summaryrefslogtreecommitdiff
path: root/asmcomp/export_info.ml
blob: 22dbb6c58363990ca4a3434b1cfea455933c17e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*                       Pierre Chambart, OCamlPro                        *)
(*           Mark Shinwell and Leo White, Jane Street Europe              *)
(*                                                                        *)
(*   Copyright 2013--2016 OCamlPro SAS                                    *)
(*   Copyright 2014--2016 Jane Street Group LLC                           *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

[@@@ocaml.warning "+a-4-9-30-40-41-42"]

module A = Simple_value_approx

type value_string_contents =
  | Contents of string
  | Unknown_or_mutable

type value_string = {
  contents : value_string_contents;
  size : int;
}

type value_float_array_contents =
  | Contents of float option array
  | Unknown_or_mutable

type value_float_array = {
  contents : value_float_array_contents;
  size : int;
}

type descr =
  | Value_block of Tag.t * approx array
  | Value_mutable_block of Tag.t * int
  | Value_int of int
  | Value_char of char
  | Value_constptr of int
  | Value_float of float
  | Value_float_array of value_float_array
  | Value_boxed_int : 'a A.boxed_int * 'a -> descr
  | Value_string of value_string
  | Value_closure of value_closure
  | Value_set_of_closures of value_set_of_closures
  | Value_unknown_descr

and value_closure = {
  closure_id : Closure_id.t;
  set_of_closures : value_set_of_closures;
}

and value_set_of_closures = {
  set_of_closures_id : Set_of_closures_id.t;
  bound_vars : approx Var_within_closure.Map.t;
  free_vars : Flambda.specialised_to Variable.Map.t;
  results : approx Closure_id.Map.t;
  aliased_symbol : Symbol.t option;
}

and approx =
  | Value_unknown
  | Value_id of Export_id.t
  | Value_symbol of Symbol.t

let equal_approx (a1:approx) (a2:approx) =
  match a1, a2 with
  | Value_unknown, Value_unknown ->
    true
  | Value_id id1, Value_id id2 ->
    Export_id.equal id1 id2
  | Value_symbol s1, Value_symbol s2 ->
    Symbol.equal s1 s2
  | (Value_unknown | Value_symbol _ | Value_id _),
    (Value_unknown | Value_symbol _ | Value_id _) ->
    false

let equal_array eq a1 a2 =
  Array.length a1 = Array.length a2 &&
  try
    Array.iteri (fun i v1 -> if not (eq a2.(i) v1) then raise Exit) a1;
    true
  with Exit -> false

let equal_option eq o1 o2 =
  match o1, o2 with
  | None, None -> true
  | Some v1, Some v2 -> eq v1 v2
  | Some _, None | None, Some _ -> false

let equal_set_of_closures (s1:value_set_of_closures)
      (s2:value_set_of_closures) =
  Set_of_closures_id.equal s1.set_of_closures_id s2.set_of_closures_id &&
  Var_within_closure.Map.equal equal_approx s1.bound_vars s2.bound_vars &&
  Closure_id.Map.equal equal_approx s1.results s2.results &&
  equal_option Symbol.equal s1.aliased_symbol s2.aliased_symbol

let equal_descr (d1:descr) (d2:descr) : bool =
  match d1, d2 with
  | Value_unknown_descr, Value_unknown_descr ->
    true
  | Value_block (t1, f1), Value_block (t2, f2) ->
    Tag.equal t1 t2 && equal_array equal_approx f1 f2
  | Value_mutable_block (t1, s1), Value_mutable_block (t2, s2) ->
    Tag.equal t1 t2 &&
    s1 = s2
  | Value_int i1, Value_int i2 ->
    i1 = i2
  | Value_char c1, Value_char c2 ->
    c1 = c2
  | Value_constptr i1, Value_constptr i2 ->
    i1 = i2
  | Value_float f1, Value_float f2 ->
    f1 = f2
  | Value_float_array s1, Value_float_array s2 ->
    s1 = s2
  | Value_boxed_int (t1, v1), Value_boxed_int (t2, v2) ->
    A.equal_boxed_int t1 v1 t2 v2
  | Value_string s1, Value_string s2 ->
    s1 = s2
  | Value_closure c1, Value_closure c2 ->
    Closure_id.equal c1.closure_id c2.closure_id &&
    equal_set_of_closures c1.set_of_closures c2.set_of_closures
  | Value_set_of_closures s1, Value_set_of_closures s2 ->
    equal_set_of_closures s1 s2
  | ( Value_block (_, _) | Value_mutable_block (_, _) | Value_int _
    | Value_char _ | Value_constptr _ | Value_float _ | Value_float_array _
    | Value_boxed_int _ | Value_string _ | Value_closure _
    | Value_set_of_closures _
    | Value_unknown_descr ),
    ( Value_block (_, _) | Value_mutable_block (_, _) | Value_int _
    | Value_char _ | Value_constptr _ | Value_float _ | Value_float_array _
    | Value_boxed_int _ | Value_string _ | Value_closure _
    | Value_set_of_closures _
    | Value_unknown_descr ) ->
    false

