summaryrefslogtreecommitdiff
path: root/asmcomp/cmmgen.ml
blob: 3979cd85e4c9ce6f79f39d02c781c88b7b163633 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  Automatique.  Distributed only by permission.                      *)
(*                                                                     *)
(***********************************************************************)

(* $Id$ *)

(* Translation from closed lambda to C-- *)

open Misc
open Arch
open Asttypes
open Primitive
open Types
open Lambda
open Clambda
open Cmm

(* Local binding of complex expressions *)

let bind name arg fn =
  match arg with
    Cvar _ | Cconst_int _ | Cconst_natint _ | Cconst_symbol _
  | Cconst_pointer _ -> fn arg
  | _ -> let id = Ident.create name in Clet(id, arg, fn (Cvar id))

let bind_nonvar name arg fn =
  match arg with
    Cconst_int _ | Cconst_natint _ | Cconst_symbol _ | Cconst_pointer _ ->
      fn arg
  | _ -> let id = Ident.create name in Clet(id, arg, fn (Cvar id))

(* Block headers. Meaning of the tag field:
       0 - 248: regular blocks
       249: infix closure
       250: closures
       251: abstract
       252: string
       253: float
       254: float array
       255: finalized *)

let float_tag = Cconst_int 253
let floatarray_tag = Cconst_int 254

let block_header tag sz =
  Nativeint.add (Nativeint.shift (Nativeint.from sz) 10) (Nativeint.from tag)
let closure_header sz = block_header 250 sz
let infix_header ofs = block_header 249 ofs
let float_header = block_header 253 (size_float / size_addr)
let floatarray_header len = block_header 254 (len * size_float / size_addr)
let string_header len = block_header 252 ((len + size_addr) / size_addr)

let alloc_block_header tag sz = Cconst_natint(block_header tag sz)
let alloc_float_header = Cconst_natint(float_header)
let alloc_floatarray_header len = Cconst_natint(floatarray_header len)
let alloc_closure_header sz = Cconst_natint(closure_header sz)
let alloc_infix_header ofs = Cconst_natint(infix_header ofs)

(* Integers *)

let max_repr_int = max_int asr 1
let min_repr_int = min_int asr 1

let int_const n =
  if n <= max_repr_int & n >= min_repr_int
  then Cconst_int((n lsl 1) + 1)
  else Cconst_natint(Nativeint.add (Nativeint.shift (Nativeint.from n) 1)
                                   (Nativeint.from 1))

let add_const c n =
  if n = 0 then c else Cop(Caddi, [c; Cconst_int n])

let incr_int = function
    Cconst_int n when n < max_int -> Cconst_int(n+1)
  | Cop(Caddi, [c; Cconst_int n]) when n < max_int -> add_const c (n + 1)
  | c -> add_const c 1

let decr_int = function
    Cconst_int n when n > min_int -> Cconst_int(n-1)
  | Cop(Caddi, [c; Cconst_int n]) when n > min_int -> add_const c (n - 1)
  | c -> add_const c (-1)

let add_int c1 c2 =
  match (c1, c2) with
    (Cop(Caddi, [c1; Cconst_int n1]),
     Cop(Caddi, [c2; Cconst_int n2])) when no_overflow_add n1 n2 ->
      add_const (Cop(Caddi, [c1; c2])) (n1 + n2)
  | (Cop(Caddi, [c1; Cconst_int n1]), c2) ->
      add_const (Cop(Caddi, [c1; c2])) n1
  | (c1, Cop(Caddi, [c2; Cconst_int n2])) ->
      add_const (Cop(Caddi, [c1; c2])) n2
  | (Cconst_int _, _) ->
      Cop(Caddi, [c2; c1])
  | (_, _) ->
      Cop(Caddi, [c1; c2])

let sub_int c1 c2 =
  match (c1, c2) with
    (Cop(Caddi, [c1; Cconst_int n1]),
     Cop(Caddi, [c2; Cconst_int n2])) when no_overflow_sub n1 n2 ->
      add_const (Cop(Csubi, [c1; c2])) (n1 - n2)
  | (Cop(Caddi, [c1; Cconst_int n1]), c2) ->
      add_const (Cop(Csubi, [c1; c2])) n1
  | (c1, Cop(Caddi, [c2; Cconst_int n2])) when n2 <> min_int ->
      add_const (Cop(Csubi, [c1; c2])) (-n2)
  | (c1, Cconst_int n) when n <> min_int ->
      add_const c1 (-n)
  | (c1, c2) ->
      Cop(Csubi, [c1; c2])

let tag_int = function
    Cconst_int n -> int_const n
  | c -> Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1])

let untag_int = function
    Cconst_int n -> Cconst_int(n asr 1)
  | Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) -> c
  | Cop(Cor, [Cop(Casr, [c; Cconst_int n]); Cconst_int 1])
    when n > 0 && n < size_int * 8 ->
      Cop(Casr, [c; Cconst_int (n+1)])
  | Cop(Cor, [Cop(Clsr, [c; Cconst_int n]); Cconst_int 1])
    when n > 0 && n < size_int * 8 ->
      Cop(Clsr, [c; Cconst_int (n+1)])
  | Cop(Cor, [c; Cconst_int 1]) -> Cop(Casr, [c; Cconst_int 1])
  | c -> Cop(Casr, [c; Cconst_int 1])

let lsl_int c1 c2 =
  match (c1, c2) with
    (Cop(Clsl, [c; Cconst_int n1]), Cconst_int n2)
    when n1 > 0 && n2 > 0 && n1 + n2 < size_int * 8 ->
      Cop(Clsl, [c; Cconst_int (n1 + n2)])
  | (_, _) ->
      Cop(Clsl, [c1; c2])

(* Bool *)

let test_bool = function
    Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) -> c
  | Cop(Clsl, [c; Cconst_int 1]) -> c
  | c -> Cop(Ccmpi Cne, [c; Cconst_int 1])

