_const c1 (-n2) dbg
  | (c1, Cop(Caddi, [c2; Cconst_int (n2, _)], _)) when n2 <> min_int ->
      add_const (sub_int c1 c2 dbg) (-n2) dbg
  | (Cop(Caddi, [c1; Cconst_int (n1, _)], _), c2) ->
      add_const (sub_int c1 c2 dbg) n1 dbg
  | (c1, c2) ->
      Cop(Csubi, [c1; c2], dbg)

let rec lsl_int c1 c2 dbg =
  match (c1, c2) with
  | (Cop(Clsl, [c; Cconst_int (n1, _)], _), Cconst_int (n2, _))
    when n1 > 0 && n2 > 0 && n1 + n2 < size_int * 8 ->
      Cop(Clsl, [c; Cconst_int (n1 + n2, dbg)], dbg)
  | (Cop(Caddi, [c1; Cconst_int (n1, _)], _), Cconst_int (n2, _))
    when Misc.no_overflow_lsl n1 n2 ->
      add_const (lsl_int c1 c2 dbg) (n1 lsl n2) dbg
  | (_, _) ->
      Cop(Clsl, [c1; c2], dbg)

let is_power2 n = n = 1 lsl Misc.log2 n

and mult_power2 c n dbg = lsl_int c (Cconst_int (Misc.log2 n, dbg)) dbg

let rec mul_int c1 c2 dbg =
  match (c1, c2) with
  | (c, Cconst_int (0, _)) | (Cconst_int (0, _), c) ->
      Csequence (c, Cconst_int (0, dbg))
  | (c, Cconst_int (1, _)) | (Cconst_int (1, _), c) ->
      c
  | (c, Cconst_int(-1, _)) | (Cconst_int(-1, _), c) ->
      sub_int (Cconst_int (0, dbg)) c dbg
  | (c, Cconst_int (n, _)) when is_power2 n -> mult_power2 c n dbg
  | (Cconst_int (n, _), c) when is_power2 n -> mult_power2 c n dbg
  | (Cop(Caddi, [c; Cconst_int (n, _)], _), Cconst_int (k, _)) |
    (Cconst_int (k, _), Cop(Caddi, [c; Cconst_int (n, _)], _))
    when Misc.no_overflow_mul n k ->
      add_const (mul_int c (Cconst_int (k, dbg)) dbg) (n * k) dbg
  | (c1, c2) ->
      Cop(Cmuli, [c1; c2], dbg)


let ignore_low_bit_int = function
    Cop(Caddi,
        [(Cop(Clsl, [_; Cconst_int (n, _)], _) as c); Cconst_int (1, _)], _)
      when n > 0
      -> c
  | Cop(Cor, [c; Cconst_int (1, _)], _) -> c
  | c -> c

(* removes the 1-bit sign-extension left by untag_int (tag_int c) *)
let ignore_high_bit_int = function
    Cop(Casr,
        [Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], _) -> c
  | c -> c

let lsr_int c1 c2 dbg =
  match c2 with
    Cconst_int (0, _) ->
      c1
  | Cconst_int (n, _) when n > 0 ->
      Cop(Clsr, [ignore_low_bit_int c1; c2], dbg)
  | _ ->
      Cop(Clsr, [c1; c2], dbg)

let asr_int c1 c2 dbg =
  match c2 with
    Cconst_int (0, _) ->
      c1
  | Cconst_int (n, _) when n > 0 ->
      Cop(Casr, [ignore_low_bit_int c1; c2], dbg)
  | _ ->
      Cop(Casr, [c1; c2], dbg)

let tag_int i dbg =
  match i with
    Cconst_int (n, _) ->
      int_const dbg n
  | Cop(Casr, [c; Cconst_int (n, _)], _) when n > 0 ->
      Cop(Cor,
        [asr_int c (Cconst_int (n - 1, dbg)) dbg; Cconst_int (1, dbg)],
        dbg)
  | c ->
      incr_int (lsl_int c (Cconst_int (1, dbg)) dbg) dbg

let untag_int i dbg =
  match i with
    Cconst_int (n, _) -> Cconst_int(n asr 1, dbg)
  | Cop(Cor, [Cop(Casr, [c; Cconst_int (n, _)], _); Cconst_int (1, _)], _)
    when n > 0 && n < size_int * 8 ->
      Cop(Casr, [c; Cconst_int (n+1, dbg)], dbg)
  | Cop(Cor, [Cop(Clsr, [c; Cconst_int (n, _)], _); Cconst_int (1, _)], _)
    when n > 0 && n < size_int * 8 ->
      Cop(Clsr, [c; Cconst_int (n+1, dbg)], dbg)
  | c -> asr_int c (Cconst_int (1, dbg)) dbg

let mk_if_then_else dbg cond ifso_dbg ifso ifnot_dbg ifnot =
  match cond with
  | Cconst_int (0, _) -> ifnot
  | Cconst_int (1, _) -> ifso
  | _ ->
    Cifthenelse(cond, ifso_dbg, ifso, ifnot_dbg, ifnot, dbg)

let mk_not dbg cmm =
  match cmm with
  | Cop(Caddi,
        [Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], dbg') ->
    begin
      match c with
      | Cop(Ccmpi cmp, [c1; c2], dbg'') ->
          tag_int
            (Cop(Ccmpi (negate_integer_comparison cmp), [c1; c2], dbg'')) dbg'
      | Cop(Ccmpa cmp, [c1; c2], dbg'') ->
          tag_int
            (Cop(Ccmpa (negate_integer_comparison cmp), [c1; c2], dbg'')) dbg'
      | Cop(Ccmpf cmp, [c1; c2], dbg'') ->
          tag_int
            (Cop(Ccmpf (negate_float_comparison cmp), [c1; c2], dbg'')) dbg'
      | _ ->
        (* 0 -> 3, 1 -> 1 *)
        Cop(Csubi,
            [Cconst_int (3, dbg); Cop(Clsl, [c; Cconst_int (1, dbg)], dbg)],
            dbg)
    end
  | Cconst_int (3, _) -> Cconst_int (1, dbg)
  | Cconst_int (1, _) -> Cconst_int (3, dbg)
  | c ->
      (* 1 -> 3, 3 -> 1 *)
      Cop(Csubi, [Cconst_int (4, dbg); c], dbg)

let mk_compare_ints dbg a1 a2 =
  match (a1,a2) with
  | Cconst_int (c1, _), Cconst_int (c2, _) ->
     int_const dbg (Int.compare c1 c2)
  | Cconst_natint (c1, _), Cconst_natint (c2, _) ->
     int_const dbg (Nativeint.compare c1 c2)
  | Cconst_int (c1, _), Cconst_natint (c2, _) ->
     int_const dbg Nativeint.(compare (of_int c1) c2)
  | Cconst_natint (c1, _), Cconst_int (c2, _) ->
     int_const dbg Nativeint.(compare c1 (of_int c2))
  | a1, a2 -> begin
      bind "int_cmp" a2 (fun a2 ->
        bind "int_cmp" a1 (fun a1 ->
          let op1 = Cop(Ccmpi(Cgt), [a1; a2], dbg) in
          let op2 = Cop(Ccmpi(Clt), [a1; a2], dbg) in
          tag_int(sub_int op1 op2 dbg) dbg))
    end

let mk_compare_floats dbg a1 a2 =
  bind "float_cmp" a2 (fun a2 ->
    bind "float_cmp" a1 (fun a1 ->
      let op1 = Cop(Ccmpf(CFgt), [a1; a2], dbg) in
      let op2 = Cop(Ccmpf(CFlt), [a1; a2], dbg) in
      let op3 = Cop(Ccmpf(CFeq), [a1; a1], dbg) in
      let op4 = Cop(Ccmpf(CFeq), [a2; a2], dbg) in
      (* If both operands a1 and a2 are not NaN, then op3 = op4 = 1,
         and the result is op1 - op2.
         If at least one of the operands is NaN,
         then op1 = op2 = 0, and the result is op3 - op4,
         which orders NaN before other values.
         To detect if the operand is NaN, we use the property:
         for all x, NaN is not equal to x, even if x is NaN.
         Therefore, op3 is 0 if and only if a1 is NaN,
         and op4 is 0 if and only if a2 is NaN.
         See also caml_float_compare_unboxed in runtime/floats.c  *)
      tag_int (add_int (sub_int op1 op2 dbg) (sub_int op3 op4 dbg) dbg) dbg))

let create_loop body dbg =
  let cont = Lambda.next_raise_count () in
  let call_cont = Cexit (cont, []) in
  let body = Csequence (body, call_cont) in
  Ccatch (Recursive, [cont, [], body, dbg], call_cont)

(* Turning integer divisions into multiply-high then shift.
   The [division_parameters] function is used in module Emit for
   those target platforms that support this optimization. *)

(* Unsigned comparison between native integers. *)

let ucompare x y = Nativeint.(compare (add x min_int) (add y min_int))

(* Unsigned division and modulus at type nativeint.
   Algorithm: Hacker's Delight section 9.3 *)

let udivmod n d = Nativeint.(
  if d < 0n then
    if ucompare n d < 0 then (0n, n) else (1n, sub n d)
  else begin
    let q = shift_left (div (shift_right_logical n 1) d) 1 in
    let r = sub n (mul q d) in
    if ucompare r d >= 0 then (succ q, sub r d) else (q, r)
  end)

(* Compute division parameters.
   Algorithm: Hacker's Delight chapter 10, fig 10-1. *)

let divimm_parameters d = Nativeint.(
  assert (d > 0n);
  let twopsm1 = min_int in (* 2^31 for 32-bit archs, 2^63 for 64-bit archs *)
  let nc = sub (pred twopsm1) (snd (udivmod twopsm1 d)) in
  let rec loop p (q1, r1) (q2, r2) =
    let p = p + 1 in
    let q1 = shift_left q1 1 and r1 = shift_left r1 1 in
    let (q1, r1) =
      if ucompare r1 nc >= 0 then (succ q1, sub r1 nc) else (q1, r1) in
    let q2 = shift_left q2 1 and r2 = shift_left r2 1 in
    let (q2, r2) =
      if ucompare r2 d >= 0 then (succ q2, sub r2 d) else (q2, r2) in
    let delta = sub d r2 in
    if ucompare q1 delta < 0 || (q1 = delta && r1 = 0n)
    then loop p (q1, r1) (q2, r2)
    else (succ q2, p - size)
  in loop (size - 1) (udivmod twopsm1 nc) (udivmod twopsm1 d))

(* The result [(m, p)] of [divimm_parameters d] satisfies the following
   inequality:

      2^(wordsize + p) < m * d <= 2^(wordsize + p) + 2^(p + 1)    (i)

   from which it follows that

      floor(n / d) = floor(n * m / 2^(wordsize+p))
                              if 0 <= n < 2^(wordsize-1)
      ceil(n / d) = floor(n * m / 2^(wordsize+p)) + 1
                              if -2^(wordsize-1) <= n < 0

   The correctness condition (i) above can be checked by the code below.
   It was exhaustively tested for values of d from 2 to 10^9 in the
   wordsize = 64 case.