type t = {
  sets_of_closures : A.function_declarations Set_of_closures_id.Map.t;
  values : descr Export_id.Map.t Compilation_unit.Map.t;
  symbol_id : Export_id.t Symbol.Map.t;
  offset_fun : int Closure_id.Map.t;
  offset_fv : int Var_within_closure.Map.t;
  constant_closures : Closure_id.Set.t;
  invariant_params : Variable.Set.t Variable.Map.t Set_of_closures_id.Map.t;
  recursive : Variable.Set.t Set_of_closures_id.Map.t;
}

type transient = {
  sets_of_closures : A.function_declarations Set_of_closures_id.Map.t;
  values : descr Export_id.Map.t Compilation_unit.Map.t;
  symbol_id : Export_id.t Symbol.Map.t;
  invariant_params : Variable.Set.t Variable.Map.t Set_of_closures_id.Map.t;
  recursive : Variable.Set.t Set_of_closures_id.Map.t;
  relevant_local_closure_ids : Closure_id.Set.t;
  relevant_imported_closure_ids : Closure_id.Set.t;
  relevant_local_vars_within_closure  : Var_within_closure.Set.t;
  relevant_imported_vars_within_closure : Var_within_closure.Set.t;
}

let empty : t = {
  sets_of_closures = Set_of_closures_id.Map.empty;
  values = Compilation_unit.Map.empty;
  symbol_id = Symbol.Map.empty;
  offset_fun = Closure_id.Map.empty;
  offset_fv = Var_within_closure.Map.empty;
  constant_closures = Closure_id.Set.empty;
  invariant_params = Set_of_closures_id.Map.empty;
  recursive = Set_of_closures_id.Map.empty;
}

let opaque_transient ~compilation_unit ~root_symbol : transient =
  let export_id = Export_id.create compilation_unit in
  let values =
    let map = Export_id.Map.singleton export_id Value_unknown_descr in
    Compilation_unit.Map.singleton compilation_unit map
  in
  let symbol_id = Symbol.Map.singleton root_symbol export_id in
  { sets_of_closures = Set_of_closures_id.Map.empty;
    values;
    symbol_id;
    invariant_params = Set_of_closures_id.Map.empty;
    recursive = Set_of_closures_id.Map.empty;
    relevant_local_closure_ids = Closure_id.Set.empty;
    relevant_imported_closure_ids = Closure_id.Set.empty;
    relevant_local_vars_within_closure = Var_within_closure.Set.empty;
    relevant_imported_vars_within_closure = Var_within_closure.Set.empty;
  }

let create ~sets_of_closures ~values ~symbol_id
      ~offset_fun ~offset_fv ~constant_closures
      ~invariant_params ~recursive =
  { sets_of_closures;
    values;
    symbol_id;
    offset_fun;
    offset_fv;
    constant_closures;
    invariant_params;
    recursive;
  }

let create_transient
      ~sets_of_closures ~values ~symbol_id ~invariant_params ~recursive
      ~relevant_local_closure_ids ~relevant_imported_closure_ids
      ~relevant_local_vars_within_closure
      ~relevant_imported_vars_within_closure =
  { sets_of_closures;
    values;
    symbol_id;
    invariant_params;
    recursive;
    relevant_local_closure_ids;
    relevant_imported_closure_ids;
    relevant_local_vars_within_closure;
    relevant_imported_vars_within_closure;
  }