(* Float *)

let box_float c = Cop(Calloc, [alloc_float_header; c])

let unbox_float = function
    Cop(Calloc, [header; c]) -> c
  | c -> Cop(Cload typ_float, [c])

let is_unboxed_float = function
    Uconst(Const_base(Const_float f)) -> true
  | Uprim(p, _) ->
      begin match p with
          Pccall p -> p.prim_native_float
        | Pfloatfield _ | Pfloatofint | Pnegfloat | Pabsfloat
        | Paddfloat | Psubfloat | Pmulfloat | Pdivfloat
        | Parrayrefu Pfloatarray | Parrayrefs Pfloatarray -> true
        | _ -> false
      end
  | _ -> false

let subst_boxed_float boxed_id unboxed_id exp =
  let need_boxed = ref false in
  let assigned = ref false in
  let rec subst = function
      Cvar id as e ->
        if Ident.same id boxed_id then need_boxed := true; e
    | Clet(id, arg, body) -> Clet(id, subst arg, subst body)
    | Cassign(id, arg) -> 
        if Ident.same id boxed_id then begin
          assigned := true;
          Cassign(unboxed_id, subst(unbox_float arg))
        end else
          Cassign(id, subst arg)
    | Ctuple argv -> Ctuple(List.map subst argv)
    | Cop(Cload _, [Cvar id]) as e ->
        if Ident.same id boxed_id then Cvar unboxed_id else e
    | Cop(op, argv) -> Cop(op, List.map subst argv)
    | Csequence(e1, e2) -> Csequence(subst e1, subst e2)
    | Cifthenelse(e1, e2, e3) -> Cifthenelse(subst e1, subst e2, subst e3)
    | Cswitch(arg, index, cases) ->
        Cswitch(subst arg, index, Array.map subst cases)
    | Cloop e -> Cloop(subst e)
    | Ccatch(e1, e2) -> Ccatch(subst e1, subst e2)
    | Ctrywith(e1, id, e2) -> Ctrywith(subst e1, id, subst e2)
    | e -> e in
  let res = subst exp in
  (res, !need_boxed, !assigned)  

(* Unit *)

let return_unit c = Csequence(c, Cconst_pointer 1)

let rec remove_unit = function
    Cconst_pointer 1 -> Ctuple []
  | Csequence(c, Cconst_pointer 1) -> c
  | Csequence(c1, c2) ->
      Csequence(c1, remove_unit c2)
  | Cifthenelse(cond, ifso, ifnot) ->
      Cifthenelse(cond, remove_unit ifso, remove_unit ifnot)
  | Cswitch(sel, index, cases) ->
      Cswitch(sel, index, Array.map remove_unit cases)
  | Ccatch(body, handler) ->
      Ccatch(remove_unit body, remove_unit handler)
  | Ctrywith(body, exn, handler) ->
      Ctrywith(remove_unit body, exn, remove_unit handler)
  | Clet(id, c1, c2) ->
      Clet(id, c1, remove_unit c2)
  | Cop(Capply mty, args) ->
      Cop(Capply typ_void, args)
  | Cop(Cextcall(proc, mty, alloc), args) ->
      Cop(Cextcall(proc, typ_void, alloc), args)
  | Cexit -> Cexit
  | Ctuple [] as c -> c
  | c -> Csequence(c, Ctuple [])

(* Access to block fields *)

let field_address ptr n =
  if n = 0
  then ptr
  else Cop(Cadda, [ptr; Cconst_int(n * size_addr)])

let get_field ptr n =
  Cop(Cload typ_addr, [field_address ptr n])

let set_field ptr n newval =
  Cop(Cstore, [field_address ptr n; newval])

let header ptr =
  Cop(Cload typ_int, [Cop(Cadda, [ptr; Cconst_int(-size_int)])])

let tag_offset =
  if big_endian then -1 else -size_int

let get_tag ptr =
  if Proc.word_addressed then           (* If byte loads are slow *)
    Cop(Cand, [header ptr; Cconst_int 255])
  else                                  (* If byte loads are efficient *)
    Cop(Cloadchunk Byte_unsigned,
        [Cop(Cadda, [ptr; Cconst_int(tag_offset)])])

(* Array indexing *)

let log2_size_addr = Misc.log2 size_addr
let log2_size_float = Misc.log2 size_float

let wordsize_shift = 9
let numfloat_shift = 9 + log2_size_float - log2_size_addr

let is_addr_array_hdr hdr =
  Cop(Ccmpi Cne, [Cop(Cand, [hdr; Cconst_int 255]); floatarray_tag])

let is_addr_array_ptr ptr =
  Cop(Ccmpi Cne, [get_tag ptr; floatarray_tag])

let addr_array_length hdr = Cop(Clsr, [hdr; Cconst_int wordsize_shift])
let float_array_length hdr = Cop(Clsr, [hdr; Cconst_int numfloat_shift])

let lsl_const c n =
  Cop(Clsl, [c; Cconst_int n])

let array_indexing log2size ptr ofs =
  match ofs with
    Cconst_int n ->
      let i = n asr 1 in
      if i = 0 then ptr else Cop(Cadda, [ptr; Cconst_int(i lsl log2size)])
  | Cop(Caddi, [Cop(Clsl, [c; Cconst_int 1]); Cconst_int 1]) ->
      Cop(Cadda, [ptr; lsl_const c log2size])
  | Cop(Caddi, [c; Cconst_int n]) ->
      Cop(Cadda, [Cop(Cadda, [ptr; lsl_const c (log2size - 1)]);
                   Cconst_int((n-1) lsl (log2size - 1))])
  | _ ->
      Cop(Cadda, [Cop(Cadda, [ptr; lsl_const ofs (log2size - 1)]);
                   Cconst_int((-1) lsl (log2size - 1))])

let addr_array_ref arr ofs =
  Cop(Cload typ_addr, [array_indexing log2_size_addr arr ofs])
let unboxed_float_array_ref arr ofs =
  Cop(Cload typ_float, [array_indexing log2_size_float arr ofs])
let float_array_ref arr ofs =
  box_float(unboxed_float_array_ref arr ofs)

let addr_array_set arr ofs newval =
  Cop(Cextcall("modify", typ_void, false),
      [array_indexing log2_size_addr arr ofs; newval])
let int_array_set arr ofs newval =
  Cop(Cstore, [array_indexing log2_size_addr arr ofs; newval])
let float_array_set arr ofs newval =
  Cop(Cstore, [array_indexing log2_size_float arr ofs; newval])

(* String length *)

let string_length exp =
  bind "str" exp (fun str ->
    let tmp_var = Ident.create "tmp" in
    Clet(tmp_var,
         Cop(Csubi,
             [Cop(Clsl,
                   [Cop(Clsr, [header str; Cconst_int 10]);
                     Cconst_int log2_size_addr]);
              Cconst_int 1]),
         Cop(Csubi,
             [Cvar tmp_var;
               Cop(Cloadchunk Byte_unsigned,
                     [Cop(Cadda, [str; Cvar tmp_var])])])))