let add2 (xh, xl) (yh, yl) =
  let zl = add xl yl and zh = add xh yh in
  ((if ucompare zl xl < 0 then succ zh else zh), zl)

let shl2 (xh, xl) n =
  assert (0 < n && n < size + size);
  if n < size
  then (logor (shift_left xh n) (shift_right_logical xl (size - n)),
        shift_left xl n)
  else (shift_left xl (n - size), 0n)

let mul2 x y =
  let halfsize = size / 2 in
  let halfmask = pred (shift_left 1n halfsize) in
  let xl = logand x halfmask and xh = shift_right_logical x halfsize in
  let yl = logand y halfmask and yh = shift_right_logical y halfsize in
  add2 (mul xh yh, 0n)
    (add2 (shl2 (0n, mul xl yh) halfsize)
       (add2 (shl2 (0n, mul xh yl) halfsize)
          (0n, mul xl yl)))

let ucompare2 (xh, xl) (yh, yl) =
  let c = ucompare xh yh in if c = 0 then ucompare xl yl else c

let validate d m p =
  let md = mul2 m d in
  let one2 = (0n, 1n) in
  let twoszp = shl2 one2 (size + p) in
  let twop1 = shl2 one2 (p + 1) in
  ucompare2 twoszp md < 0 && ucompare2 md (add2 twoszp twop1) <= 0
*)

let raise_symbol dbg symb =
  Cop(Craise Lambda.Raise_regular, [Cconst_symbol (symb, dbg)], dbg)

let rec div_int c1 c2 is_safe dbg =
  match (c1, c2) with
    (c1, Cconst_int (0, _)) ->
      Csequence(c1, raise_symbol dbg "caml_exn_Division_by_zero")
  | (c1, Cconst_int (1, _)) ->
      c1
  | (Cconst_int (n1, _), Cconst_int (n2, _)) ->
      Cconst_int (n1 / n2, dbg)
  | (c1, Cconst_int (n, _)) when n <> min_int ->
      let l = Misc.log2 n in
      if n = 1 lsl l then
        (* Algorithm:
              t = shift-right-signed(c1, l - 1)
              t = shift-right(t, W - l)
              t = c1 + t
              res = shift-right-signed(c1 + t, l)
        *)
        Cop(Casr, [bind "dividend" c1 (fun c1 ->
                     let t = asr_int c1 (Cconst_int (l - 1, dbg)) dbg in
                     let t =
                       lsr_int t (Cconst_int (Nativeint.size - l, dbg)) dbg
                     in
                     add_int c1 t dbg);
                   Cconst_int (l, dbg)], dbg)
      else if n < 0 then
        sub_int (Cconst_int (0, dbg))
          (div_int c1 (Cconst_int (-n, dbg)) is_safe dbg)
          dbg
      else begin
        let (m, p) = divimm_parameters (Nativeint.of_int n) in
        (* Algorithm:
              t = multiply-high-signed(c1, m)
              if m < 0, t = t + c1
              if p > 0, t = shift-right-signed(t, p)
              res = t + sign-bit(c1)
        *)
        bind "dividend" c1 (fun c1 ->
          let t = Cop(Cmulhi, [c1; natint_const_untagged dbg m], dbg) in
          let t = if m < 0n then Cop(Caddi, [t; c1], dbg) else t in
          let t =
            if p > 0 then Cop(Casr, [t; Cconst_int (p, dbg)], dbg) else t
          in
          add_int t (lsr_int c1 (Cconst_int (Nativeint.size - 1, dbg)) dbg) dbg)
      end
  | (c1, c2) when !Clflags.unsafe || is_safe = Lambda.Unsafe ->
      Cop(Cdivi, [c1; c2], dbg)
  | (c1, c2) ->
      bind "divisor" c2 (fun c2 ->
        bind "dividend" c1 (fun c1 ->
          Cifthenelse(c2,
                      dbg,
                      Cop(Cdivi, [c1; c2], dbg),
                      dbg,
                      raise_symbol dbg "caml_exn_Division_by_zero",
                      dbg)))

let mod_int c1 c2 is_safe dbg =
  match (c1, c2) with
    (c1, Cconst_int (0, _)) ->
      Csequence(c1, raise_symbol dbg "caml_exn_Division_by_zero")
  | (c1, Cconst_int ((1 | (-1)), _)) ->
      Csequence(c1, Cconst_int (0, dbg))
  | (Cconst_int (n1, _), Cconst_int (n2, _)) ->
      Cconst_int (n1 mod n2, dbg)
  | (c1, (Cconst_int (n, _) as c2)) when n <> min_int ->
      let l = Misc.log2 n in
      if n = 1 lsl l then
        (* Algorithm:
              t = shift-right-signed(c1, l - 1)
              t = shift-right(t, W - l)
              t = c1 + t
              t = bit-and(t, -n)
              res = c1 - t
         *)
        bind "dividend" c1 (fun c1 ->
          let t = asr_int c1 (Cconst_int (l - 1, dbg)) dbg in
          let t = lsr_int t (Cconst_int (Nativeint.size - l, dbg)) dbg in
          let t = add_int c1 t dbg in
          let t = Cop(Cand, [t; Cconst_int (-n, dbg)], dbg) in
          sub_int c1 t dbg)
      else
        bind "dividend" c1 (fun c1 ->
          sub_int c1 (mul_int (div_int c1 c2 is_safe dbg) c2 dbg) dbg)
  | (c1, c2) when !Clflags.unsafe || is_safe = Lambda.Unsafe ->
      (* Flambda already generates that test *)
      Cop(Cmodi, [c1; c2], dbg)
  | (c1, c2) ->
      bind "divisor" c2 (fun c2 ->
        bind "dividend" c1 (fun c1 ->
          Cifthenelse(c2,
                      dbg,
                      Cop(Cmodi, [c1; c2], dbg),
                      dbg,
                      raise_symbol dbg "caml_exn_Division_by_zero",
                      dbg)))

(* Division or modulo on boxed integers.  The overflow case min_int / -1
   can occur, in which case we force x / -1 = -x and x mod -1 = 0. (PR#5513). *)

let is_different_from x = function
    Cconst_int (n, _) -> n <> x
  | Cconst_natint (n, _) -> n <> Nativeint.of_int x
  | _ -> false

let safe_divmod_bi mkop is_safe mkm1 c1 c2 bi dbg =
  bind "divisor" c2 (fun c2 ->
  bind "dividend" c1 (fun c1 ->
    let c = mkop c1 c2 is_safe dbg in
    if Arch.division_crashes_on_overflow
    && bi <> Primitive.Pint32
    && not (is_different_from (-1) c2)
    then
      Cifthenelse(Cop(Ccmpi Cne, [c2; Cconst_int (-1, dbg)], dbg),
        dbg, c,
        dbg, mkm1 c1 dbg,
        dbg)
    else
      c))

let safe_div_bi is_safe =
  safe_divmod_bi div_int is_safe
    (fun c1 dbg -> Cop(Csubi, [Cconst_int (0, dbg); c1], dbg))

let safe_mod_bi is_safe =
  safe_divmod_bi mod_int is_safe (fun _ dbg -> Cconst_int (0, dbg))

(* Bool *)

let test_bool dbg cmm =
  match cmm with
  | Cop(Caddi, [Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], _) ->
      c
  | Cconst_int (n, dbg) ->
      if n = 1 then
        Cconst_int (0, dbg)
      else
        Cconst_int (1, dbg)
  | c -> Cop(Ccmpi Cne, [c; Cconst_int (1, dbg)], dbg)

(* Float *)

let box_float dbg c = Cop(Calloc, [alloc_float_header dbg; c], dbg)

let unbox_float dbg =
  map_tail
    (function
      | Cop(Calloc, [Cconst_natint (hdr, _); c], _)
        when Nativeint.equal hdr float_header ->
          c
      | Cconst_symbol (s, _dbg) as cmm ->
          begin match Cmmgen_state.structured_constant_of_sym s with
          | Some (Uconst_float x) ->
              Cconst_float (x, dbg) (* or keep _dbg? *)
          | _ ->
              Cop(mk_load_immut Double, [cmm], dbg)
          end
      | cmm -> Cop(mk_load_immut Double, [cmm], dbg)
    )

(* Complex *)

let box_complex dbg c_re c_im =
  Cop(Calloc, [alloc_floatarray_header 2 dbg; c_re; c_im], dbg)

let complex_re c dbg =
  Cop(mk_load_immut Double, [c], dbg)
let complex_im c dbg =
  Cop(mk_load_immut Double,
      [Cop(Cadda, [c; Cconst_int (size_float, dbg)], dbg)], dbg)

(* Unit *)

let return_unit dbg c = Csequence(c, Cconst_int (1, dbg))

let rec remove_unit = function
    Cconst_int (1, _) -> Ctuple []
  | Csequence(c, Cconst_int (1, _)) -> c
  | Csequence(c1, c2) ->
      Csequence(c1, remove_unit c2)
  | Cifthenelse(cond, ifso_dbg, ifso, ifnot_dbg, ifnot, dbg) ->
      Cifthenelse(cond,
        ifso_dbg, remove_unit ifso,
        ifnot_dbg,
        remove_unit ifnot, dbg)
  | Cswitch(sel, index, cases, dbg) ->
      Cswitch(sel, index,
        Array.map (fun (case, dbg) -> remove_unit case, dbg) cases,
        dbg)
  | Ccatch(rec_flag, handlers, body) ->
      let map_h (n, ids, handler, dbg) = (n, ids, remove_unit handler, dbg) in
      Ccatch(rec_flag, List.map map_h handlers, remove_unit body)
  | Ctrywith(body, exn, handler, dbg) ->
      Ctrywith(remove_unit body, exn, remove_unit handler, dbg)
  | Clet(id, c1, c2) ->
      Clet(id, c1, remove_unit c2)
  | Cop(Capply _mty, args, dbg) ->
      Cop(Capply typ_void, args, dbg)
  | Cop(Cextcall(proc, _ty_res, ty_args, alloc), args, dbg) ->
      Cop(Cextcall(proc, typ_void, ty_args, alloc), args, dbg)
  | Cexit (_,_) as c -> c
  | Ctuple [] as c -> c
  | c -> Csequence(c, Ctuple [])

let field_address ptr n dbg =
  if n = 0
  then ptr
  else Cop(Cadda, [ptr; Cconst_int(n * size_addr, dbg)], dbg)

let get_field_gen mutability ptr n dbg =
  Cop(Cload {memory_chunk=Word_val; mutability; is_atomic=false},
      [field_address ptr n dbg], dbg)

let get_field_codepointer mutability ptr n dbg =
  Cop(Cload {memory_chunk=Word_int; mutability; is_atomic=false},
      [field_address ptr n dbg], dbg)

let set_field ptr n newval init dbg =
  Cop(Cstore (Word_val, init), [field_address ptr n dbg; newval], dbg)

let get_header ptr dbg =
  (* header loads are mutable because laziness changes tags. *)
  Cop(mk_load_mut Word_int,
    [Cop(Cadda, [ptr; Cconst_int(-size_int, dbg)], dbg)], dbg)

let get_header_masked ptr dbg =
  if Config.reserved_header_bits > 0 then
    let header_mask = (1 lsl (64 - Config.reserved_header_bits)) - 1
    in Cop(Cand, [get_header ptr dbg; Cconst_int (header_mask, dbg)], dbg)
  else
    get_header ptr dbg

let tag_offset =
  if big_endian then -1 else -size_int

let get_tag ptr dbg =
  if Proc.word_addressed then           (* If byte loads are slow *)
    Cop(Cand, [get_header ptr dbg; Cconst_int (255, dbg)], dbg)
  else                                  (* If byte loads are efficient *)
    (* header loads are mutable because laziness changes tags. *)
    Cop(mk_load_mut Byte_unsigned,
        [Cop(Cadda, [ptr; Cconst_int(tag_offset, dbg)], dbg)], dbg)

let get_size ptr dbg =
  Cop(Clsr, [get_header_masked ptr dbg; Cconst_int (10, dbg)], dbg)

(* Array indexing *)

let log2_size_addr = Misc.log2 size_addr
let log2_size_float = Misc.log2 size_float

let wordsize_shift = 9
let numfloat_shift = 9 + log2_size_float - log2_size_addr

let is_addr_array_hdr hdr dbg =
  Cop(Ccmpi Cne,
    [Cop(Cand, [hdr; Cconst_int (255, dbg)], dbg); floatarray_tag dbg],
    dbg)

let is_addr_array_ptr ptr dbg =
  Cop(Ccmpi Cne, [get_tag ptr dbg; floatarray_tag dbg], dbg)

let addr_array_length_shifted hdr dbg =
  Cop(Clsr, [hdr; Cconst_int (wordsize_shift, dbg)], dbg)
let float_array_length_shifted hdr dbg =
  Cop(Clsr, [hdr; Cconst_int (numfloat_shift, dbg)], dbg)

let lsl_const c n dbg =
  if n = 0 then c
  else Cop(Clsl, [c; Cconst_int (n, dbg)], dbg)

(* Produces a pointer to the element of the array [ptr] on the position [ofs]
   with the given element [log2size] log2 element size. [ofs] is given as a
   tagged int expression.
   The optional ?typ argument is the C-- type of the result.
   By default, it is Addr, meaning we are constructing a derived pointer
   into the heap.  If we know the pointer is outside the heap
   (this is the case for bigarray indexing), we give type Int instead. *)

let array_indexing ?typ log2size ptr ofs dbg =
  let add =
    match typ with
    | None | Some Addr -> Cadda
    | Some Int -> Caddi
    | _ -> assert false in
  match ofs with
  | Cconst_int (n, _) ->
      let i = n asr 1 in
      if i = 0 then ptr
      else Cop(add, [ptr; Cconst_int(i lsl log2size, dbg)], dbg)
  | Cop(Caddi,
        [Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], dbg') ->
      Cop(add, [ptr; lsl_const c log2size dbg], dbg')
  | Cop(Caddi, [c; Cconst_int (n, _)], dbg') when log2size = 0 ->
      Cop(add,
        [Cop(add, [ptr; untag_int c dbg], dbg); Cconst_int (n asr 1, dbg)],
        dbg')
  | Cop(Caddi, [c; Cconst_int (n, _)], _) ->
      Cop(add, [Cop(add, [ptr; lsl_const c (log2size - 1) dbg], dbg);
                    Cconst_int((n-1) lsl (log2size - 1), dbg)], dbg)
  | _ when log2size = 0 ->
      Cop(add, [ptr; untag_int ofs dbg], dbg)
  | _ ->
      Cop(add, [Cop(add, [ptr; lsl_const ofs (log2size - 1) dbg], dbg);
                    Cconst_int((-1) lsl (log2size - 1), dbg)], dbg)

let addr_array_ref arr ofs dbg =
  Cop(mk_load_mut Word_val,
    [array_indexing log2_size_addr arr ofs dbg], dbg)
let int_array_ref arr ofs dbg =
  Cop(mk_load_mut Word_int,
    [array_indexing log2_size_addr arr ofs dbg], dbg)
let unboxed_float_array_ref arr ofs dbg =
  Cop(mk_load_mut Double,
    [array_indexing log2_size_float arr ofs dbg], dbg)
let float_array_ref arr ofs dbg =
  box_float dbg (unboxed_float_array_ref arr ofs dbg)

let addr_array_set arr ofs newval dbg =
  Cop(Cextcall("caml_modify", typ_void, [], false),
      [array_indexing log2_size_addr arr ofs dbg; newval], dbg)
let addr_array_initialize arr ofs newval dbg =
  Cop(Cextcall("caml_initialize", typ_void, [], false),
      [array_indexing log2_size_addr arr ofs dbg; newval], dbg)
let int_array_set arr ofs newval dbg =
  Cop(Cstore (Word_int, Lambda.Assignment),
    [array_indexing log2_size_addr arr ofs dbg; newval], dbg)
let float_array_set arr ofs newval dbg =
  Cop(Cstore (Double, Lambda.Assignment),
    [array_indexing log2_size_float arr ofs dbg; newval], dbg)