let t_of_transient transient
      ~program:_
      ~local_offset_fun ~local_offset_fv
      ~imported_offset_fun ~imported_offset_fv
      ~constant_closures =
  let offset_fun =
    let fold_map set =
      Closure_id.Map.fold (fun key value unchanged ->
        if Closure_id.Set.mem key set then
          Closure_id.Map.add key value unchanged
        else
          unchanged)
    in
    Closure_id.Map.empty
    |> fold_map transient.relevant_local_closure_ids local_offset_fun
    |> fold_map transient.relevant_imported_closure_ids imported_offset_fun
  in
  let offset_fv =
    let fold_map set =
      Var_within_closure.Map.fold (fun key value unchanged ->
        if Var_within_closure.Set.mem key set then
          Var_within_closure.Map.add key value unchanged
        else
          unchanged)
    in
    Var_within_closure.Map.empty
    |> fold_map transient.relevant_local_vars_within_closure local_offset_fv
    |> fold_map transient.relevant_imported_vars_within_closure
         imported_offset_fv
  in
  { sets_of_closures = transient.sets_of_closures;
    values = transient.values;
    symbol_id = transient.symbol_id;
    invariant_params = transient.invariant_params;
    recursive = transient.recursive;
    offset_fun;
    offset_fv;
    constant_closures;
  }

let merge (t1 : t) (t2 : t) : t =
  let eidmap_disjoint_union ?eq map1 map2 =
    Compilation_unit.Map.merge (fun _id map1 map2 ->
        match map1, map2 with
        | None, None -> None
        | None, Some map
        | Some map, None -> Some map
        | Some map1, Some map2 ->
          Some (Export_id.Map.disjoint_union ?eq map1 map2))
      map1 map2
  in
  let int_eq (i : int) j = i = j in
  { values = eidmap_disjoint_union ~eq:equal_descr t1.values t2.values;
    sets_of_closures =
      Set_of_closures_id.Map.disjoint_union t1.sets_of_closures
        t2.sets_of_closures;
    symbol_id =
      Symbol.Map.disjoint_union ~print:Export_id.print t1.symbol_id
        t2.symbol_id;
    offset_fun = Closure_id.Map.disjoint_union
        ~eq:int_eq t1.offset_fun t2.offset_fun;
    offset_fv = Var_within_closure.Map.disjoint_union
        ~eq:int_eq t1.offset_fv t2.offset_fv;
    constant_closures =
      Closure_id.Set.union t1.constant_closures t2.constant_closures;
    invariant_params =
      Set_of_closures_id.Map.disjoint_union
        ~print:(Variable.Map.print Variable.Set.print)
        ~eq:(Variable.Map.equal Variable.Set.equal)
        t1.invariant_params t2.invariant_params;
    recursive =
      Set_of_closures_id.Map.disjoint_union
        ~print:Variable.Set.print
        ~eq:Variable.Set.equal
        t1.recursive t2.recursive;
  }

let find_value eid map =
  let unit_map =
    Compilation_unit.Map.find (Export_id.get_compilation_unit eid) map
  in
  Export_id.Map.find eid unit_map

let find_description (t : t) eid =
  find_value eid t.values

let nest_eid_map map =
  let add_map eid v map =
    let unit = Export_id.get_compilation_unit eid in
    let m =
      try Compilation_unit.Map.find unit map
      with Not_found -> Export_id.Map.empty
    in
    Compilation_unit.Map.add unit (Export_id.Map.add eid v m) map
  in
  Export_id.Map.fold add_map map Compilation_unit.Map.empty

let print_raw_approx ppf approx =
  let fprintf = Format.fprintf in
  match approx with
  | Value_unknown -> fprintf ppf "(Unknown)"
  | Value_id export_id -> fprintf ppf "(Id %a)" Export_id.print export_id
  | Value_symbol symbol -> fprintf ppf "(Symbol %a)" Symbol.print symbol

let print_value_set_of_closures ppf (t : value_set_of_closures) =
  let print_bound_vars ppf bound_vars =
    Format.fprintf ppf "(%a)"
      (Var_within_closure.Map.print print_raw_approx)
      bound_vars
  in
  let print_free_vars ppf free_vars =
    Format.fprintf ppf "(%a)"
      (Variable.Map.print Flambda.print_specialised_to)
      free_vars
  in
  let print_results ppf results =
    Format.fprintf ppf "(%a)" (Closure_id.Map.print print_raw_approx) results
  in
  let print_aliased_symbol ppf aliased_symbol =
    match aliased_symbol with
    | None -> Format.fprintf ppf "<None>"
    | Some symbol -> Format.fprintf ppf "(%a)" Symbol.print symbol
  in
  Format.fprintf ppf
    "((set_of_closures_id %a) \
     (bound_vars %a) \
     (free_vars %a) \
     (results %a) \
     (aliased_symbol %a))"
    Set_of_closures_id.print t.set_of_closures_id
    print_bound_vars t.bound_vars
    print_free_vars t.free_vars
    print_results t.results
    print_aliased_symbol t.aliased_symbol