(* Message sending *)

let lookup_label obj lab =
  bind "lab" lab (fun lab ->
    let table = Cop (Cload typ_addr, [obj]) in
    let buck_index = Cop(Clsr, [lab; Cconst_int 16]) in
    let bucket = Cop(Cload typ_addr, [Cop (Cadda, [table; buck_index])]) in
    let item_index = Cop(Cand, [lab; Cconst_int (255 * size_addr)]) in
    Cop (Cload typ_addr, [Cop (Cadda, [bucket; item_index])]))

(* To compile "let rec" over values *)

let fundecls_size fundecls =
  let sz = ref (-1) in
  List.iter
    (fun (label, arity, params, body) ->
      sz := !sz + 1 + (if arity = 1 then 2 else 3))
    fundecls;
  !sz

let rec expr_size = function
    Uclosure(fundecls, clos_vars) ->
      fundecls_size fundecls + List.length clos_vars
  | Uprim(Pmakeblock(tag, mut), args) ->
      List.length args
  | Uprim(Pmakearray(Paddrarray | Pintarray), args) ->
      List.length args
  | Ulet(id, exp, body) ->
      expr_size body
  | Uletrec(bindings, body) ->
      expr_size body
  | Usequence(exp, exp') ->
      expr_size exp'
  | _ ->
      fatal_error "Cmmgen.expr_size"

(* Record application and currying functions *)

let apply_function n =
  Compilenv.need_apply_fun n; "caml_apply" ^ string_of_int n
let curry_function n =
  Compilenv.need_curry_fun n;
  if n >= 0
  then "caml_curry" ^ string_of_int n
  else "caml_tuplify" ^ string_of_int (-n)

(* Comparisons *)

let transl_comparison = function
    Lambda.Ceq -> Ceq
  | Lambda.Cneq -> Cne
  | Lambda.Cge -> Cge
  | Lambda.Cgt -> Cgt
  | Lambda.Cle -> Cle
  | Lambda.Clt -> Clt

(* Translate structured constants *)

let const_label = ref 0

let new_const_label () =
  incr const_label;
  !const_label

let new_const_symbol () =
  incr const_label;
  Compilenv.current_unit_name () ^ "_" ^ string_of_int !const_label

let structured_constants =
  (Hashtbl.create 19 : (structured_constant, string) Hashtbl.t)

let transl_constant = function
    Const_base(Const_int n) ->
      int_const n
  | Const_base(Const_char c) ->
      Cconst_int(((Char.code c) lsl 1) + 1)
  | Const_pointer n ->
      Cconst_pointer((n lsl 1) + 1)
  | cst ->
      let lbl =
        try
          Hashtbl.find structured_constants cst
        with Not_found ->
          let lbl = new_const_symbol() in
          Hashtbl.add structured_constants cst lbl;
          lbl
      in Cconst_symbol lbl

(* Translate constant closures *)

let constant_closures =
  ref ([] : (string * (string * int * Ident.t list * ulambda) list) list)

(* Translate an expression *)

let functions = (Queue.create() : (string * Ident.t list * ulambda) Queue.t)

let rec transl = function
    Uvar id ->
      Cvar id
  | Uconst sc ->
      transl_constant sc
  | Uclosure(fundecls, []) ->
      let lbl = new_const_symbol() in
      constant_closures := (lbl, fundecls) :: !constant_closures;
      List.iter
        (fun (label, arity, params, body) ->
            Queue.add (label, params, body) functions)
        fundecls;
      Cconst_symbol lbl
  | Uclosure(fundecls, clos_vars) ->
      let block_size =
        fundecls_size fundecls + List.length clos_vars in
      let rec transl_fundecls pos = function
        [] ->
          List.map transl clos_vars
      | (label, arity, params, body) :: rem ->
          Queue.add (label, params, body) functions;
          let header =
            if pos = 0
            then alloc_closure_header block_size
            else alloc_infix_header pos in
          if arity = 1 then
            header ::
            Cconst_symbol label ::
            int_const 1 ::
            transl_fundecls (pos + 3) rem
          else
            header ::
            Cconst_symbol(curry_function arity) ::
            int_const arity ::
            Cconst_symbol label ::
            transl_fundecls (pos + 4) rem in
      Cop(Calloc, transl_fundecls 0 fundecls)
  | Uoffset(arg, offset) ->
      field_address (transl arg) offset
  | Udirect_apply(lbl, args) ->
      Cop(Capply typ_addr, Cconst_symbol lbl :: List.map transl args)
  | Ugeneric_apply(clos, [arg]) ->
      bind "fun" (transl clos) (fun clos ->
        Cop(Capply typ_addr, [get_field clos 0; transl arg; clos]))
  | Ugeneric_apply(clos, args) ->
      let arity = List.length args in
      let cargs = Cconst_symbol(apply_function arity) ::
                  List.map transl (args @ [clos]) in
      Cop(Capply typ_addr, cargs)
  | Usend(met, obj, []) ->
      bind "obj" (transl obj) (fun obj ->
      bind "met" (lookup_label obj (transl met)) (fun clos ->
        Cop(Capply typ_addr, [get_field clos 0; obj; clos])))
  | Usend(met, obj, args) ->
      let arity = List.length args + 1 in
      bind "obj" (transl obj) (fun obj ->
      bind "met" (lookup_label obj (transl met)) (fun clos ->
        let cargs = Cconst_symbol(apply_function arity) ::
                    obj :: (List.map transl args) @ [clos] in
        Cop(Capply typ_addr, cargs)))
  | Ulet(id, exp, body) ->
      if is_unboxed_float exp then begin
        let unboxed_id = Ident.create (Ident.name id) in
        let (tr_body, need_boxed, is_assigned) =
          subst_boxed_float id unboxed_id (transl body) in
        if need_boxed & is_assigned then
          Clet(id, transl exp, transl body)
        else
          Clet(unboxed_id, transl_unbox_float exp,
               if need_boxed
               then Clet(id, box_float(Cvar unboxed_id), tr_body)
               else tr_body)
      end else
        Clet(id, transl exp, transl body)
  | Uletrec(bindings, body) ->
      transl_letrec bindings (transl body)