(* String length *)

(* Length of string block *)

let string_length exp dbg =
  bind "str" exp (fun str ->
    let tmp_var = V.create_local "tmp" in
    Clet(VP.create tmp_var,
         Cop(Csubi,
             [Cop(Clsl,
                   [get_size str dbg;
                     Cconst_int (log2_size_addr, dbg)],
                   dbg);
              Cconst_int (1, dbg)],
             dbg),
         Cop(Csubi,
             [Cvar tmp_var;
               Cop(mk_load_mut Byte_unsigned,
                     [Cop(Cadda, [str; Cvar tmp_var], dbg)], dbg)], dbg)))

let bigstring_length ba dbg =
  Cop(mk_load_mut Word_int, [field_address ba 5 dbg], dbg)

(* Message sending *)

let lookup_tag obj tag dbg =
  bind "tag" tag (fun tag ->
    Cop(Cextcall("caml_get_public_method", typ_val, [], false),
        [obj; tag],
        dbg))

let lookup_label obj lab dbg =
  bind "lab" lab (fun lab ->
    let table = Cop (mk_load_mut Word_val, [obj], dbg) in
    addr_array_ref table lab dbg)

let call_cached_method obj tag cache pos args dbg =
  let arity = List.length args in
  let cache = array_indexing log2_size_addr cache pos dbg in
  Compilenv.need_send_fun arity;
  Cop(Capply typ_val,
      Cconst_symbol("caml_send" ^ Int.to_string arity, dbg) ::
        obj :: tag :: cache :: args,
      dbg)

(* Allocation *)

let make_alloc_generic set_fn dbg tag wordsize args =
  if wordsize <= Config.max_young_wosize then
    Cop(Calloc, Cconst_natint(block_header tag wordsize, dbg) :: args, dbg)
  else begin
    let id = V.create_local "*alloc*" in
    let rec fill_fields idx = function
      [] -> Cvar id
    | e1::el -> Csequence(set_fn (Cvar id) (Cconst_int (idx, dbg)) e1 dbg,
                          fill_fields (idx + 2) el) in
    Clet(VP.create id,
         Cop(Cextcall("caml_alloc_shr_check_gc", typ_val, [], true),
                 [Cconst_int (wordsize, dbg); Cconst_int (tag, dbg)], dbg),
         fill_fields 1 args)
  end

let make_alloc dbg tag args =
  let addr_array_init arr ofs newval dbg =
    Cop(Cextcall("caml_initialize", typ_void, [], false),
        [array_indexing log2_size_addr arr ofs dbg; newval], dbg)
  in
  make_alloc_generic addr_array_init dbg tag (List.length args) args

let make_float_alloc dbg tag args =
  make_alloc_generic float_array_set dbg tag
                     (List.length args * size_float / size_addr) args

(* Bounds checking *)

let make_checkbound dbg = function
  | [Cop(Clsr, [a1; Cconst_int (n, _)], _); Cconst_int (m, _)]
    when (m lsl n) > n ->
      Cop(Ccheckbound, [a1; Cconst_int(m lsl n + 1 lsl n - 1, dbg)], dbg)
  | args ->
      Cop(Ccheckbound, args, dbg)

(* Record application and currying functions *)

let apply_function_sym n =
  Compilenv.need_apply_fun n; "caml_apply" ^ Int.to_string n
let curry_function_sym n =
  Compilenv.need_curry_fun n;
  if n >= 0
  then "caml_curry" ^ Int.to_string n
  else "caml_tuplify" ^ Int.to_string (-n)

(* Big arrays *)

let bigarray_elt_size : Lambda.bigarray_kind -> int = function
    Pbigarray_unknown -> assert false
  | Pbigarray_float32 -> 4
  | Pbigarray_float64 -> 8
  | Pbigarray_sint8 -> 1
  | Pbigarray_uint8 -> 1
  | Pbigarray_sint16 -> 2
  | Pbigarray_uint16 -> 2
  | Pbigarray_int32 -> 4
  | Pbigarray_int64 -> 8
  | Pbigarray_caml_int -> size_int
  | Pbigarray_native_int -> size_int
  | Pbigarray_complex32 -> 8
  | Pbigarray_complex64 -> 16

(* Produces a pointer to the element of the bigarray [b] on the position
   [args].  [args] is given as a list of tagged int expressions, one per array
   dimension. *)
let bigarray_indexing unsafe elt_kind layout b args dbg =
  let check_ba_bound bound idx v =
    Csequence(make_checkbound dbg [bound;idx], v) in
  (* Validates the given multidimensional offset against the array bounds and
     transforms it into a one dimensional offset.  The offsets are expressions
     evaluating to tagged int. *)
  let rec ba_indexing dim_ofs delta_ofs = function
    [] -> assert false
  | [arg] ->
      if unsafe then arg
      else
        bind "idx" arg (fun idx ->
          (* Load the untagged int bound for the given dimension *)
          let bound =
            Cop(mk_load_mut Word_int,
                [field_address b dim_ofs dbg], dbg)
          in
          let idxn = untag_int idx dbg in
          check_ba_bound bound idxn idx)
  | arg1 :: argl ->
      (* The remainder of the list is transformed into a one dimensional offset
         *)
      let rem = ba_indexing (dim_ofs + delta_ofs) delta_ofs argl in
      (* Load the untagged int bound for the given dimension *)
      let bound =
        Cop(mk_load_mut Word_int,
            [field_address b dim_ofs dbg], dbg)
      in
      if unsafe then add_int (mul_int (decr_int rem dbg) bound dbg) arg1 dbg
      else
        bind "idx" arg1 (fun idx ->
          bind "bound" bound (fun bound ->
            let idxn = untag_int idx dbg in
            (* [offset = rem * (tag_int bound) + idx] *)
            let offset =
              add_int (mul_int (decr_int rem dbg) bound dbg) idx dbg
            in
            check_ba_bound bound idxn offset)) in
  (* The offset as an expression evaluating to int *)
  let offset =
    match (layout : Lambda.bigarray_layout) with
      Pbigarray_unknown_layout ->
        assert false
    | Pbigarray_c_layout ->
        ba_indexing (4 + List.length args) (-1) (List.rev args)
    | Pbigarray_fortran_layout ->
        ba_indexing 5 1
          (List.map (fun idx -> sub_int idx (Cconst_int (2, dbg)) dbg) args)
  and elt_size =
    bigarray_elt_size elt_kind in
  (* [array_indexing] can simplify the given expressions *)
  array_indexing ~typ:Addr (Misc.log2 elt_size)
                 (Cop(mk_load_mut Word_int,
                    [field_address b 1 dbg], dbg)) offset dbg

let bigarray_word_kind : Lambda.bigarray_kind -> memory_chunk = function
    Pbigarray_unknown -> assert false
  | Pbigarray_float32 -> Single
  | Pbigarray_float64 -> Double
  | Pbigarray_sint8 -> Byte_signed
  | Pbigarray_uint8 -> Byte_unsigned
  | Pbigarray_sint16 -> Sixteen_signed
  | Pbigarray_uint16 -> Sixteen_unsigned
  | Pbigarray_int32 -> Thirtytwo_signed
  | Pbigarray_int64 -> Word_int
  | Pbigarray_caml_int -> Word_int
  | Pbigarray_native_int -> Word_int
  | Pbigarray_complex32 -> Single
  | Pbigarray_complex64 -> Double

let bigarray_get unsafe elt_kind layout b args dbg =
  bind "ba" b (fun b ->
    match (elt_kind : Lambda.bigarray_kind) with
      Pbigarray_complex32 | Pbigarray_complex64 ->
        let kind = bigarray_word_kind elt_kind in
        let sz = bigarray_elt_size elt_kind / 2 in
        bind "addr"
          (bigarray_indexing unsafe elt_kind layout b args dbg) (fun addr ->
            bind "reval"
              (Cop(mk_load_mut kind, [addr], dbg)) (fun reval ->
                bind "imval"
                  (Cop(mk_load_mut kind,
                       [Cop(Cadda, [addr; Cconst_int (sz, dbg)], dbg)], dbg))
                  (fun imval -> box_complex dbg reval imval)))
    | _ ->
        Cop(mk_load_mut (bigarray_word_kind elt_kind),
            [bigarray_indexing unsafe elt_kind layout b args dbg],
            dbg))

let bigarray_set unsafe elt_kind layout b args newval dbg =
  bind "ba" b (fun b ->
    match (elt_kind : Lambda.bigarray_kind) with
      Pbigarray_complex32 | Pbigarray_complex64 ->
        let kind = bigarray_word_kind elt_kind in
        let sz = bigarray_elt_size elt_kind / 2 in
        bind "newval" newval (fun newv ->
        bind "addr" (bigarray_indexing unsafe elt_kind layout b args dbg)
          (fun addr ->
          Csequence(
            Cop(Cstore (kind, Assignment), [addr; complex_re newv dbg], dbg),
            Cop(Cstore (kind, Assignment),
                [Cop(Cadda, [addr; Cconst_int (sz, dbg)], dbg);
                 complex_im newv dbg],
                dbg))))
    | _ ->
        Cop(Cstore (bigarray_word_kind elt_kind, Assignment),
            [bigarray_indexing unsafe elt_kind layout b args dbg; newval],
            dbg))

(* the three functions below assume 64-bit words *)
let () = assert (size_int = 8)

(* low_32 x is a value which agrees with x on at least the low 32 bits *)
let rec low_32 dbg = function
    (* Ignore sign and zero extensions, which do not affect the low bits *)
  | Cop(Casr, [Cop(Clsl, [x; Cconst_int (32, _)], _);
               Cconst_int (32, _)], _)
  | Cop(Cand, [x; Cconst_natint (0xFFFFFFFFn, _)], _) ->
    low_32 dbg x
  | Clet(id, e, body) ->
    Clet(id, e, low_32 dbg body)
  | x -> x

(* sign_extend_32 sign-extends values from 32 bits to the word size. *)
let sign_extend_32 dbg e =
  Cop(Casr, [Cop(Clsl, [low_32 dbg e; Cconst_int(32, dbg)], dbg);
             Cconst_int(32, dbg)], dbg)

(* zero_extend_32 zero-extends values from 32 bits to the word size. *)
let zero_extend_32 dbg e =
  Cop(Cand, [low_32 dbg e; natint_const_untagged dbg 0xFFFFFFFFn], dbg)