let print_value_closure ppf (t : value_closure) =
  Format.fprintf ppf "((closure_id %a) (set_of_closures %a))"
    Closure_id.print t.closure_id
    print_value_set_of_closures t.set_of_closures

let print_value_float_array_contents
      ppf (value : value_float_array_contents) =
  match value with
  | Unknown_or_mutable -> Format.fprintf ppf "(Unknown_or_mutable)"
  | Contents _ -> Format.fprintf ppf "(Contents ...)"

let print_value_float_array ppf (value : value_float_array) =
  Format.fprintf ppf "((size %d) (contents %a))"
    value.size
    print_value_float_array_contents value.contents

let print_value_string_contents ppf (value : value_string_contents) =
  match value with
  | Unknown_or_mutable -> Format.fprintf ppf "(Unknown_or_mutable)"
  | Contents _ -> Format.fprintf ppf "(Contents ...)"

let print_value_string ppf (value : value_string) =
  Format.fprintf ppf "((size %d) (contents %a))"
    value.size
    print_value_string_contents value.contents

let print_raw_descr ppf descr =
  let fprintf = Format.fprintf in
  let print_approx_array ppf arr =
    Array.iter (fun approx -> fprintf ppf "%a " print_raw_approx approx) arr
  in
  match descr with
  | Value_block (tag, approx_array) ->
    fprintf ppf "(Value_block (%a %a))"
      Tag.print tag
      print_approx_array approx_array
  | Value_mutable_block (tag, i) ->
    fprintf ppf "(Value_mutable-block (%a %d))" Tag.print tag i
  | Value_int i -> fprintf ppf "(Value_int %d)" i
  | Value_char c -> fprintf ppf "(Value_char %c)" c
  | Value_constptr p -> fprintf ppf "(Value_constptr  %d)" p
  | Value_float f -> fprintf ppf "(Value_float %.3f)" f
  | Value_float_array value_float_array ->
    fprintf ppf "(Value_float_array %a)"
      print_value_float_array value_float_array
  | Value_boxed_int _ ->
    fprintf ppf "(Value_Boxed_int)"
  | Value_string value_string ->
    fprintf ppf "(Value_string %a)" print_value_string value_string
  | Value_closure value_closure ->
    fprintf ppf "(Value_closure %a)"
      print_value_closure value_closure
  | Value_set_of_closures value_set_of_closures ->
    fprintf ppf "(Value_set_of_closures %a)"
    print_value_set_of_closures value_set_of_closures
  | Value_unknown_descr -> fprintf ppf "(Value_unknown_descr)"

