summaryrefslogtreecommitdiff
path: root/bytecomp/bytegen.ml
blob: 6ea0b0766f45fd1f823950532c3bebd5d7023424 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(*  bytegen.ml : translation of lambda terms to lists of instructions. *)

open Misc
open Asttypes
open Primitive
open Types
open Lambda
open Switch
open Instruct
open Debuginfo.Scoped_location

(**** Label generation ****)

let label_counter = ref 0

let new_label () =
  incr label_counter; !label_counter

(**** Operations on compilation environments. ****)

let empty_env =
  { ce_stack = Ident.empty; ce_heap = Ident.empty; ce_rec = Ident.empty }

(* Add a stack-allocated variable *)

let add_var id pos env =
  { ce_stack = Ident.add id pos env.ce_stack;
    ce_heap = env.ce_heap;
    ce_rec = env.ce_rec }

let rec add_vars idlist pos env =
  match idlist with
    [] -> env
  | id :: rem -> add_vars rem (pos + 1) (add_var id pos env)

(**** Examination of the continuation ****)

(* Return a label to the beginning of the given continuation.
   If the sequence starts with a branch, use the target of that branch
   as the label, thus avoiding a jump to a jump. *)

let label_code = function
    Kbranch lbl :: _ as cont -> (lbl, cont)
  | Klabel lbl :: _ as cont -> (lbl, cont)
  | cont -> let lbl = new_label() in (lbl, Klabel lbl :: cont)

(* Return a branch to the continuation. That is, an instruction that,
   when executed, branches to the continuation or performs what the
   continuation performs. We avoid generating branches to branches and
   branches to returns. *)

let rec make_branch_2 lbl n cont =
  function
    Kreturn m :: _ -> (Kreturn (n + m), cont)
  | Klabel _ :: c  -> make_branch_2 lbl n cont c
  | Kpop m :: c    -> make_branch_2 lbl (n + m) cont c
  | _              ->
      match lbl with
        Some lbl -> (Kbranch lbl, cont)
      | None     -> let lbl = new_label() in (Kbranch lbl, Klabel lbl :: cont)

let make_branch cont =
  match cont with
    (Kbranch _ as branch) :: _ -> (branch, cont)
  | (Kreturn _ as return) :: _ -> (return, cont)
  | Kraise k :: _ -> (Kraise k, cont)
  | Klabel lbl :: _ -> make_branch_2 (Some lbl) 0 cont cont
  | _ ->  make_branch_2 (None) 0 cont cont

(* Avoid a branch to a label that follows immediately *)

let branch_to label cont = match cont with
| Klabel label0::_ when label = label0 -> cont
| _ -> Kbranch label::cont

(* Discard all instructions up to the next label.
   This function is to be applied to the continuation before adding a
   non-terminating instruction (branch, raise, return) in front of it. *)

let rec discard_dead_code = function
    [] -> []
  | (Klabel _ | Krestart | Ksetglobal _) :: _ as cont -> cont
  | _ :: cont -> discard_dead_code cont

(* Check if we're in tailcall position *)

let rec is_tailcall = function
    Kreturn _ :: _ -> true
  | Klabel _ :: c -> is_tailcall c
  | Kpop _ :: c -> is_tailcall c
  | _ -> false

(* Will this primitive result in an OCaml call which would benefit
   from the tail call optimization? *)

let preserve_tailcall_for_prim = function
  | Popaque | Psequor | Psequand
  | Prunstack | Pperform | Presume | Preperform ->
      true
  | Pbytes_to_string | Pbytes_of_string | Pignore | Pgetglobal _ | Psetglobal _
  | Pmakeblock _ | Pfield _ | Pfield_computed | Psetfield _
  | Psetfield_computed _ | Pfloatfield _ | Psetfloatfield _ | Pduprecord _
  | Pccall _ | Praise _ | Pnot | Pnegint | Paddint | Psubint | Pmulint
  | Pdivint _ | Pmodint _ | Pandint | Porint | Pxorint | Plslint | Plsrint
  | Pasrint | Pintcomp _ | Poffsetint _ | Poffsetref _ | Pintoffloat
  | Pfloatofint | Pnegfloat | Pabsfloat | Paddfloat | Psubfloat | Pmulfloat
  | Pdivfloat | Pfloatcomp _ | Pstringlength | Pstringrefu  | Pstringrefs
  | Pcompare_ints | Pcompare_floats | Pcompare_bints _
  | Pbyteslength | Pbytesrefu | Pbytessetu | Pbytesrefs | Pbytessets
  | Pmakearray _ | Pduparray _ | Parraylength _ | Parrayrefu _ | Parraysetu _
  | Parrayrefs _ | Parraysets _ | Pisint | Pisout | Pbintofint _ | Pintofbint _
  | Pcvtbint _ | Pnegbint _ | Paddbint _ | Psubbint _ | Pmulbint _ | Pdivbint _
  | Pmodbint _ | Pandbint _ | Porbint _ | Pxorbint _ | Plslbint _ | Plsrbint _
  | Pasrbint _ | Pbintcomp _ | Pbigarrayref _ | Pbigarrayset _ | Pbigarraydim _
  | Pstring_load_16 _ | Pstring_load_32 _ | Pstring_load_64 _ | Pbytes_load_16 _
  | Pbytes_load_32 _ | Pbytes_load_64 _ | Pbytes_set_16 _ | Pbytes_set_32 _
  | Pbytes_set_64 _ | Pbigstring_load_16 _ | Pbigstring_load_32 _
  | Pbigstring_load_64 _ | Pbigstring_set_16 _ | Pbigstring_set_32 _
  | Pbigstring_set_64 _ | Pctconst _ | Pbswap16 | Pbbswap _ | Pint_as_pointer
  | Patomic_exchange | Patomic_cas | Patomic_fetch_add | Patomic_load _
  | Pdls_get ->
      false