(* Boxed integers *)

let operations_boxed_int (bi : Primitive.boxed_integer) =
  match bi with
    Pnativeint -> caml_nativeint_ops
  | Pint32 -> caml_int32_ops
  | Pint64 -> caml_int64_ops

let alloc_header_boxed_int (bi : Primitive.boxed_integer) =
  match bi with
    Pnativeint -> alloc_boxedintnat_header
  | Pint32 -> alloc_boxedint32_header
  | Pint64 -> alloc_boxedint64_header

let box_int_gen dbg (bi : Primitive.boxed_integer) arg =
  let arg' =
    if bi = Primitive.Pint32 then
      if big_endian
      then Cop(Clsl, [arg; Cconst_int (32, dbg)], dbg)
      else sign_extend_32 dbg arg
    else arg
  in
  Cop(Calloc, [alloc_header_boxed_int bi dbg;
               Cconst_symbol(operations_boxed_int bi, dbg);
               arg'], dbg)

let alloc_matches_boxed_int bi ~hdr ~ops =
  match (bi : Primitive.boxed_integer), hdr, ops with
  | Pnativeint, Cconst_natint (hdr, _dbg), Cconst_symbol (sym, _) ->
      Nativeint.equal hdr boxedintnat_header
        && String.equal sym caml_nativeint_ops
  | Pint32, Cconst_natint (hdr, _dbg), Cconst_symbol (sym, _) ->
      Nativeint.equal hdr boxedint32_header
        && String.equal sym caml_int32_ops
  | Pint64, Cconst_natint (hdr, _dbg), Cconst_symbol (sym, _) ->
      Nativeint.equal hdr boxedint64_header
        && String.equal sym caml_int64_ops
  | (Pnativeint | Pint32 | Pint64), _, _ -> false

let unbox_int dbg bi =
  let default arg =
    let memory_chunk = if bi = Primitive.Pint32
      then Thirtytwo_signed else Word_int
    in
    Cop(
      mk_load_immut memory_chunk,
      [Cop(Cadda, [arg; Cconst_int (size_addr, dbg)], dbg)], dbg)
  in
  map_tail
    (function
      | Cop(Calloc,
            [hdr; ops;
             Cop(Clsl, [contents; Cconst_int (32, _)], _dbg')], _dbg)
        when bi = Primitive.Pint32 && big_endian
             && alloc_matches_boxed_int bi ~hdr ~ops ->
          (* Force sign-extension of low 32 bits *)
          sign_extend_32 dbg contents
      | Cop(Calloc,
            [hdr; ops; contents], _dbg)
        when bi = Primitive.Pint32 && not big_endian
             && alloc_matches_boxed_int bi ~hdr ~ops ->
          (* Force sign-extension of low 32 bits *)
          sign_extend_32 dbg contents
      | Cop(Calloc, [hdr; ops; contents], _dbg)
        when alloc_matches_boxed_int bi ~hdr ~ops ->
          contents
      | Cconst_symbol (s, _dbg) as cmm ->
          begin match Cmmgen_state.structured_constant_of_sym s, bi with
          | Some (Uconst_nativeint n), Primitive.Pnativeint ->
              natint_const_untagged dbg n
          | Some (Uconst_int32 n), Primitive.Pint32 ->
              natint_const_untagged dbg (Nativeint.of_int32 n)
          | Some (Uconst_int64 n), Primitive.Pint64 ->
              natint_const_untagged dbg (Int64.to_nativeint n)
          | _ ->
              default cmm
          end
      | cmm ->
          default cmm
    )

let make_unsigned_int bi arg dbg =
  if bi = Primitive.Pint32
  then zero_extend_32 dbg arg
  else arg

let unaligned_load_16 ptr idx dbg =
  if Arch.allow_unaligned_access
  then Cop(mk_load_mut Sixteen_unsigned, [add_int ptr idx dbg], dbg)
  else
    let cconst_int i = Cconst_int (i, dbg) in
    let v1 = Cop(mk_load_mut Byte_unsigned, [add_int ptr idx dbg], dbg) in
    let v2 = Cop(mk_load_mut Byte_unsigned,
                 [add_int (add_int ptr idx dbg) (cconst_int 1) dbg], dbg) in
    let b1, b2 = if Arch.big_endian then v1, v2 else v2, v1 in
    Cop(Cor, [lsl_int b1 (cconst_int 8) dbg; b2], dbg)

let unaligned_set_16 ptr idx newval dbg =
  if Arch.allow_unaligned_access
  then
    Cop(Cstore (Sixteen_unsigned, Assignment),
      [add_int ptr idx dbg; newval], dbg)
  else
    let cconst_int i = Cconst_int (i, dbg) in
    let v1 =
      Cop(Cand, [Cop(Clsr, [newval; cconst_int 8], dbg);
        cconst_int 0xFF], dbg)
    in
    let v2 = Cop(Cand, [newval; cconst_int 0xFF], dbg) in
    let b1, b2 = if Arch.big_endian then v1, v2 else v2, v1 in
    Csequence(
        Cop(Cstore (Byte_unsigned, Assignment), [add_int ptr idx dbg; b1], dbg),
        Cop(Cstore (Byte_unsigned, Assignment),
            [add_int (add_int ptr idx dbg) (cconst_int 1) dbg; b2], dbg))

let unaligned_load_32 ptr idx dbg =
  if Arch.allow_unaligned_access
  then Cop(mk_load_mut Thirtytwo_unsigned, [add_int ptr idx dbg], dbg)
  else
    let cconst_int i = Cconst_int (i, dbg) in
    let v1 = Cop(mk_load_mut Byte_unsigned, [add_int ptr idx dbg], dbg) in
    let v2 = Cop(mk_load_mut Byte_unsigned,
                 [add_int (add_int ptr idx dbg) (cconst_int 1) dbg], dbg)
    in
    let v3 = Cop(mk_load_mut Byte_unsigned,
                 [add_int (add_int ptr idx dbg) (cconst_int 2) dbg], dbg)
    in
    let v4 = Cop(mk_load_mut Byte_unsigned,
                 [add_int (add_int ptr idx dbg) (cconst_int 3) dbg], dbg)
    in
    let b1, b2, b3, b4 =
      if Arch.big_endian
      then v1, v2, v3, v4
      else v4, v3, v2, v1 in
    Cop(Cor,
      [Cop(Cor, [lsl_int b1 (cconst_int 24) dbg;
         lsl_int b2 (cconst_int 16) dbg], dbg);
       Cop(Cor, [lsl_int b3 (cconst_int 8) dbg; b4], dbg)],
      dbg)

let unaligned_set_32 ptr idx newval dbg =
  if Arch.allow_unaligned_access
  then
    Cop(Cstore (Thirtytwo_unsigned, Assignment), [add_int ptr idx dbg; newval],
      dbg)
  else
    let cconst_int i = Cconst_int (i, dbg) in
    let v1 =
      Cop(Cand, [Cop(Clsr, [newval; cconst_int 24], dbg); cconst_int 0xFF], dbg)
    in
    let v2 =
      Cop(Cand, [Cop(Clsr, [newval; cconst_int 16], dbg); cconst_int 0xFF], dbg)
    in
    let v3 =
      Cop(Cand, [Cop(Clsr, [newval; cconst_int 8], dbg); cconst_int 0xFF], dbg)
    in
    let v4 = Cop(Cand, [newval; cconst_int 0xFF], dbg) in
    let b1, b2, b3, b4 =
      if Arch.big_endian
      then v1, v2, v3, v4
      else v4, v3, v2, v1 in
    Csequence(
        Csequence(
            Cop(Cstore (Byte_unsigned, Assignment),
                [add_int ptr idx dbg; b1], dbg),
            Cop(Cstore (Byte_unsigned, Assignment),
                [add_int (add_int ptr idx dbg) (cconst_int 1) dbg; b2],
                dbg)),
        Csequence(
            Cop(Cstore (Byte_unsigned, Assignment),
                [add_int (add_int ptr idx dbg) (cconst_int 2) dbg; b3],
                dbg),
            Cop(Cstore (Byte_unsigned, Assignment),
                [add_int (add_int ptr idx dbg) (cconst_int 3) dbg; b4],
                dbg)))

let unaligned_load_64 ptr idx dbg =
  if Arch.allow_unaligned_access
  then Cop(mk_load_mut Word_int, [add_int ptr idx dbg], dbg)
  else
    let cconst_int i = Cconst_int (i, dbg) in
    let v1 = Cop(mk_load_mut Byte_unsigned, [add_int ptr idx dbg], dbg) in
    let v2 = Cop(mk_load_mut Byte_unsigned,
                 [add_int (add_int ptr idx dbg) (cconst_int 1) dbg], dbg) in
    let v3 = Cop(mk_load_mut Byte_unsigned,
                 [add_int (add_int ptr idx dbg) (cconst_int 2) dbg], dbg) in
    let v4 = Cop(mk_load_mut Byte_unsigned,
                 [add_int (add_int ptr idx dbg) (cconst_int 3) dbg], dbg) in
    let v5 = Cop(mk_load_mut Byte_unsigned,
                 [add_int (add_int ptr idx dbg) (cconst_int 4) dbg], dbg) in
    let v6 = Cop(mk_load_mut Byte_unsigned,
                 [add_int (add_int ptr idx dbg) (cconst_int 5) dbg], dbg) in
    let v7 = Cop(mk_load_mut Byte_unsigned,
                 [add_int (add_int ptr idx dbg) (cconst_int 6) dbg], dbg) in
    let v8 = Cop(mk_load_mut Byte_unsigned,
                 [add_int (add_int ptr idx dbg) (cconst_int 7) dbg], dbg) in
    let b1, b2, b3, b4, b5, b6, b7, b8 =
      if Arch.big_endian
      then v1, v2, v3, v4, v5, v6, v7, v8
      else v8, v7, v6, v5, v4, v3, v2, v1 in
    Cop(Cor,
        [Cop(Cor,
             [Cop(Cor, [lsl_int b1 (cconst_int (8*7)) dbg;
                        lsl_int b2 (cconst_int (8*6)) dbg], dbg);
              Cop(Cor, [lsl_int b3 (cconst_int (8*5)) dbg;
                        lsl_int b4 (cconst_int (8*4)) dbg], dbg)],
             dbg);
         Cop(Cor,
             [Cop(Cor, [lsl_int b5 (cconst_int (8*3)) dbg;
                        lsl_int b6 (cconst_int (8*2)) dbg], dbg);
              Cop(Cor, [lsl_int b7 (cconst_int 8) dbg;
                        b8], dbg)],
             dbg)], dbg)

let unaligned_set_64 ptr idx newval dbg =
  if Arch.allow_unaligned_access
  then Cop(Cstore (Word_int, Assignment), [add_int ptr idx dbg; newval], dbg)
  else
    let cconst_int i = Cconst_int (i, dbg) in
    let v1 =
      Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*7)], dbg); cconst_int 0xFF],
        dbg)
    in
    let v2 =
      Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*6)], dbg); cconst_int 0xFF],
        dbg)
    in
    let v3 =
      Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*5)], dbg); cconst_int 0xFF],
        dbg)
    in
    let v4 =
      Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*4)], dbg); cconst_int 0xFF],
        dbg)
    in
    let v5 =
      Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*3)], dbg); cconst_int 0xFF],
        dbg)
    in
    let v6 =
      Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*2)], dbg); cconst_int 0xFF],
        dbg)
    in
    let v7 =
      Cop(Cand, [Cop(Clsr, [newval; cconst_int 8], dbg); cconst_int 0xFF],
        dbg)
    in
    let v8 = Cop(Cand, [newval; cconst_int 0xFF], dbg) in
    let b1, b2, b3, b4, b5, b6, b7, b8 =
      if Arch.big_endian
      then v1, v2, v3, v4, v5, v6, v7, v8
      else v8, v7, v6, v5, v4, v3, v2, v1 in
    Csequence(
        Csequence(
            Csequence(
                Cop(Cstore (Byte_unsigned, Assignment),
                    [add_int ptr idx dbg; b1],
                    dbg),
                Cop(Cstore (Byte_unsigned, Assignment),
                    [add_int (add_int ptr idx dbg) (cconst_int 1) dbg; b2],
                    dbg)),
            Csequence(
                Cop(Cstore (Byte_unsigned, Assignment),
                    [add_int (add_int ptr idx dbg) (cconst_int 2) dbg; b3],
                    dbg),
                Cop(Cstore (Byte_unsigned, Assignment),
                    [add_int (add_int ptr idx dbg) (cconst_int 3) dbg; b4],
                    dbg))),
        Csequence(
            Csequence(
                Cop(Cstore (Byte_unsigned, Assignment),
                    [add_int (add_int ptr idx dbg) (cconst_int 4) dbg; b5],
                    dbg),
                Cop(Cstore (Byte_unsigned, Assignment),
                    [add_int (add_int ptr idx dbg) (cconst_int 5) dbg; b6],
                    dbg)),
            Csequence(
                Cop(Cstore (Byte_unsigned, Assignment),
                    [add_int (add_int ptr idx dbg) (cconst_int 6) dbg; b7],
                    dbg),
                Cop(Cstore (Byte_unsigned, Assignment),
                    [add_int (add_int ptr idx dbg) (cconst_int 7) dbg; b8],
                    dbg))))

let max_or_zero a dbg =
  bind "size" a (fun a ->
    (* equivalent to
       Cifthenelse(Cop(Ccmpi Cle, [a; cconst_int 0]), cconst_int 0, a)

       if a is positive, sign is 0 hence sign_negation is full of 1
                         so sign_negation&a = a
       if a is negative, sign is full of 1 hence sign_negation is 0
                         so sign_negation&a = 0 *)
    let sign = Cop(Casr, [a; Cconst_int (size_int * 8 - 1, dbg)], dbg) in
    let sign_negation = Cop(Cxor, [sign; Cconst_int (-1, dbg)], dbg) in
    Cop(Cand, [sign_negation; a], dbg))

let check_bound safety access_size dbg length a2 k =
  match (safety : Lambda.is_safe) with
  | Unsafe -> k
  | Safe ->
      let offset =
        match (access_size : Clambda_primitives.memory_access_size) with
        | Sixteen -> 1
        | Thirty_two -> 3
        | Sixty_four -> 7
      in
      let a1 =
        sub_int length (Cconst_int (offset, dbg)) dbg
      in
      Csequence(make_checkbound dbg [max_or_zero a1 dbg; a2], k)

let opaque e dbg =
  Cop(Copaque, [e], dbg)

let unaligned_set size ptr idx newval dbg =
  match (size : Clambda_primitives.memory_access_size) with
  | Sixteen -> unaligned_set_16 ptr idx newval dbg
  | Thirty_two -> unaligned_set_32 ptr idx newval dbg
  | Sixty_four -> unaligned_set_64 ptr idx newval dbg

let unaligned_load size ptr idx dbg =
  match (size : Clambda_primitives.memory_access_size) with
  | Sixteen -> unaligned_load_16 ptr idx dbg
  | Thirty_two -> unaligned_load_32 ptr idx dbg
  | Sixty_four -> unaligned_load_64 ptr idx dbg

let box_sized size dbg exp =
  match (size : Clambda_primitives.memory_access_size) with
  | Sixteen -> tag_int exp dbg
  | Thirty_two -> box_int_gen dbg Pint32 exp
  | Sixty_four -> box_int_gen dbg Pint64 exp