  (* Primitives *)
  | Uprim(Pidentity, [arg]) ->
      transl arg
  | Uprim(Pignore, [arg]) ->
      return_unit(remove_unit (transl arg))
  | Uprim(Pgetglobal id, []) ->
      Cconst_symbol(Ident.name id)

  (* Heap blocks *)
  | Uprim(Pmakeblock(tag, mut), []) ->
      transl_constant(Const_block(tag, []))
  | Uprim(Pmakeblock(tag, mut), args) ->
      Cop(Calloc, alloc_block_header tag (List.length args) ::
                  List.map transl args)
  | Uprim(Pfield n, [arg]) ->
      get_field (transl arg) n
  | Uprim(Psetfield(n, ptr), [loc; newval]) ->
      if ptr then
        return_unit(Cop(Cextcall("modify", typ_void, false),
                        [field_address (transl loc) n; transl newval]))
      else
        return_unit(set_field (transl loc) n (transl newval))
  | Uprim(Pfloatfield n, [arg]) ->
      let ptr = transl arg in
      box_float(
        Cop(Cload typ_float,
            [if n = 0 then ptr
                       else Cop(Cadda, [ptr; Cconst_int(n * size_float)])]))
  | Uprim(Psetfloatfield n, [loc; newval]) ->
      let ptr = transl loc in
      return_unit(
        Cop(Cstore,
            [if n = 0 then ptr
                       else Cop(Cadda, [ptr; Cconst_int(n * size_float)]);
                   transl_unbox_float newval]))

  (* External call *)
  | Uprim(Pccall prim, args) ->
      if prim.prim_native_float then
        box_float
          (Cop(Cextcall(prim.prim_native_name, typ_float, false),
               List.map transl_unbox_float args))
      else begin
        let name =
          if prim.prim_native_name <> ""
          then prim.prim_native_name
          else prim.prim_name in
        Cop(Cextcall(name, typ_addr, prim.prim_alloc),
            List.map transl args)
      end
  (* Exceptions *)
  | Uprim(Praise, [arg]) ->
      Cop(Craise, [transl arg])

  (* Boolean operations *)
  | Uprim(Psequand, [arg1; arg2]) ->
      Cifthenelse(test_bool(transl arg1), transl arg2, Cconst_int 1)
  | Uprim(Psequor, [arg1; arg2]) ->
      Cifthenelse(test_bool(transl arg1), Cconst_int 3, transl arg2)
  | Uprim(Pnot, [arg]) ->
      Cop(Csubi, [Cconst_int 4; transl arg]) (* 1 -> 3, 3 -> 1 *)

  (* Integer operations *)
  | Uprim(Pnegint, [arg]) ->
      Cop(Csubi, [Cconst_int 2; transl arg])
  | Uprim(Paddint, [arg1; arg2]) ->
      decr_int(add_int (transl arg1) (transl arg2))
  | Uprim(Psubint, [arg1; arg2]) ->
      incr_int(sub_int (transl arg1) (transl arg2))
  | Uprim(Pmulint, [arg1; arg2]) ->
      incr_int(Cop(Cmuli, [decr_int(transl arg1); untag_int(transl arg2)]))
  | Uprim(Pdivint, [arg1; arg2]) ->
      tag_int(Cop(Cdivi, [untag_int(transl arg1); untag_int(transl arg2)]))
  | Uprim(Pmodint, [arg1; arg2]) ->
      tag_int(Cop(Cmodi, [untag_int(transl arg1); untag_int(transl arg2)]))
  | Uprim(Pandint, [arg1; arg2]) ->
      Cop(Cand, [transl arg1; transl arg2])
  | Uprim(Porint, [arg1; arg2]) ->
      Cop(Cor, [transl arg1; transl arg2])
  | Uprim(Pxorint, [arg1; arg2]) ->
      incr_int(Cop(Cxor, [transl arg1; transl arg2]))
  | Uprim(Plslint, [arg1; arg2]) ->
      incr_int(lsl_int (decr_int(transl arg1)) (untag_int(transl arg2)))
  | Uprim(Plsrint, [arg1; arg2]) ->
      Cop(Cor, [Cop(Clsr, [transl arg1; untag_int(transl arg2)]);
                Cconst_int 1])
  | Uprim(Pasrint, [arg1; arg2]) ->
      Cop(Cor, [Cop(Casr, [transl arg1; untag_int(transl arg2)]);
                Cconst_int 1])
  | Uprim(Pintcomp cmp, [arg1; arg2]) ->
      tag_int(Cop(Ccmpi(transl_comparison cmp), [transl arg1; transl arg2]))
  | Uprim(Poffsetint n, [arg]) ->
      add_const (transl arg) (n lsl 1)
  | Uprim(Poffsetref n, [arg]) ->
      return_unit
        (bind "ref" (transl arg) (fun arg ->
          Cop(Cstore,
              [arg; add_const (Cop(Cload typ_int, [arg])) (n lsl 1)])))

  (* Float operations *)
  | Uprim(Pfloatofint, [arg]) ->
      box_float(Cop(Cfloatofint, [untag_int(transl arg)]))
  | Uprim(Pintoffloat, [arg]) ->
     tag_int(Cop(Cintoffloat, [transl_unbox_float arg]))
  | Uprim(Pnegfloat, [arg]) ->
      box_float(Cop(Cnegf, [transl_unbox_float arg]))
  | Uprim(Pabsfloat, [arg]) ->
      box_float(Cop(Cabsf, [transl_unbox_float arg]))
  | Uprim(Paddfloat, [arg1; arg2]) ->
      box_float(Cop(Caddf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Uprim(Psubfloat, [arg1; arg2]) ->
      box_float(Cop(Csubf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Uprim(Pmulfloat, [arg1; arg2]) ->
      box_float(Cop(Cmulf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Uprim(Pdivfloat, [arg1; arg2]) ->
      box_float(Cop(Cdivf,
                    [transl_unbox_float arg1; transl_unbox_float arg2]))
  | Uprim(Pfloatcomp cmp, [arg1; arg2]) ->
      tag_int(Cop(Ccmpf(transl_comparison cmp),
                  [transl_unbox_float arg1; transl_unbox_float arg2]))