let print_approx_components ppf ~symbol_id ~values
      (root_symbols : Symbol.t list) =
  let fprintf = Format.fprintf in
  let printed = ref Export_id.Set.empty in
  let recorded_symbol = ref Symbol.Set.empty in
  let symbols_to_print = Queue.create () in
  let printed_set_of_closures = ref Set_of_closures_id.Set.empty in
  let rec print_approx ppf (approx : approx) =
    match approx with
    | Value_unknown -> fprintf ppf "?"
    | Value_id id ->
      if Export_id.Set.mem id !printed then
        fprintf ppf "(%a: _)" Export_id.print id
      else begin
        try
          let descr = find_value id values in
          printed := Export_id.Set.add id !printed;
          fprintf ppf "@[<hov 2>(%a:@ %a)@]"
            Export_id.print id print_descr descr
        with Not_found ->
          fprintf ppf "(%a: Not available)" Export_id.print id
      end
    | Value_symbol sym ->
      if not (Symbol.Set.mem sym !recorded_symbol) then begin
        recorded_symbol := Symbol.Set.add sym !recorded_symbol;
        Queue.push sym symbols_to_print;
      end;
      Symbol.print ppf sym
  and print_descr ppf (descr : descr) =
    match descr with
    | Value_int i -> Format.pp_print_int ppf i
    | Value_char c -> fprintf ppf "%c" c
    | Value_constptr i -> fprintf ppf "%ip" i
    | Value_block (tag, fields) ->
      fprintf ppf "[%a:%a]" Tag.print tag print_fields fields
    | Value_mutable_block (tag, size) ->
      fprintf ppf "[mutable %a:%i]" Tag.print tag size
    | Value_closure {closure_id; set_of_closures} ->
      fprintf ppf "(closure %a, %a)" Closure_id.print closure_id
        print_set_of_closures set_of_closures
    | Value_set_of_closures set_of_closures ->
      fprintf ppf "(set_of_closures %a)" print_set_of_closures set_of_closures
    | Value_string { contents; size } ->
      begin match contents with
      | Unknown_or_mutable -> Format.fprintf ppf "string %i" size
      | Contents s ->
        let s =
          if size > 10
          then String.sub s 0 8 ^ "..."
          else s
        in
        Format.fprintf ppf "string %i %S" size s
      end
    | Value_float f -> Format.pp_print_float ppf f
    | Value_float_array float_array ->
      Format.fprintf ppf "float_array%s %i"
        (match float_array.contents with
          | Unknown_or_mutable -> ""
          | Contents _ -> "_imm")
        float_array.size
    | Value_boxed_int (t, i) ->
      begin match t with
      | A.Int32 -> Format.fprintf ppf "%li" i
      | A.Int64 -> Format.fprintf ppf "%Li" i
      | A.Nativeint -> Format.fprintf ppf "%ni" i
      end
    | Value_unknown_descr -> Format.fprintf ppf "?"
  and print_fields ppf fields =
    Array.iter (fun approx -> fprintf ppf "%a@ " print_approx approx) fields
  and print_set_of_closures ppf
      { set_of_closures_id; bound_vars; aliased_symbol; results } =
    if Set_of_closures_id.Set.mem set_of_closures_id !printed_set_of_closures
    then fprintf ppf "%a" Set_of_closures_id.print set_of_closures_id
    else begin
      printed_set_of_closures :=
        Set_of_closures_id.Set.add set_of_closures_id !printed_set_of_closures;
      let print_alias ppf = function
        | None -> ()
        | Some symbol ->
          Format.fprintf ppf "@ (alias: %a)" Symbol.print symbol
      in
      fprintf ppf "{%a: %a%a => %a}"
        Set_of_closures_id.print set_of_closures_id
        print_binding bound_vars
        print_alias aliased_symbol
        (Closure_id.Map.print print_approx) results
    end
  and print_binding ppf bound_vars =
    Var_within_closure.Map.iter (fun clos_id approx ->
        fprintf ppf "%a -> %a,@ "
          Var_within_closure.print clos_id
          print_approx approx)
      bound_vars
  in
  let rec print_recorded_symbols () =
    if not (Queue.is_empty symbols_to_print) then begin
      let sym = Queue.pop symbols_to_print in
      begin match Symbol.Map.find sym symbol_id with
      | exception Not_found -> ()
      | id ->
        fprintf ppf "@[<hov 2>%a:@ %a@];@ "
          Symbol.print sym
          print_approx (Value_id id)
      end;
      print_recorded_symbols ();
    end
  in
  List.iter (fun s -> Queue.push s symbols_to_print) root_symbols;
  fprintf ppf "@[<hov 2>Globals:@ ";
  fprintf ppf "@]@ @[<hov 2>Symbols:@ ";
  print_recorded_symbols ();
  fprintf ppf "@]"

let print_approx ppf ((t : t), symbols) =
  let symbol_id = t.symbol_id in
  let values = t.values in
  print_approx_components ppf ~symbol_id ~values symbols

let print_offsets ppf (t : t) =
  Format.fprintf ppf "@[<v 2>offset_fun:@ ";
  Closure_id.Map.iter (fun cid off ->
      Format.fprintf ppf "%a -> %i@ "
        Closure_id.print cid off) t.offset_fun;
  Format.fprintf ppf "@]@ @[<v 2>offset_fv:@ ";
  Var_within_closure.Map.iter (fun vid off ->
      Format.fprintf ppf "%a -> %i@ "
        Var_within_closure.print vid off) t.offset_fv;
  Format.fprintf ppf "@]@ "

let print_functions ppf (t : t) =
  Set_of_closures_id.Map.print
    A.print_function_declarations ppf
    t.sets_of_closures

let print_all ppf ((t, root_symbols) : t * Symbol.t list) =
  let fprintf = Format.fprintf in
  fprintf ppf "approxs@ %a@.@."
    print_approx (t, root_symbols);
  fprintf ppf "functions@ %a@.@."
    print_functions t