(* Simplification of some primitives into C calls *)

let default_prim name =
  Primitive.simple ~name ~arity:0(*ignored*) ~alloc:true

let simplif_primitive p : Clambda_primitives.primitive =
  match (p : Clambda_primitives.primitive) with
  | Pduprecord _ ->
      Pccall (default_prim "caml_obj_dup")
  | Pbigarrayref(_unsafe, n, Pbigarray_unknown, _layout) ->
      Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
  | Pbigarrayset(_unsafe, n, Pbigarray_unknown, _layout) ->
      Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
  | Pbigarrayref(_unsafe, n, _kind, Pbigarray_unknown_layout) ->
      Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
  | Pbigarrayset(_unsafe, n, _kind, Pbigarray_unknown_layout) ->
      Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
  | p ->
      p

(* Build switchers both for constants and blocks *)

let transl_isout h arg dbg = tag_int (Cop(Ccmpa Clt, [h ; arg], dbg)) dbg

(* Build an actual switch (ie jump table) *)

let make_switch arg cases actions dbg =
  let extract_uconstant =
    function
    (* Constant integers loaded from a table should end in 1,
       so that Cload never produces untagged integers *)
    | Cconst_int     (n, _), _dbg when (n land 1) = 1 ->
        Some (Cint (Nativeint.of_int n))
    | Cconst_natint     (n, _), _dbg
      when Nativeint.(to_int (logand n one) = 1) ->
        Some (Cint n)
    | Cconst_symbol (s,_), _dbg ->
        Some (Csymbol_address s)
    | _ -> None
  in
  let extract_affine ~cases ~const_actions =
    let length = Array.length cases in
    if length >= 2
    then begin
      match const_actions.(cases.(0)), const_actions.(cases.(1)) with
      | Cint v0, Cint v1 ->
          let slope = Nativeint.sub v1 v0 in
          let check i = function
            | Cint v -> v = Nativeint.(add (mul (of_int i) slope) v0)
            | _ -> false
          in
          if Misc.Stdlib.Array.for_alli
              (fun i idx -> check i const_actions.(idx)) cases
          then Some (v0, slope)
          else None
      | _, _ ->
          None
    end
    else None
  in
  let make_table_lookup ~cases ~const_actions arg dbg =
    let table = Compilenv.new_const_symbol () in
    Cmmgen_state.add_constant table (Const_table (Local,
        Array.to_list (Array.map (fun act ->
          const_actions.(act)) cases)));
    addr_array_ref (Cconst_symbol (table, dbg)) (tag_int arg dbg) dbg
  in
  let make_affine_computation ~offset ~slope arg dbg =
    (* In case the resulting integers are an affine function of the index, we
       don't emit a table, and just compute the result directly *)
    add_int
      (mul_int arg (natint_const_untagged dbg slope) dbg)
      (natint_const_untagged dbg offset)
      dbg
  in
  match Misc.Stdlib.Array.all_somes (Array.map extract_uconstant actions) with
  | None ->
      Cswitch (arg,cases,actions,dbg)
  | Some const_actions ->
      match extract_affine ~cases ~const_actions with
      | Some (offset, slope) ->
          make_affine_computation ~offset ~slope arg dbg
      | None -> make_table_lookup ~cases ~const_actions arg dbg

module SArgBlocks =
struct
  type primitive = operation

  let eqint = Ccmpi Ceq
  let neint = Ccmpi Cne
  let leint = Ccmpi Cle
  let ltint = Ccmpi Clt
  let geint = Ccmpi Cge
  let gtint = Ccmpi Cgt

  type loc = Debuginfo.t
  type arg = expression
  type test = expression
  type act = expression

  (* CR mshinwell: GPR#2294 will fix the Debuginfo here *)

  let make_const i =  Cconst_int (i, Debuginfo.none)
  let make_prim p args = Cop (p,args, Debuginfo.none)
  let make_offset arg n = add_const arg n Debuginfo.none
  let make_isout h arg = Cop (Ccmpa Clt, [h ; arg], Debuginfo.none)
  let make_isin h arg = Cop (Ccmpa Cge, [h ; arg], Debuginfo.none)
  let make_is_nonzero arg = arg
  let arg_as_test arg = arg
  let make_if cond ifso ifnot =
    Cifthenelse (cond, Debuginfo.none, ifso, Debuginfo.none, ifnot,
      Debuginfo.none)
  let make_switch dbg arg cases actions =
    let actions = Array.map (fun expr -> expr, dbg) actions in
    make_switch arg cases actions dbg
  let bind arg body = bind "switcher" arg body

  let make_catch handler = match handler with
  | Cexit (i,[]) -> i,fun e -> e
  | _ ->
      let dbg = Debuginfo.none in
      let i = Lambda.next_raise_count () in
(*
      Printf.eprintf  "SHARE CMM: %i\n" i ;
      Printcmm.expression Format.str_formatter handler ;
      Printf.eprintf "%s\n" (Format.flush_str_formatter ()) ;
*)
      i,
      (fun body -> match body with
      | Cexit (j,_) ->
          if i=j then handler
          else body
      | _ ->  ccatch (i,[],body,handler, dbg))

  let make_exit i = Cexit (i,[])

end

(* cmm store, as sharing as normally been detected in previous
   phases, we only share exits *)
(* Some specific patterns can lead to switches where several cases
   point to the same action, but this action is not an exit (see GPR#1370).
   The addition of the index in the action array as context allows to
   share them correctly without duplication. *)
module StoreExpForSwitch =
  Switch.CtxStore
    (struct
      type t = expression
      type key = int option * int
      type context = int
      let make_key index expr =
        let continuation =
          match expr with
          | Cexit (i,[]) -> Some i
          | _ -> None
        in
        Some (continuation, index)
      let compare_key (cont, index) (cont', index') =
        match cont, cont' with
        | Some i, Some i' when i = i' -> 0
        | _, _ -> Stdlib.compare index index'
    end)

(* For string switches, we can use a generic store *)
module StoreExp =
  Switch.Store
    (struct
      type t = expression
      type key = int
      let make_key = function
        | Cexit (i,[]) -> Some i
        | _ -> None
      let compare_key = Stdlib.compare
    end)

module SwitcherBlocks = Switch.Make(SArgBlocks)

(* Int switcher, arg in [low..high],
   cases is list of individual cases, and is sorted by first component *)

let transl_int_switch dbg arg low high cases default = match cases with
| [] -> assert false
| _::_ ->
    let store = StoreExp.mk_store () in
    assert (store.Switch.act_store () default = 0) ;
    let cases =
      List.map
        (fun (i,act) -> i,store.Switch.act_store () act)
        cases in
    let rec inters plow phigh pact = function
      | [] ->
          if phigh = high then [plow,phigh,pact]
          else [(plow,phigh,pact); (phigh+1,high,0) ]
      | (i,act)::rem ->
          if i = phigh+1 then
            if pact = act then
              inters plow i pact rem
            else
              (plow,phigh,pact)::inters i i act rem
          else (* insert default *)
            if pact = 0 then
              if act = 0 then
                inters plow i 0 rem
              else
                (plow,i-1,pact)::
                inters i i act rem
            else (* pact <> 0 *)
              (plow,phigh,pact)::
              begin
                if act = 0 then inters (phigh+1) i 0 rem
                else (phigh+1,i-1,0)::inters i i act rem
              end in
    let inters = match cases with
    | [] -> assert false
    | (k0,act0)::rem ->
        if k0 = low then inters k0 k0 act0 rem
        else inters low (k0-1) 0 cases in
    bind "switcher" arg
      (fun a ->
        SwitcherBlocks.zyva
          dbg
          (low,high)
          a
          (Array.of_list inters) store)


let transl_switch_clambda loc arg index cases =
  let store = StoreExpForSwitch.mk_store () in
  let index =
    Array.map
      (fun j -> store.Switch.act_store j cases.(j))
      index in
  let n_index = Array.length index in
  let inters = ref []
  and this_high = ref (n_index-1)
  and this_low = ref (n_index-1)
  and this_act = ref index.(n_index-1) in
  for i = n_index-2 downto 0 do
    let act = index.(i) in
    if act = !this_act then
      decr this_low
    else begin
      inters := (!this_low, !this_high, !this_act) :: !inters ;
      this_high := i ;
      this_low := i ;
      this_act := act
    end
  done ;
  inters := (0, !this_high, !this_act) :: !inters ;
  match !inters with
  | [_] -> cases.(0)
  | inters ->
      bind "switcher" arg
        (fun a ->
           SwitcherBlocks.zyva
             loc
             (0,n_index-1)
             a
             (Array.of_list inters) store)

let strmatch_compile =
  let module S =
    Strmatch.Make
      (struct
        let string_block_length ptr = get_size ptr Debuginfo.none
        let transl_switch = transl_int_switch
      end) in
  S.compile

let ptr_offset ptr offset dbg =
  if offset = 0
  then ptr
  else Cop(Caddv, [ptr; Cconst_int(offset * size_addr, dbg)], dbg)

let direct_apply lbl args dbg =
  Cop(Capply typ_val, Cconst_symbol (lbl, dbg) :: args, dbg)

let generic_apply mut clos args dbg =
  match args with
  | [arg] ->
      bind "fun" clos (fun clos ->
        Cop(Capply typ_val, [get_field_codepointer mut clos 0 dbg; arg; clos],
          dbg))
  | _ ->
      let arity = List.length args in
      let cargs =
        Cconst_symbol(apply_function_sym arity, dbg) :: args @ [clos]
      in
      Cop(Capply typ_val, cargs, dbg)

let send kind met obj args dbg =
  let call_met obj args clos =
    (* met is never a simple expression, so it never gets turned into an
       Immutable load *)
    generic_apply Asttypes.Mutable clos (obj :: args) dbg
  in
  bind "obj" obj (fun obj ->
      match (kind : Lambda.meth_kind), args with
        Self, _ ->
          bind "met" (lookup_label obj met dbg)
            (call_met obj args)
      | Cached, cache :: pos :: args ->
          call_cached_method obj met cache pos args dbg
      | _ ->
          bind "met" (lookup_tag obj met dbg)
            (call_met obj args))

(*
CAMLprim value caml_cache_public_method (value meths, value tag, value *cache)
{
  int li = 3, hi = Field(meths,0), mi;
  while (li < hi) { // no need to check the 1st time
    mi = ((li+hi) >> 1) | 1;
    if (tag < Field(meths,mi)) hi = mi-2;
    else li = mi;
  }
  *cache = (li-3)*sizeof(value)+1;
  return Field (meths, li-1);
}
*)

let cache_public_method meths tag cache dbg =
  let raise_num = Lambda.next_raise_count () in
  let cconst_int i = Cconst_int (i, dbg) in
  let li = V.create_local "*li*" and hi = V.create_local "*hi*"
  and mi = V.create_local "*mi*" and tagged = V.create_local "*tagged*" in
  Clet_mut (
  VP.create li, typ_int, cconst_int 3,
  Clet_mut (
  VP.create hi, typ_int, Cop(mk_load_mut Word_int, [meths], dbg),
  Csequence(
  ccatch
    (raise_num, [],
     create_loop
       (Clet(
        VP.create mi,
        Cop(Cor,
            [Cop(Clsr, [Cop(Caddi, [Cvar li; Cvar hi], dbg); cconst_int 1],
               dbg);
             cconst_int 1],
            dbg),
        Csequence(
        Cifthenelse
          (Cop (Ccmpi Clt,
                [tag;
                 Cop(mk_load_mut Word_int,
                     [Cop(Cadda,
                          [meths; lsl_const (Cvar mi) log2_size_addr dbg],
                          dbg)],
                     dbg)], dbg),
           dbg, Cassign(hi, Cop(Csubi, [Cvar mi; cconst_int 2], dbg)),
           dbg, Cassign(li, Cvar mi),
           dbg),
        Cifthenelse
          (Cop(Ccmpi Cge, [Cvar li; Cvar hi], dbg),
           dbg, Cexit (raise_num, []),
           dbg, Ctuple [],
           dbg))))
       dbg,
     Ctuple [],
     dbg),
  Clet (
    VP.create tagged,
      Cop(Caddi, [lsl_const (Cvar li) log2_size_addr dbg;
        cconst_int(1 - 3 * size_addr)], dbg),
    Csequence(Cop (Cstore (Word_int, Assignment), [cache; Cvar tagged], dbg),
              Cvar tagged)))))