  (* String operations *)
  | Uprim(Pstringlength, [arg]) ->
      tag_int(string_length (transl arg))
  | Uprim(Pstringrefu, [arg1; arg2]) ->
      tag_int(Cop(Cloadchunk Byte_unsigned,
                  [add_int (transl arg1) (untag_int(transl arg2))]))
  | Uprim(Pstringsetu, [arg1; arg2; arg3]) ->
      return_unit(Cop(Cstorechunk Byte_unsigned,
                      [add_int (transl arg1) (untag_int(transl arg2));
                        untag_int(transl arg3)]))
  | Uprim(Pstringrefs, [arg1; arg2]) ->
      tag_int
        (bind "str" (transl arg1) (fun str ->
          bind "index" (untag_int (transl arg2)) (fun idx ->
            Csequence(
              Cop(Ccheckbound, [string_length str; idx]),
              Cop(Cloadchunk Byte_unsigned, [add_int str idx])))))
  | Uprim(Pstringsets, [arg1; arg2; arg3]) ->
      return_unit
        (bind "str" (transl arg1) (fun str ->
          bind "index" (untag_int (transl arg2)) (fun idx ->
            Csequence(
              Cop(Ccheckbound, [string_length str; idx]),
              Cop(Cstorechunk Byte_unsigned,
                  [add_int str idx; untag_int(transl arg3)])))))

  (* Array operations *)
  | Uprim(Pmakearray kind, []) ->
      transl_constant(Const_block(0, []))
  | Uprim(Pmakearray kind, args) ->
      begin match kind with
        Pgenarray ->
          Cop(Cextcall("make_array", typ_addr, true),
              [Cop(Calloc, alloc_block_header 0 (List.length args) ::
                            List.map transl args)])
      | Paddrarray | Pintarray ->
          Cop(Calloc, alloc_block_header 0 (List.length args) ::
                      List.map transl args)
      | Pfloatarray ->
          Cop(Calloc, alloc_floatarray_header (List.length args) ::
                      List.map transl_unbox_float args)
      end
  | Uprim(Parraylength kind, [arg]) ->
      begin match kind with
        Pgenarray ->
          let len =
            if wordsize_shift = numfloat_shift then
              Cop(Clsr, [header(transl arg); Cconst_int wordsize_shift])
            else
              bind "header" (header(transl arg)) (fun hdr ->
                Cifthenelse(is_addr_array_hdr hdr,
                            Cop(Clsr, [hdr; Cconst_int wordsize_shift]),
                            Cop(Clsr, [hdr; Cconst_int numfloat_shift]))) in
          Cop(Cor, [len; Cconst_int 1])
      | Paddrarray | Pintarray ->
          Cop(Cor, [addr_array_length(header(transl arg)); Cconst_int 1])
      | Pfloatarray ->
          Cop(Cor, [float_array_length(header(transl arg)); Cconst_int 1])
      end
  | Uprim(Parrayrefu kind, [arg1; arg2]) ->
      begin match kind with
        Pgenarray ->
          bind "arr" (transl arg1) (fun arr ->
            bind "index" (transl arg2) (fun idx ->
              Cifthenelse(is_addr_array_ptr arr,
                          addr_array_ref arr idx,
                          float_array_ref arr idx)))
      | Paddrarray | Pintarray ->
          addr_array_ref (transl arg1) (transl arg2)
      | Pfloatarray ->
          float_array_ref (transl arg1) (transl arg2)
      end
  | Uprim(Parraysetu kind, [arg1; arg2; arg3]) ->
      return_unit(begin match kind with
        Pgenarray ->
          bind "newval" (transl arg3) (fun newval ->
            bind "index" (transl arg2) (fun index ->
              bind "arr" (transl arg1) (fun arr ->
                Cifthenelse(is_addr_array_ptr arr,
                            addr_array_set arr index newval,
                            float_array_set arr index (unbox_float newval)))))
      | Paddrarray ->
          addr_array_set (transl arg1) (transl arg2) (transl arg3)
      | Pintarray ->
          int_array_set (transl arg1) (transl arg2) (transl arg3)
      | Pfloatarray ->
          float_array_set (transl arg1) (transl arg2) (transl_unbox_float arg3)
      end)
  | Uprim(Parrayrefs kind, [arg1; arg2]) ->
      begin match kind with
        Pgenarray ->
          bind "index" (transl arg2) (fun idx ->
            bind "arr" (transl arg1) (fun arr ->
              bind "header" (header arr) (fun hdr ->
                Cifthenelse(is_addr_array_hdr hdr,
                  Csequence(Cop(Ccheckbound, [addr_array_length hdr; idx]),
                            addr_array_ref arr idx),
                  Csequence(Cop(Ccheckbound, [float_array_length hdr; idx]),
                            float_array_ref arr idx)))))
      | Paddrarray | Pintarray ->
          bind "index" (transl arg2) (fun idx ->
            bind "arr" (transl arg1) (fun arr ->
              Csequence(Cop(Ccheckbound, [addr_array_length(header arr); idx]),
                        addr_array_ref arr idx)))
      | Pfloatarray ->
          box_float(
            bind "index" (transl arg2) (fun idx ->
              bind "arr" (transl arg1) (fun arr ->
                Csequence(Cop(Ccheckbound, 
                              [float_array_length(header arr); idx]),
                          unboxed_float_array_ref arr idx))))
      end
  | Uprim(Parraysets kind, [arg1; arg2; arg3]) ->
      return_unit(begin match kind with
        Pgenarray ->
          bind "newval" (transl arg3) (fun newval ->
            bind "index" (transl arg2) (fun idx ->
              bind "arr" (transl arg1) (fun arr ->
                bind "header" (header arr) (fun hdr ->
                  Cifthenelse(is_addr_array_hdr hdr,
                    Csequence(Cop(Ccheckbound, [addr_array_length hdr; idx]),
                              addr_array_set arr idx newval),
                    Csequence(Cop(Ccheckbound, [float_array_length hdr; idx]),
                              float_array_set arr idx
                                              (unbox_float newval)))))))
      | Paddrarray ->
          bind "index" (transl arg2) (fun idx ->
            bind "arr" (transl arg1) (fun arr ->
              Csequence(Cop(Ccheckbound, [addr_array_length(header arr); idx]),
                        addr_array_set arr idx (transl arg3))))
      | Pintarray ->
          bind "index" (transl arg2) (fun idx ->
            bind "arr" (transl arg1) (fun arr ->
              Csequence(Cop(Ccheckbound, [addr_array_length(header arr); idx]),
                        int_array_set arr idx (transl arg3))))
      | Pfloatarray ->
          bind "index" (transl arg2) (fun idx ->
            bind "arr" (transl arg1) (fun arr ->
              Csequence(Cop(Ccheckbound, [float_array_length(header arr);idx]),
                        float_array_set arr idx (transl_unbox_float arg3))))
      end)