(* CR mshinwell: These will be filled in by later pull requests. *)
let placeholder_dbg () = Debuginfo.none
let placeholder_fun_dbg ~human_name:_ = Debuginfo.none

(* Generate an application function:
     (defun caml_applyN (a1 ... aN clos)
       (if (= clos.arity N)
         (app clos.direct a1 ... aN clos)
         (let (clos1 (app clos.code a1 clos)
               clos2 (app clos1.code a2 clos)
               ...
               closN-1 (app closN-2.code aN-1 closN-2))
           (app closN-1.code aN closN-1))))
*)

let apply_function_body arity =
  let dbg = placeholder_dbg in
  let arg = Array.make arity (V.create_local "arg") in
  for i = 1 to arity - 1 do arg.(i) <- V.create_local "arg" done;
  let clos = V.create_local "clos" in
  let rec app_fun clos n =
    if n = arity-1 then
      Cop(Capply typ_val,
          [get_field_codepointer Asttypes.Mutable (Cvar clos) 0 (dbg ());
           Cvar arg.(n);
           Cvar clos],
          dbg ())
    else begin
      let newclos = V.create_local "clos" in
      Clet(VP.create newclos,
           Cop(Capply typ_val,
               [get_field_codepointer Asttypes.Mutable (Cvar clos) 0 (dbg ());
                Cvar arg.(n); Cvar clos], dbg ()),
           app_fun newclos (n+1))
    end in
  let args = Array.to_list arg in
  let all_args = args @ [clos] in
  (args, clos,
   if arity = 1 then app_fun clos 0 else
   Cifthenelse(
   Cop(Ccmpi Ceq, [Cop(Casr,
                       [get_field_gen Asttypes.Mutable (Cvar clos) 1 (dbg());
                        Cconst_int(pos_arity_in_closinfo, dbg())], dbg());
                   Cconst_int(arity, dbg())], dbg()),
   dbg (),
   Cop(Capply typ_val,
       get_field_codepointer Asttypes.Mutable (Cvar clos) 2 (dbg ())
       :: List.map (fun s -> Cvar s) all_args,
       dbg ()),
   dbg (),
   app_fun clos 0,
   dbg ()))

let send_function arity =
  let dbg = placeholder_dbg in
  let cconst_int i = Cconst_int (i, dbg ()) in
  let (args, clos', body) = apply_function_body (1+arity) in
  let cache = V.create_local "cache"
  and obj = List.hd args
  and tag = V.create_local "tag" in
  let clos =
    let cache = Cvar cache and obj = Cvar obj and tag = Cvar tag in
    let meths = V.create_local "meths" and cached = V.create_local "cached" in
    let real = V.create_local "real" in
    let mask = get_field_gen Asttypes.Mutable (Cvar meths) 1 (dbg ()) in
    let cached_pos = Cvar cached in
    let tag_pos = Cop(Cadda, [Cop (Cadda, [cached_pos; Cvar meths], dbg ());
                              cconst_int(3*size_addr-1)], dbg ()) in
    let tag' = Cop(mk_load_mut Word_int, [tag_pos], dbg ()) in
    Clet (
    VP.create meths, Cop(mk_load_mut Word_val, [obj], dbg ()),
    Clet (
    VP.create cached,
      Cop(Cand, [Cop(mk_load_mut Word_int, [cache], dbg ()); mask],
          dbg ()),
    Clet (
    VP.create real,
    Cifthenelse(Cop(Ccmpa Cne, [tag'; tag], dbg ()),
                dbg (),
                cache_public_method (Cvar meths) tag cache (dbg ()),
                dbg (),
                cached_pos,
                dbg ()),
    Cop(mk_load_mut Word_val,
      [Cop(Cadda, [Cop (Cadda, [Cvar real; Cvar meths], dbg ());
       cconst_int(2*size_addr-1)], dbg ())], dbg ()))))

  in
  let body = Clet(VP.create clos', clos, body) in
  let cache = cache in
  let fun_name = "caml_send" ^ Int.to_string arity in
  let fun_args =
    [obj, typ_val; tag, typ_int; cache, typ_addr]
    @ List.map (fun id -> (id, typ_val)) (List.tl args) in
  let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
  Cfunction
   {fun_name;
    fun_args = List.map (fun (arg, ty) -> VP.create arg, ty) fun_args;
    fun_body = body;
    fun_codegen_options = [];
    fun_poll = Default_poll;
    fun_dbg;
   }

let apply_function arity =
  let (args, clos, body) = apply_function_body arity in
  let all_args = args @ [clos] in
  let fun_name = "caml_apply" ^ Int.to_string arity in
  let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
  Cfunction
   {fun_name;
    fun_args = List.map (fun arg -> (VP.create arg, typ_val)) all_args;
    fun_body = body;
    fun_codegen_options = [];
    fun_poll = Default_poll;
    fun_dbg;
   }

(* Generate tuplifying functions:
      (defun caml_tuplifyN (arg clos)
        (app clos.direct #0(arg) ... #N-1(arg) clos)) *)

let tuplify_function arity =
  let dbg = placeholder_dbg in
  let arg = V.create_local "arg" in
  let clos = V.create_local "clos" in
  let rec access_components i =
    if i >= arity
    then []
    else get_field_gen Asttypes.Mutable (Cvar arg) i (dbg ())
         :: access_components(i+1)
  in
  let fun_name = "caml_tuplify" ^ Int.to_string arity in
  let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
  Cfunction
   {fun_name;
    fun_args = [VP.create arg, typ_val; VP.create clos, typ_val];
    fun_body =
      Cop(Capply typ_val,
          get_field_codepointer Asttypes.Mutable (Cvar clos) 2 (dbg ())
          :: access_components 0 @ [Cvar clos],
          (dbg ()));
    fun_codegen_options = [];
    fun_poll = Default_poll;
    fun_dbg;
   }

(* Generate currying functions:
      (defun caml_curryN (arg clos)
         (alloc HDR caml_curryN_1 <arity (N-1)> caml_curry_N_1_app arg clos))
      (defun caml_curryN_1 (arg clos)
         (alloc HDR caml_curryN_2 <arity (N-2)> caml_curry_N_2_app arg clos))
      ...
      (defun caml_curryN_N-1 (arg clos)
         (let (closN-2 clos.vars[1]
               closN-3 closN-2.vars[1]
               ...
               clos1 clos2.vars[1]
               clos clos1.vars[1])
           (app clos.direct
                clos1.vars[0] ... closN-2.vars[0] clos.vars[0] arg clos)))

    Special "shortcut" functions are also generated to handle the
    case where a partially applied function is applied to all remaining
    arguments in one go.  For instance:
      (defun caml_curry_N_1_app (arg2 ... argN clos)
        (let clos' clos.vars[1]
           (app clos'.direct clos.vars[0] arg2 ... argN clos')))

    Those shortcuts may lead to a quadratic number of application
    primitives being generated in the worst case, which resulted in
    linking time blowup in practice (PR#5933), so we only generate and
    use them when below a fixed arity 'max_arity_optimized'.
*)

let max_arity_optimized = 15
let final_curry_function arity =
  let dbg = placeholder_dbg in
  let last_arg = V.create_local "arg" in
  let last_clos = V.create_local "clos" in
  let rec curry_fun args clos n =
    if n = 0 then
      Cop(Capply typ_val,
          get_field_codepointer Asttypes.Mutable (Cvar clos) 2 (dbg ()) ::
            args @ [Cvar last_arg; Cvar clos],
          dbg ())
    else
      if n = arity - 1 || arity > max_arity_optimized then
        begin
      let newclos = V.create_local "clos" in
      Clet(VP.create newclos,
           get_field_gen Asttypes.Mutable (Cvar clos) 3 (dbg ()),
           curry_fun (get_field_gen Asttypes.Mutable (Cvar clos) 2 (dbg ())
                      :: args)
             newclos (n-1))
        end else
        begin
          let newclos = V.create_local "clos" in
          Clet(VP.create newclos,
               get_field_gen Asttypes.Mutable (Cvar clos) 4 (dbg ()),
               curry_fun
                 (get_field_gen Asttypes.Mutable (Cvar clos) 3 (dbg ()) :: args)
                 newclos (n-1))
    end in
  let fun_name =
    "caml_curry" ^ Int.to_string arity ^ "_" ^ Int.to_string (arity-1)
  in
  let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
  Cfunction
   {fun_name;
    fun_args = [VP.create last_arg, typ_val; VP.create last_clos, typ_val];
    fun_body = curry_fun [] last_clos (arity-1);
    fun_codegen_options = [];
    fun_poll = Default_poll;
    fun_dbg;
   }

let rec intermediate_curry_functions arity num =
  let dbg = placeholder_dbg in
  if num = arity - 1 then
    [final_curry_function arity]
  else begin
    let name1 = "caml_curry" ^ Int.to_string arity in
    let name2 = if num = 0 then name1 else name1 ^ "_" ^ Int.to_string num in
    let arg = V.create_local "arg" and clos = V.create_local "clos" in
    let fun_dbg = placeholder_fun_dbg ~human_name:name2 in
    Cfunction
     {fun_name = name2;
      fun_args = [VP.create arg, typ_val; VP.create clos, typ_val];
      fun_body =
         if arity - num > 2 && arity <= max_arity_optimized then
           Cop(Calloc,
               [alloc_closure_header 5 (dbg ());
                Cconst_symbol(name1 ^ "_" ^ Int.to_string (num+1), dbg ());
                alloc_closure_info ~arity:(arity - num - 1)
                                   ~startenv:3 (dbg ());
                Cconst_symbol(name1 ^ "_" ^ Int.to_string (num+1) ^ "_app",
                  dbg ());
                Cvar arg; Cvar clos],
               dbg ())
         else
           Cop(Calloc,
                [alloc_closure_header 4 (dbg ());
                 Cconst_symbol(name1 ^ "_" ^ Int.to_string (num+1), dbg ());
                 alloc_closure_info ~arity:1 ~startenv:2 (dbg ());
                 Cvar arg; Cvar clos],
                dbg ());
      fun_codegen_options = [];
      fun_poll = Default_poll;
      fun_dbg;
     }
    ::
      (if arity <= max_arity_optimized && arity - num > 2 then
          let rec iter i =
            if i <= arity then
              let arg = V.create_local (Printf.sprintf "arg%d" i) in
              (arg, typ_val) :: iter (i+1)
            else []
          in
          let direct_args = iter (num+2) in
          let rec iter i args clos =
            if i = 0 then
              Cop(Capply typ_val,
                  (get_field_codepointer
                     Asttypes.Mutable (Cvar clos) 2 (dbg ()))
                  :: args @ [Cvar clos],
                  dbg ())
            else
              let newclos = V.create_local "clos" in
              Clet(VP.create newclos,
                   get_field_gen Asttypes.Mutable (Cvar clos) 4 (dbg ()),
                   iter (i-1)
                     (get_field_gen Asttypes.Mutable (Cvar clos) 3 (dbg ())
                      :: args)
                     newclos)
          in
          let fun_args =
            List.map (fun (arg, ty) -> VP.create arg, ty)
              (direct_args @ [clos, typ_val])
          in
          let fun_name = name1 ^ "_" ^ Int.to_string (num+1) ^ "_app" in
          let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
          let cf =
            Cfunction
              {fun_name;
               fun_args;
               fun_body = iter (num+1)
                  (List.map (fun (arg,_) -> Cvar arg) direct_args) clos;
               fun_codegen_options = [];
               fun_poll = Default_poll;
               fun_dbg;
              }
          in
          cf :: intermediate_curry_functions arity (num+1)
       else
          intermediate_curry_functions arity (num+1))
  end

let curry_function arity =
  assert(arity <> 0);
  (* Functions with arity = 0 does not have a curry_function *)
  if arity > 0
  then intermediate_curry_functions arity 0
  else [tuplify_function (-arity)]

module Int = Numbers.Int

let default_apply = Int.Set.add 2 (Int.Set.add 3 Int.Set.empty)
  (* These apply funs are always present in the main program because
     the run-time system needs them (cf. runtime/<arch>.S) . *)

let generic_functions shared units =
  let (apply,send,curry) =
    List.fold_left
      (fun (apply,send,curry) (ui : Cmx_format.unit_infos) ->
         List.fold_right Int.Set.add ui.ui_apply_fun apply,
         List.fold_right Int.Set.add ui.ui_send_fun send,
         List.fold_right Int.Set.add ui.ui_curry_fun curry)
      (Int.Set.empty,Int.Set.empty,Int.Set.empty)
      units in
  let apply = if shared then apply else Int.Set.union apply default_apply in
  let accu = Int.Set.fold (fun n accu -> apply_function n :: accu) apply [] in
  let accu = Int.Set.fold (fun n accu -> send_function n :: accu) send accu in
  Int.Set.fold (fun n accu -> curry_function n @ accu) curry accu

(* Primitives *)

type unary_primitive = expression -> Debuginfo.t -> expression

let floatfield n ptr dbg =
  Cop(mk_load_mut Double,
      [if n = 0 then ptr
       else Cop(Cadda, [ptr; Cconst_int(n * size_float, dbg)], dbg)],
      dbg)

let int_as_pointer arg dbg =
  Cop(Caddi, [arg; Cconst_int (-1, dbg)], dbg)
  (* always a pointer outside the heap *)

let raise_prim raise_kind arg dbg =
  if !Clflags.debug then
    Cop (Craise raise_kind, [arg], dbg)
  else
    Cop (Craise Lambda.Raise_notrace, [arg], dbg)

let negint arg dbg =
  Cop(Csubi, [Cconst_int (2, dbg); arg], dbg)

(* [offsetint] moved down to reuse add_int_caml *)

let offsetref n arg dbg =
  return_unit dbg
    (bind "ref" arg (fun arg ->
         Cop(Cstore (Word_int, Assignment),
             [arg;
              add_const (Cop(mk_load_mut Word_int, [arg], dbg))
                (n lsl 1) dbg],
             dbg)))

let arraylength kind arg dbg =
  let hdr = get_header_masked arg dbg in
  match (kind : Lambda.array_kind) with
    Pgenarray ->
      let len =
        if wordsize_shift = numfloat_shift then
          Cop(Clsr, [hdr; Cconst_int (wordsize_shift, dbg)], dbg)
        else
          bind "header" hdr (fun hdr ->
              Cifthenelse(is_addr_array_hdr hdr dbg,
                          dbg,
                          Cop(Clsr,
                            [hdr; Cconst_int (wordsize_shift, dbg)], dbg),
                          dbg,
                          Cop(Clsr,
                            [hdr; Cconst_int (numfloat_shift, dbg)], dbg),
                          dbg))
      in
      Cop(Cor, [len; Cconst_int (1, dbg)], dbg)
  | Paddrarray | Pintarray ->
      Cop(Cor, [addr_array_length_shifted hdr dbg; Cconst_int (1, dbg)], dbg)
  | Pfloatarray ->
      Cop(Cor, [float_array_length_shifted hdr dbg; Cconst_int (1, dbg)], dbg)

let bbswap bi arg dbg =
  let prim, tyarg = match (bi : Primitive.boxed_integer) with
    | Pnativeint -> "nativeint", XInt
    | Pint32 -> "int32", XInt32
    | Pint64 -> "int64", XInt64
  in
  Cop(Cextcall(Printf.sprintf "caml_%s_direct_bswap" prim,
               typ_int, [tyarg], false),
      [arg],
      dbg)

let bswap16 arg dbg =
  (Cop(Cextcall("caml_bswap16_direct", typ_int, [], false),
       [arg],
       dbg))

type binary_primitive = expression -> expression -> Debuginfo.t -> expression

(* let pfield_computed = addr_array_ref *)

(* Helper for compilation of initialization and assignment operations *)

type assignment_kind = Caml_modify | Caml_initialize | Simple

let assignment_kind
    (ptr: Lambda.immediate_or_pointer)
    (init: Lambda.initialization_or_assignment) =
  match init, ptr with
  | Assignment, Pointer -> Caml_modify
  | Heap_initialization, Pointer
  | Root_initialization, Pointer -> Caml_initialize
  | Assignment, Immediate
  | Heap_initialization, Immediate
  | Root_initialization, Immediate -> Simple

let setfield n ptr init arg1 arg2 dbg =
  match assignment_kind ptr init with
  | Caml_modify ->
      return_unit dbg
        (Cop(Cextcall("caml_modify", typ_void, [], false),
            [field_address arg1 n dbg; arg2],
            dbg))
  | Caml_initialize ->
      return_unit dbg
        (Cop(Cextcall("caml_initialize", typ_void, [], false),
             [field_address arg1 n dbg; arg2],
             dbg))
  | Simple ->
      return_unit dbg (set_field arg1 n arg2 init dbg)

let setfloatfield n init arg1 arg2 dbg =
  return_unit dbg (
    Cop(Cstore (Double, init),
        [if n = 0 then arg1
         else Cop(Cadda, [arg1; Cconst_int(n * size_float, dbg)], dbg);
         arg2], dbg))

let add_int_caml arg1 arg2 dbg =
  decr_int (add_int arg1 arg2 dbg) dbg

(* Unary primitive delayed to reuse add_int_caml *)
let offsetint n arg dbg =
  if Misc.no_overflow_lsl n 1 then
    add_const arg (n lsl 1) dbg
  else
    add_int_caml arg (int_const dbg n) dbg

let sub_int_caml arg1 arg2 dbg =
  incr_int (sub_int arg1 arg2 dbg) dbg

let mul_int_caml arg1 arg2 dbg =
  (* decrementing the non-constant part helps when the multiplication is
     followed by an addition;
     for example, using this trick compiles (100 * a + 7) into
       (+ ( * a 100) -85)
     rather than
       (+ ( * 200 (>>s a 1)) 15)
  *)
  match arg1, arg2 with
  | Cconst_int _ as c1, c2 ->
      incr_int (mul_int (untag_int c1 dbg) (decr_int c2 dbg) dbg) dbg
  | c1, c2 ->
      incr_int (mul_int (decr_int c1 dbg) (untag_int c2 dbg) dbg) dbg

let div_int_caml is_safe arg1 arg2 dbg =
  tag_int(div_int (untag_int arg1 dbg)
            (untag_int arg2 dbg) is_safe dbg) dbg

let mod_int_caml is_safe arg1 arg2 dbg =
  tag_int(mod_int (untag_int arg1 dbg)
            (untag_int arg2 dbg) is_safe dbg) dbg

let and_int_caml arg1 arg2 dbg =
  Cop(Cand, [arg1; arg2], dbg)

let or_int_caml arg1 arg2 dbg =
  Cop(Cor, [arg1; arg2], dbg)

let xor_int_caml arg1 arg2 dbg =
  Cop(Cor, [Cop(Cxor, [ignore_low_bit_int arg1;
                       ignore_low_bit_int arg2], dbg);
            Cconst_int (1, dbg)], dbg)

let lsl_int_caml arg1 arg2 dbg =
  incr_int(lsl_int (decr_int arg1 dbg)
             (untag_int arg2 dbg) dbg) dbg

let lsr_int_caml arg1 arg2 dbg =
  Cop(Cor, [lsr_int arg1 (untag_int arg2 dbg) dbg;
            Cconst_int (1, dbg)], dbg)

let asr_int_caml arg1 arg2 dbg =
  Cop(Cor, [asr_int arg1 (untag_int arg2 dbg) dbg;
            Cconst_int (1, dbg)], dbg)

let int_comp_caml cmp arg1 arg2 dbg =
  tag_int(Cop(Ccmpi cmp,
              [arg1; arg2], dbg)) dbg

let stringref_unsafe arg1 arg2 dbg =
  tag_int(Cop(mk_load_mut Byte_unsigned,
              [add_int arg1 (untag_int arg2 dbg) dbg],
              dbg)) dbg

let stringref_safe arg1 arg2 dbg =
  tag_int
    (bind "index" (untag_int arg2 dbg) (fun idx ->
      bind "str" arg1 (fun str ->
        Csequence(
          make_checkbound dbg [string_length str dbg; idx],
          Cop(mk_load_mut Byte_unsigned,
            [add_int str idx dbg], dbg))))) dbg

let string_load size unsafe arg1 arg2 dbg =
  box_sized size dbg
    (bind "index" (untag_int arg2 dbg) (fun idx ->
     bind "str" arg1 (fun str ->
       check_bound unsafe size dbg
          (string_length str dbg)
          idx (unaligned_load size str idx dbg))))

let bigstring_load size unsafe arg1 arg2 dbg =
  box_sized size dbg
   (bind "index" (untag_int arg2 dbg) (fun idx ->
    bind "ba" arg1 (fun ba ->
    bind "ba_data"
     (Cop(mk_load_mut Word_int, [field_address ba 1 dbg], dbg))
     (fun ba_data ->
        check_bound unsafe size dbg
          (bigstring_length ba dbg)
          idx
          (unaligned_load size ba_data idx dbg)))))

let arrayref_unsafe kind arg1 arg2 dbg =
  match (kind : Lambda.array_kind) with
  | Pgenarray ->
      bind "index" arg2 (fun idx ->
        bind "arr" arg1 (fun arr ->
          Cifthenelse(is_addr_array_ptr arr dbg,
                      dbg,
                      addr_array_ref arr idx dbg,
                      dbg,
                      float_array_ref arr idx dbg,
                      dbg)))
  | Paddrarray ->
      addr_array_ref arg1 arg2 dbg
  | Pintarray ->
      (* CR mshinwell: for int/addr_array_ref move "dbg" to first arg *)
      int_array_ref arg1 arg2 dbg
  | Pfloatarray ->
      float_array_ref arg1 arg2 dbg

let arrayref_safe kind arg1 arg2 dbg =
  match (kind : Lambda.array_kind) with
  | Pgenarray ->
      bind "index" arg2 (fun idx ->
      bind "arr" arg1 (fun arr ->
      bind "header" (get_header_masked arr dbg) (fun hdr ->
        if wordsize_shift = numfloat_shift then
          Csequence(
            make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
            Cifthenelse(is_addr_array_hdr hdr dbg,
                        dbg,
                        addr_array_ref arr idx dbg,
                        dbg,
                        float_array_ref arr idx dbg,
                        dbg))
        else
          Cifthenelse(is_addr_array_hdr hdr dbg,
            dbg,
            Csequence(
              make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
              addr_array_ref arr idx dbg),
            dbg,
            Csequence(
              make_checkbound dbg [float_array_length_shifted hdr dbg; idx],
              float_array_ref arr idx dbg),
            dbg))))
      | Paddrarray ->
          bind "index" arg2 (fun idx ->
          bind "arr" arg1 (fun arr ->
            Csequence(
              make_checkbound dbg [
                addr_array_length_shifted
                  (get_header_masked arr dbg) dbg; idx],
              addr_array_ref arr idx dbg)))
      | Pintarray ->
          bind "index" arg2 (fun idx ->
          bind "arr" arg1 (fun arr ->
            Csequence(
              make_checkbound dbg [
                addr_array_length_shifted
                  (get_header_masked arr dbg) dbg; idx],
              int_array_ref arr idx dbg)))
      | Pfloatarray ->
          box_float dbg (
            bind "index" arg2 (fun idx ->
            bind "arr" arg1 (fun arr ->
              Csequence(
                make_checkbound dbg [
                  float_array_length_shifted
                    (get_header_masked arr dbg) dbg;
                  idx],
                unboxed_float_array_ref arr idx dbg))))

type ternary_primitive =
  expression -> expression -> expression -> Debuginfo.t -> expression

let setfield_computed ptr init arg1 arg2 arg3 dbg =
  match assignment_kind ptr init with
  | Caml_modify ->
      return_unit dbg (addr_array_set arg1 arg2 arg3 dbg)
  | Caml_initialize ->
      return_unit dbg (addr_array_initialize arg1 arg2 arg3 dbg)
  | Simple ->
      return_unit dbg (int_array_set arg1 arg2 arg3 dbg)

let bytesset_unsafe arg1 arg2 arg3 dbg =
      return_unit dbg (Cop(Cstore (Byte_unsigned, Assignment),
                      [add_int arg1 (untag_int arg2 dbg) dbg;
                       ignore_high_bit_int (untag_int arg3 dbg)], dbg))

let bytesset_safe arg1 arg2 arg3 dbg =
  return_unit dbg
    (bind "newval" (ignore_high_bit_int (untag_int arg3 dbg)) (fun newval ->
      bind "index" (untag_int arg2 dbg) (fun idx ->
       bind "str" arg1 (fun str ->
        Csequence(
          make_checkbound dbg [string_length str dbg; idx],
          Cop(Cstore (Byte_unsigned, Assignment),
              [add_int str idx dbg; newval],
              dbg))))))

let arrayset_unsafe kind arg1 arg2 arg3 dbg =
  return_unit dbg (match (kind: Lambda.array_kind) with
  | Pgenarray ->
      bind "newval" arg3 (fun newval ->
        bind "index" arg2 (fun index ->
          bind "arr" arg1 (fun arr ->
            Cifthenelse(is_addr_array_ptr arr dbg,
                        dbg,
                        addr_array_set arr index newval dbg,
                        dbg,
                        float_array_set arr index (unbox_float dbg newval)
                          dbg,
                        dbg))))
  | Paddrarray ->
      addr_array_set arg1 arg2 arg3 dbg
  | Pintarray ->
      int_array_set arg1 arg2 arg3 dbg
  | Pfloatarray ->
      float_array_set arg1 arg2 arg3 dbg
  )