  (* Operations on bitvects *)
  | Uprim(Pbittest, [arg1; arg2]) ->
      bind "index" (untag_int(transl arg2)) (fun idx ->
        tag_int(
          Cop(Cand, [Cop(Clsr, [Cop(Cloadchunk Byte_unsigned,
                                    [add_int (transl arg1)
                                      (Cop(Clsr, [idx; Cconst_int 3]))]);
                                Cop(Cand, [idx; Cconst_int 7])]);
                     Cconst_int 1])))

  | Uprim(_, _) ->
      fatal_error "Cmmgen.transl"

  | Uswitch(arg, s) ->
      (* As in the bytecode interpreter, only matching against constants
         can be checked *)
      if Array.length s.us_index_blocks = 0 then
        if s.us_checked then
          bind "switch" (untag_int (transl arg)) (fun idx ->
            Cifthenelse(
              Cop(Ccmpa Cge,
                  [idx; Cconst_pointer(Array.length s.us_index_consts)]),
              Cexit,
              transl_switch idx s.us_index_consts s.us_cases_consts))
        else
          transl_switch (untag_int (transl arg))
                        s.us_index_consts s.us_cases_consts
      else if Array.length s.us_index_consts = 0 then
        transl_switch (get_tag (transl arg))
                      s.us_index_blocks s.us_cases_blocks
      else
        bind "switch" (transl arg) (fun arg ->
          Cifthenelse(
            Cop(Cand, [arg; Cconst_int 1]),
            transl_switch (untag_int arg) s.us_index_consts s.us_cases_consts,
            transl_switch (get_tag arg) s.us_index_blocks s.us_cases_blocks))
  | Ustaticfail ->
      Cexit
  | Ucatch(body, handler) ->
      Ccatch(transl body, transl handler)
  | Utrywith(body, exn, handler) ->
      Ctrywith(transl body, exn, transl handler)
  | Uifthenelse(Uprim(Pnot, [arg]), ifso, ifnot) ->
      transl (Uifthenelse(arg, ifnot, ifso))
  | Uifthenelse(cond, ifso, Ustaticfail) ->
      exit_if_false cond (transl ifso)
  | Uifthenelse(cond, Ustaticfail, ifnot) ->
      exit_if_true cond (transl ifnot)
  | Uifthenelse(Uprim(Psequand, _) as cond, ifso, ifnot) ->
      Ccatch(exit_if_false cond (transl ifso), transl ifnot)
  | Uifthenelse(Uprim(Psequor, _) as cond, ifso, ifnot) ->
      Ccatch(exit_if_true cond (transl ifnot), transl ifso)
  | Uifthenelse(cond, ifso, ifnot) ->
      Cifthenelse(test_bool(transl cond), transl ifso, transl ifnot)
  | Usequence(exp1, exp2) ->
      Csequence(remove_unit(transl exp1), transl exp2)
  | Uwhile(cond, body) ->
      return_unit(Ccatch(Cloop(exit_if_false cond (remove_unit(transl body))),
                         Ctuple []))
  | Ufor(id, low, high, dir, body) ->
      let tst = match dir with Upto -> Cgt   | Downto -> Clt in
      let inc = match dir with Upto -> Caddi | Downto -> Csubi in
      return_unit
        (Clet(id, transl low,
          bind_nonvar "bound" (transl high) (fun high ->
            Ccatch(
              Cifthenelse(Cop(Ccmpi tst, [Cvar id; high]), Cexit,
                Cloop(
                  Csequence(remove_unit(transl body),
                    Csequence(Cassign(id, Cop(inc, [Cvar id; Cconst_int 2])),
                      Cifthenelse(Cop(Ccmpi tst, [Cvar id; high]),
                                  Cexit, Ctuple []))))),
              Ctuple []))))
  | Uassign(id, exp) ->
      return_unit(Cassign(id, transl exp))

and transl_unbox_float = function
    Uconst(Const_base(Const_float f)) -> Cconst_float f
  | exp -> unbox_float(transl exp)

and exit_if_true cond otherwise =
  match cond with
    Uprim(Psequor, [arg1; arg2]) ->
      exit_if_true arg1 (exit_if_true arg2 otherwise)
  | Uprim(Psequand, [arg1; arg2]) ->
      Csequence(Ccatch(exit_if_true arg1 (Ctuple []),
                       exit_if_true arg2 (Ctuple [])),
                otherwise)
  | Uprim(Pnot, [arg]) ->
      exit_if_false arg otherwise
  | _ ->
      Cifthenelse(test_bool(transl cond), Cexit, otherwise)

and exit_if_false cond otherwise =
  match cond with
    Uprim(Psequand, [arg1; arg2]) ->
      exit_if_false arg1 (exit_if_false arg2 otherwise)
  | Uprim(Psequor, [arg1; arg2]) ->
      Csequence(Ccatch(exit_if_false arg1 (Ctuple []),
                       exit_if_false arg2 (Ctuple [])),
                otherwise)
  | Uprim(Pnot, [arg]) ->
      exit_if_true arg otherwise
  | _ ->
      Cifthenelse(test_bool(transl cond), otherwise, Cexit)

and transl_switch arg index cases =
  match Array.length index with
    1 -> transl cases.(0)
  | 2 -> Cifthenelse(arg, transl cases.(index.(1)), transl cases.(index.(0)))
  | _ ->
      (* Determine whether all actions minus one or two are equal to
         Ustaticfail *)
      let num_fail = ref 0 in
      let key1 = ref (-1) in
      let key2 = ref (-1) in
      for i = 0 to Array.length index - 1 do
        if cases.(index.(i)) = Ustaticfail then incr num_fail
        else if !key1 < 0 then key1 := i
        else if !key2 < 0 then key2 := i
      done;
      match Array.length index - !num_fail with
        0 -> Csequence(arg, Cexit)
      | 1 -> Cifthenelse(Cop(Ccmpi Ceq, [arg; Cconst_int !key1]),
                         transl cases.(index.(!key1)), Cexit)
      | 2 -> bind "test" arg (fun a ->
               Cifthenelse(Cop(Ccmpi Ceq, [a; Cconst_int !key1]),
                           transl cases.(index.(!key1)),
                           Cifthenelse(Cop(Ccmpi Ceq, [a; Cconst_int !key2]),
                                       transl cases.(index.(!key2)), Cexit)))
      | _ -> Cswitch(arg, index, Array.map transl cases)