let arrayset_safe kind arg1 arg2 arg3 dbg =
  return_unit dbg (match (kind: Lambda.array_kind) with
  | Pgenarray ->
      bind "newval" arg3 (fun newval ->
      bind "index" arg2 (fun idx ->
      bind "arr" arg1 (fun arr ->
      bind "header" (get_header_masked arr dbg) (fun hdr ->
        if wordsize_shift = numfloat_shift then
          Csequence(
            make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
            Cifthenelse(is_addr_array_hdr hdr dbg,
                        dbg,
                        addr_array_set arr idx newval dbg,
                        dbg,
                        float_array_set arr idx
                          (unbox_float dbg newval)
                          dbg,
                        dbg))
        else
          Cifthenelse(
            is_addr_array_hdr hdr dbg,
            dbg,
            Csequence(
              make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
              addr_array_set arr idx newval dbg),
            dbg,
            Csequence(
              make_checkbound dbg [float_array_length_shifted hdr dbg; idx],
              float_array_set arr idx
                (unbox_float dbg newval) dbg),
            dbg)))))
  | Paddrarray ->
      bind "newval" arg3 (fun newval ->
      bind "index" arg2 (fun idx ->
      bind "arr" arg1 (fun arr ->
        Csequence(
          make_checkbound dbg [
            addr_array_length_shifted
              (get_header_masked arr dbg) dbg;
            idx],
          addr_array_set arr idx newval dbg))))
  | Pintarray ->
      bind "newval" arg3 (fun newval ->
      bind "index" arg2 (fun idx ->
      bind "arr" arg1 (fun arr ->
        Csequence(
          make_checkbound dbg [
            addr_array_length_shifted
              (get_header_masked arr dbg) dbg;
            idx],
          int_array_set arr idx newval dbg))))
  | Pfloatarray ->
      bind_load "newval" arg3 (fun newval ->
      bind "index" arg2 (fun idx ->
      bind "arr" arg1 (fun arr ->
        Csequence(
          make_checkbound dbg [
            float_array_length_shifted
              (get_header_masked arr dbg) dbg;
            idx],
          float_array_set arr idx newval dbg))))
  )

let bytes_set size unsafe arg1 arg2 arg3 dbg =
  return_unit dbg
   (bind "newval" arg3 (fun newval ->
    bind "index" (untag_int arg2 dbg) (fun idx ->
    bind "str" arg1 (fun str ->
      check_bound unsafe size dbg (string_length str dbg)
                  idx (unaligned_set size str idx newval dbg)))))

let bigstring_set size unsafe arg1 arg2 arg3 dbg =
  return_unit dbg
   (bind "newval" arg3 (fun newval ->
    bind "index" (untag_int arg2 dbg) (fun idx ->
    bind "ba" arg1 (fun ba ->
    bind "ba_data"
         (Cop(mk_load_mut Word_int, [field_address ba 1 dbg], dbg))
         (fun ba_data ->
            check_bound unsafe size dbg (bigstring_length ba dbg)
              idx (unaligned_set size ba_data idx newval dbg))))))

(* Symbols *)

let cdefine_symbol (symb, (global: Cmmgen_state.is_global)) =
  match global with
  | Global -> [Cglobal_symbol symb; Cdefine_symbol symb]
  | Local -> [Cdefine_symbol symb]

let emit_block symb white_header cont =
  (* Headers for structured constants must be marked black in case we
     are in no-naked-pointers mode.  See [caml_darken]. *)
  let black_header = Nativeint.logor white_header caml_black in
  Cint black_header :: cdefine_symbol symb @ cont

let emit_string_constant_fields s cont =
  let n = size_int - 1 - (String.length s) mod size_int in
  Cstring s :: Cskip n :: Cint8 n :: cont

let emit_boxed_int32_constant_fields n cont =
  let n = Nativeint.of_int32 n in
  Csymbol_address caml_int32_ops :: Cint32 n :: Cint32 0n :: cont

let emit_boxed_int64_constant_fields n cont =
  let lo = Int64.to_nativeint n in
  Csymbol_address caml_int64_ops :: Cint lo :: cont

let emit_boxed_nativeint_constant_fields n cont =
  Csymbol_address caml_nativeint_ops :: Cint n :: cont

let emit_float_constant symb f cont =
  emit_block symb float_header (Cdouble f :: cont)

let emit_string_constant symb s cont =
  emit_block symb (string_header (String.length s))
    (emit_string_constant_fields s cont)

let emit_int32_constant symb n cont =
  emit_block symb boxedint32_header
    (emit_boxed_int32_constant_fields n cont)

let emit_int64_constant symb n cont =
  emit_block symb boxedint64_header
    (emit_boxed_int64_constant_fields n cont)

let emit_nativeint_constant symb n cont =
  emit_block symb boxedintnat_header
    (emit_boxed_nativeint_constant_fields n cont)

let emit_float_array_constant symb fields cont =
  emit_block symb (floatarray_header (List.length fields))
    (Misc.map_end (fun f -> Cdouble f) fields cont)

(* Generate the entry point *)

let entry_point namelist =
  let dbg = placeholder_dbg in
  let cconst_int i = Cconst_int (i, dbg ()) in
  let cconst_symbol sym = Cconst_symbol (sym, dbg ()) in
  let incr_global_inited () =
    Cop(Cstore (Word_int, Assignment),
        [cconst_symbol "caml_globals_inited";
         Cop(Caddi, [Cop(mk_load_mut Word_int,
                       [cconst_symbol "caml_globals_inited"], dbg ());
                     cconst_int 1], dbg ())], dbg ()) in
  let body =
    List.fold_right
      (fun name next ->
        let entry_sym = Compilenv.make_symbol ~unitname:name (Some "entry") in
        Csequence(Cop(Capply typ_void,
                         [cconst_symbol entry_sym], dbg ()),
                  Csequence(incr_global_inited (), next)))
      namelist (cconst_int 1) in
  let fun_name = "caml_program" in
  let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
  Cfunction {fun_name;
             fun_args = [];
             fun_body = body;
             fun_codegen_options = [Reduce_code_size];
             fun_poll = Default_poll;
             fun_dbg;
            }

(* Generate the table of globals *)

let cint_zero = Cint 0n

let global_table namelist =
  let mksym name =
    Csymbol_address (Compilenv.make_symbol ~unitname:name (Some "gc_roots"))
  in
  Cdata(Cglobal_symbol "caml_globals" ::
        Cdefine_symbol "caml_globals" ::
        List.map mksym namelist @
        [cint_zero])

let reference_symbols namelist =
  let mksym name = Csymbol_address name in
  Cdata(List.map mksym namelist)

let global_data name v =
  Cdata(emit_string_constant (name, Global)
          (Marshal.to_string v []) [])

let globals_map v = global_data "caml_globals_map" v

(* Generate the master table of frame descriptors *)

let frame_table namelist =
  let mksym name =
    Csymbol_address (Compilenv.make_symbol ~unitname:name (Some "frametable"))
  in
  Cdata(Cglobal_symbol "caml_frametable" ::
        Cdefine_symbol "caml_frametable" ::
        List.map mksym namelist
        @ [cint_zero])

(* Generate the table of module data and code segments *)

let segment_table namelist symbol begname endname =
  let addsyms name lst =
    Csymbol_address (Compilenv.make_symbol ~unitname:name (Some begname)) ::
    Csymbol_address (Compilenv.make_symbol ~unitname:name (Some endname)) ::
    lst
  in
  Cdata(Cglobal_symbol symbol ::
        Cdefine_symbol symbol ::
        List.fold_right addsyms namelist [cint_zero])

let data_segment_table namelist =
  segment_table namelist "caml_data_segments" "data_begin" "data_end"

let code_segment_table namelist =
  segment_table namelist "caml_code_segments" "code_begin" "code_end"

(* Initialize a predefined exception *)

let predef_exception i name =
  let name_sym = Compilenv.new_const_symbol () in
  let data_items =
    emit_string_constant (name_sym, Local) name []
  in
  let exn_sym = "caml_exn_" ^ name in
  let tag = Obj.object_tag in
  let size = 2 in
  let fields =
    (Csymbol_address name_sym)
      :: (cint_const (-i - 1))
      :: data_items
  in
  let data_items =
    emit_block (exn_sym, Global) (block_header tag size) fields
  in
  Cdata data_items

(* Header for a plugin *)

let plugin_header units =
  let mk ((ui : Cmx_format.unit_infos),crc) : Cmxs_format.dynunit =
    { dynu_name = ui.ui_name;
      dynu_crc = crc;
      dynu_imports_cmi = ui.ui_imports_cmi;
      dynu_imports_cmx = ui.ui_imports_cmx;
      dynu_defines = ui.ui_defines
    } in
  global_data "caml_plugin_header"
    ({ dynu_magic = Config.cmxs_magic_number;
       dynu_units = List.map mk units }
     : Cmxs_format.dynheader)

(* To compile "let rec" over values *)

let fundecls_size fundecls =
  let sz = ref (-1) in
  List.iter
    (fun (f : Clambda.ufunction) ->
       let indirect_call_code_pointer_size =
         match f.arity with
         | 0 | 1 -> 0
           (* arity 1 does not need an indirect call handler.
              arity 0 cannot be indirect called *)
         | _ -> 1
           (* For other arities there is an indirect call handler.
              if arity >= 2 it is caml_curry...
              if arity < 0 it is caml_tuplify... *)
       in
       sz := !sz + 1 + 2 + indirect_call_code_pointer_size)
    fundecls;
  !sz

(* Emit constant closures *)

let emit_constant_closure ((_, global_symb) as symb) fundecls clos_vars cont =
  let closure_symbol (f : Clambda.ufunction) =
    if Config.flambda then
      cdefine_symbol (f.label ^ "_closure", global_symb)
    else
      []
  in
  match (fundecls : Clambda.ufunction list) with
    [] ->
      (* This should probably not happen: dead code has normally been
         eliminated and a closure cannot be accessed without going through
         a [Project_closure], which depends on the function. *)
      assert (clos_vars = []);
      cdefine_symbol symb @ clos_vars @ cont
  | f1 :: remainder ->
      let startenv = fundecls_size fundecls in
      let rec emit_others pos = function
          [] -> clos_vars @ cont
      | (f2 : Clambda.ufunction) :: rem ->
          if f2.arity = 1 || f2.arity = 0 then
            Cint(infix_header pos) ::
            (closure_symbol f2) @
            Csymbol_address f2.label ::
            Cint(closure_info ~arity:f2.arity ~startenv:(startenv - pos)) ::
            emit_others (pos + 3) rem
          else
            Cint(infix_header pos) ::
            (closure_symbol f2) @
            Csymbol_address(curry_function_sym f2.arity) ::
            Cint(closure_info ~arity:f2.arity ~startenv:(startenv - pos)) ::
            Csymbol_address f2.label ::
            emit_others (pos + 4) rem in
      Cint(black_closure_header (fundecls_size fundecls
                                 + List.length clos_vars)) ::
      cdefine_symbol symb @
      (closure_symbol f1) @
      if f1.arity = 1 || f1.arity = 0 then
        Csymbol_address f1.label ::
        Cint(closure_info ~arity:f1.arity ~startenv) ::
        emit_others 3 remainder
      else
        Csymbol_address(curry_function_sym f1.arity) ::
        Cint(closure_info ~arity:f1.arity ~startenv) ::
        Csymbol_address f1.label ::
        emit_others 4 remainder

(* Build the NULL terminated array of gc roots *)

let emit_gc_roots_table ~symbols cont =
  let table_symbol = Compilenv.make_symbol (Some "gc_roots") in
  Cdata(Cglobal_symbol table_symbol ::
        Cdefine_symbol table_symbol ::
        List.map (fun s -> Csymbol_address s) symbols @
        [Cint 0n])
  :: cont

(* Build preallocated blocks (used for Flambda [Initialize_symbol]
   constructs, and Clambda global module) *)

let preallocate_block cont { Clambda.symbol; exported; tag; fields } =
  let space =
    (* These words will be registered as roots and as such must contain
       valid values, in case we are in no-naked-pointers mode.  Likewise
       the block header must be black, below (see [caml_darken]), since
       the overall record may be referenced. *)
    List.map (fun field ->
        match field with
        | None ->
            Cint (Nativeint.of_int 1 (* Val_unit *))
        | Some (Clambda.Uconst_field_int n) ->
            cint_const n
        | Some (Clambda.Uconst_field_ref label) ->
            Csymbol_address label)
      fields
  in
  let global = Cmmgen_state.(if exported then Global else Local) in
  let symb = (symbol, global) in
  let data =
    emit_block symb (block_header tag (List.length fields)) space
  in
  Cdata data :: cont

let emit_preallocated_blocks preallocated_blocks cont =
  let symbols =
    List.map (fun ({ Clambda.symbol }:Clambda.preallocated_block) -> symbol)
      preallocated_blocks
  in
  let c1 = emit_gc_roots_table ~symbols cont in
  List.fold_left preallocate_block c1 preallocated_blocks