and transl_letrec bindings cont =
  let rec init_blocks = function
      [] -> fill_blocks bindings
    | (id, exp) :: rem ->
        Clet(id, Cop(Cextcall("alloc_dummy", typ_addr, true),
                     [int_const(expr_size exp)]),
             init_blocks rem)
  and fill_blocks = function
      [] -> cont
    | (id, exp) :: rem ->
        Csequence(Cop(Cextcall("update_dummy", typ_void, false),
                      [Cvar id; transl exp]),
                  fill_blocks rem)
  in init_blocks bindings

(* Translate a function definition *)

let transl_function lbl params body =
  Cfunction {fun_name = lbl;
             fun_args = List.map (fun id -> (id, typ_addr)) params;
             fun_body = transl body;
             fun_fast = !Clflags.optimize_for_speed}

(* Translate all function definitions *)

module StringSet =
  Set.Make(struct
    type t = string
    let compare = compare
  end)

let rec transl_all_functions already_translated cont =
  try
    let (lbl, params, body) = Queue.take functions in
    if StringSet.mem lbl already_translated then
      transl_all_functions already_translated cont
    else
      transl_all_functions (StringSet.add lbl already_translated)
                           (transl_function lbl params body :: cont)
  with Queue.Empty ->
    cont

(* Emit structured constants *)

let rec emit_constant symb cst cont =
  match cst with
    Const_base(Const_float s) ->
      Cint(float_header) :: Cdefine_symbol symb :: Cfloat s :: cont
  | Const_base(Const_string s) ->
      Cint(string_header (String.length s)) ::
      Cdefine_symbol symb ::
      emit_string_constant s cont
  | Const_block(tag, fields) ->
      let (emit_fields, cont1) = emit_constant_fields fields cont in
      Cint(block_header tag (List.length fields)) ::
      Cdefine_symbol symb ::
      emit_fields @ cont1
  | Const_float_array(fields) ->
      Cint(floatarray_header (List.length fields)) ::
      Cdefine_symbol symb ::
      Misc.map_end (fun f -> Cfloat f) fields cont
  | _ -> fatal_error "gencmm.emit_constant"

and emit_constant_fields fields cont =
  match fields with
    [] -> ([], cont)
  | f1 :: fl ->
      let (data1, cont1) = emit_constant_field f1 cont in
      let (datal, contl) = emit_constant_fields fl cont1 in
      (data1 :: datal, contl)

and emit_constant_field field cont =
  match field with
    Const_base(Const_int n) ->
      (Cint(Nativeint.add (Nativeint.shift (Nativeint.from n) 1)
                          (Nativeint.from 1)),
       cont)
  | Const_base(Const_char c) ->
      (Cint(Nativeint.from(((Char.code c) lsl 1) + 1)), cont)
  | Const_base(Const_float s) ->
      let lbl = new_const_label() in
      (Clabel_address lbl,
       Cint(float_header) :: Cdefine_label lbl :: Cfloat s :: cont)
  | Const_base(Const_string s) ->
      let lbl = new_const_label() in
      (Clabel_address lbl,
       Cint(string_header (String.length s)) :: Cdefine_label lbl :: 
       emit_string_constant s cont)
  | Const_pointer n ->
      (Cint(Nativeint.from((n lsl 1) + 1)), cont)
  | Const_block(tag, fields) ->
      let lbl = new_const_label() in
      let (emit_fields, cont1) = emit_constant_fields fields cont in
      (Clabel_address lbl,
       Cint(block_header tag (List.length fields)) :: Cdefine_label lbl ::
       emit_fields @ cont1)
  | Const_float_array(fields) ->
      let lbl = new_const_label() in
      (Clabel_address lbl,
       Cint(floatarray_header (List.length fields)) :: Cdefine_label lbl ::
       Misc.map_end (fun f -> Cfloat f) fields cont)

and emit_string_constant s cont =
  let n = size_int - 1 - (String.length s) mod size_int in
  Cstring s :: Cskip n :: Cint8 n :: cont

(* Emit constant closures *)

let emit_constant_closure symb fundecls cont =
  match fundecls with
    [] -> assert false
  | (label, arity, params, body) :: remainder ->
      let rec emit_others pos = function
        [] -> cont
      | (label, arity, params, body) :: rem ->
          if arity = 1 then
            Cint(infix_header pos) ::
            Csymbol_address label ::
            Cint(Nativeint.from 3) ::
            emit_others (pos + 3) rem
          else
            Cint(infix_header pos) ::
            Csymbol_address(curry_function arity) ::
            Cint(Nativeint.from (arity lsl 1 + 1)) ::
            Csymbol_address label ::
            emit_others (pos + 4) rem in
      Cint(closure_header (fundecls_size fundecls)) ::
      Cdefine_symbol symb ::
      if arity = 1 then
        Csymbol_address label ::
        Cint(Nativeint.from 3) ::
        emit_others 3 remainder
      else
        Csymbol_address(curry_function arity) ::
        Cint(Nativeint.from (arity lsl 1 + 1)) ::
        Csymbol_address label ::
        emit_others 4 remainder

(* Emit all structured constants *)

let emit_all_constants cont =
  let c = ref cont in
  Hashtbl.iter
    (fun cst lbl -> c := Cdata(emit_constant lbl cst []) :: !c)
    structured_constants;
  Hashtbl.clear structured_constants;
  List.iter
    (fun (symb, fundecls) ->
        c := Cdata(emit_constant_closure symb fundecls []) :: !c)
    !constant_closures;
  constant_closures := [];
  !c

(* Translate a compilation unit *)

let compunit size ulam =
  let glob = Compilenv.current_unit_name () in
  let init_code = transl ulam in
  let c1 = [Cfunction {fun_name = glob ^ "_entry"; fun_args = [];
                       fun_body = init_code; fun_fast = false}] in
  let c2 = transl_all_functions StringSet.empty c1 in
  let c3 = emit_all_constants c2 in
  Cdata [Cint(block_header 0 size);
         Cdefine_symbol glob;
         Cskip(size * size_addr)] :: c3

(* Generate an application function:
     (defun caml_applyN (a1 ... aN clos)
       (if (= clos.arity N)
         (app clos.direct a1 ... aN clos)
         (let (clos1 (app clos.code a1 clos)
               clos2 (app clos1.code a2 clos)
               ...
               closN-1 (app closN-2.code aN-1 closN-2))
           (app closN-1.code aN closN-1))))
*)

let apply_function arity =
  let arg = Array.create arity (Ident.create "arg") in
  for i = 1 to arity - 1 do arg.(i) <- Ident.create "arg" done;
  let clos = Ident.create "clos" in
  let rec app_fun clos n =
    if n = arity-1 then
      Cop(Capply typ_addr,
          [get_field (Cvar clos) 0; Cvar arg.(n); Cvar clos])
    else begin
      let newclos = Ident.create "clos" in
      Clet(newclos,
           Cop(Capply typ_addr,
               [get_field (Cvar clos) 0; Cvar arg.(n); Cvar clos]),
           app_fun newclos (n+1))
    end in
  let all_args = Array.to_list arg @ [clos] in
  let body =
    Cifthenelse(
      Cop(Ccmpi Ceq, [get_field (Cvar clos) 1; int_const arity]),
      Cop(Capply typ_addr,
          get_field (Cvar clos) 2 :: List.map (fun s -> Cvar s) all_args),
      app_fun clos 0) in
  Cfunction
   {fun_name = "caml_apply" ^ string_of_int arity;
    fun_args = List.map (fun id -> (id, typ_addr)) all_args;
    fun_body = body;
    fun_fast = true}

(* Generate tuplifying functions:
      (defun caml_tuplifyN (arg clos)
        (app clos.direct #0(arg) ... #N-1(arg) clos)) *)

let tuplify_function arity =
  let arg = Ident.create "arg" in
  let clos = Ident.create "clos" in
  let rec access_components i =
    if i >= arity
    then []
    else get_field (Cvar arg) i :: access_components(i+1) in
  Cfunction
   {fun_name = "caml_tuplify" ^ string_of_int arity;
    fun_args = [arg, typ_addr; clos, typ_addr];
    fun_body =
      Cop(Capply typ_addr,
          get_field (Cvar clos) 2 :: access_components 0 @ [Cvar clos]);
    fun_fast = true}

(* Generate currying functions:
      (defun caml_curryN (arg clos)
         (alloc HDR caml_curryN_1 arg clos))
      (defun caml_curryN_1 (arg clos)
         (alloc HDR caml_curryN_2 arg clos))
      ...
      (defun caml_curryN_N-1 (arg clos)
         (let (closN-2 clos.cdr
               closN-3 closN-2.cdr
               ...
               clos1 clos2.cdr
               clos clos1.cdr)
           (app clos.direct
                clos1.car clos2.car ... closN-2.car clos.car arg clos))) *)

let final_curry_function arity =
  let last_arg = Ident.create "arg" in
  let last_clos = Ident.create "clos" in
  let rec curry_fun args clos n =
    if n = 0 then
      Cop(Capply typ_addr,
          get_field (Cvar clos) 2 ::
          args @ [Cvar last_arg; Cvar clos])
    else begin
      let newclos = Ident.create "clos" in
      Clet(newclos,
           get_field (Cvar clos) 3,
           curry_fun (get_field (Cvar clos) 2 :: args) newclos (n-1))
    end in
  Cfunction
   {fun_name = "caml_curry" ^ string_of_int arity ^
               "_" ^ string_of_int (arity-1);
    fun_args = [last_arg, typ_addr; last_clos, typ_addr];
    fun_body = curry_fun [] last_clos (arity-1);
    fun_fast = true}

let rec intermediate_curry_functions arity num =
  if num = arity - 1 then
    [final_curry_function arity]
  else begin
    let name1 = "caml_curry" ^ string_of_int arity in
    let name2 = if num = 0 then name1 else name1 ^ "_" ^ string_of_int num in
    let arg = Ident.create "arg" and clos = Ident.create "clos" in
    Cfunction
     {fun_name = name2;
      fun_args = [arg, typ_addr; clos, typ_addr];
      fun_body = Cop(Calloc,
                     [alloc_closure_header 4; 
                      Cconst_symbol(name1 ^ "_" ^ string_of_int (num+1));
                      int_const 1; Cvar arg; Cvar clos]);
      fun_fast = true}
    :: intermediate_curry_functions arity (num+1)
  end
    
let curry_function arity =
  if arity >= 0
  then intermediate_curry_functions arity 0
  else [tuplify_function (-arity)]

(* Generate the entry point *)

let entry_point namelist =
  let body =
    List.fold_right
      (fun name next ->
        Csequence(Cop(Capply typ_void, [Cconst_symbol(name ^ "_entry")]),
                  next))
      namelist (Ctuple []) in
  Cfunction {fun_name = "caml_program";
             fun_args = [];
             fun_body = body;
             fun_fast = false}

(* Generate the table of globals *)

let cint_zero = Cint(Nativeint.from 0)

let global_table namelist =
  Cdata(Cdefine_symbol "caml_globals" ::
        List.map (fun name -> Csymbol_address name) namelist @
        [cint_zero])

let globals_map namelist =
  Cdata(emit_constant "globals_map"
          (Const_base (Const_string (Marshal.to_string namelist []))) [])

(* Generate the master table of frame descriptors *)

let frame_table namelist =
  Cdata(Cdefine_symbol "caml_frametable" ::
        List.map (fun name -> Csymbol_address(name ^ "_frametable")) namelist @
        [cint_zero])

(* Generate the table of module data and code segments *)

let segment_table namelist symbol begname endname =
  Cdata(Cdefine_symbol symbol ::
        List.fold_right
          (fun name lst ->
            Csymbol_address(name ^ begname) ::
            Csymbol_address(name ^ endname) :: lst)
          namelist
          [cint_zero])

let data_segment_table namelist =
  segment_table namelist "caml_data_segments" "_data_begin" "_data_end"

let code_segment_table namelist =
  segment_table namelist "caml_code_segments" "_code_begin" "_code_end"

(* Initialize a predefined exception *)

let predef_exception name =
  Cdata(emit_constant name (Const_block(0,[Const_base(Const_string name)])) [])