(* Add a Kpop N instruction in front of a continuation *)

let rec add_pop n cont =
  if n = 0 then cont else
    match cont with
      Kpop m :: cont -> add_pop (n + m) cont
    | Kreturn m :: cont -> Kreturn(n + m) :: cont
    | Kraise _ :: _ -> cont
    | _ -> Kpop n :: cont

(* Add the constant "unit" in front of a continuation *)

let add_const_unit = function
    (Kacc _ | Kconst _ | Kgetglobal _ | Kpush_retaddr _) :: _ as cont -> cont
  | cont -> Kconst const_unit :: cont

let rec push_dummies n k = match n with
| 0 -> k
| _ -> Kconst const_unit::Kpush::push_dummies (n-1) k


(**** Auxiliary for compiling "let rec" ****)

type rhs_kind =
  | RHS_block of int
  | RHS_infix of { blocksize : int; offset : int }
  | RHS_floatblock of int
  | RHS_nonrec
  | RHS_function of int * int

let rec check_recordwith_updates id e =
  match e with
  | Lsequence (Lprim ((Psetfield _ | Psetfloatfield _), [Lvar id2; _], _), cont)
      -> id2 = id && check_recordwith_updates id cont
  | Lvar id2 -> id2 = id
  | _ -> false

let rec size_of_lambda env = function
  | Lvar id ->
      begin try Ident.find_same id env with Not_found -> RHS_nonrec end
  | Lfunction{params} as funct ->
      RHS_function (2 + Ident.Set.cardinal(free_variables funct),
                    List.length params)
  | Llet (Strict, _k, id, Lprim (Pduprecord (kind, size), _, _), body)
    when check_recordwith_updates id body ->
      begin match kind with
      | Record_regular | Record_inlined _ -> RHS_block size
      | Record_unboxed _ -> assert false
      | Record_float -> RHS_floatblock size
      | Record_extension _ -> RHS_block (size + 1)
      end
  | Llet(_str, _k, id, arg, body) ->
      size_of_lambda (Ident.add id (size_of_lambda env arg) env) body
  (* See the Lletrec case of comp_expr *)
  | Lletrec(bindings, body) when
      List.for_all (function (_, Lfunction _) -> true | _ -> false) bindings ->
      (* let rec of functions *)
      let fv =
        Ident.Set.elements (free_variables (Lletrec(bindings, lambda_unit))) in
      (* See Instruct(CLOSUREREC) in interp.c *)
      let blocksize = List.length bindings * 3 - 1 + List.length fv in
      let offsets = List.mapi (fun i (id, _e) -> (id, i * 3)) bindings in
      let env = List.fold_right (fun (id, offset) env ->
        Ident.add id (RHS_infix { blocksize; offset }) env) offsets env in
      size_of_lambda env body
  | Lletrec(bindings, body) ->
      let env = List.fold_right
        (fun (id, e) env -> Ident.add id (size_of_lambda env e) env)
        bindings env
      in
      size_of_lambda env body
  | Lprim(Pmakeblock _, args, _) -> RHS_block (List.length args)
  | Lprim (Pmakearray ((Paddrarray|Pintarray), _), args, _) ->
      RHS_block (List.length args)
  | Lprim (Pmakearray (Pfloatarray, _), args, _) ->
      RHS_floatblock (List.length args)
  | Lprim (Pmakearray (Pgenarray, _), _, _) ->
     (* Pgenarray is excluded from recursive bindings by the
        check in Translcore.check_recursive_lambda *)
      RHS_nonrec
  | Lprim (Pduprecord ((Record_regular | Record_inlined _), size), _, _) ->
      RHS_block size
  | Lprim (Pduprecord (Record_unboxed _, _), _, _) ->
      assert false
  | Lprim (Pduprecord (Record_extension _, size), _, _) ->
      RHS_block (size + 1)
  | Lprim (Pduprecord (Record_float, size), _, _) -> RHS_floatblock size
  | Levent (lam, _) -> size_of_lambda env lam
  | Lsequence (_lam, lam') -> size_of_lambda env lam'
  | _ -> RHS_nonrec

(**** Merging consecutive events ****)

let copy_event ev kind info repr =
  { ev with
    ev_pos = 0;                   (* patched in emitcode *)
    ev_kind = kind;
    ev_info = info;
    ev_repr = repr }

let merge_infos ev ev' =
  match ev.ev_info, ev'.ev_info with
    Event_other, info -> info
  | info, Event_other -> info
  | _                 -> fatal_error "Bytegen.merge_infos"

let merge_repr ev ev' =
  match ev.ev_repr, ev'.ev_repr with
    Event_none, x -> x
  | x, Event_none -> x
  | Event_parent r, Event_child r' when r == r' && !r = 1 -> Event_none
  | Event_child r, Event_parent r' when r == r' -> Event_parent r
  | _, _          -> fatal_error "Bytegen.merge_repr"

let merge_events ev ev' =
  let (maj, min) =
    match ev.ev_kind, ev'.ev_kind with
    (* Discard pseudo-events *)
      Event_pseudo,  _                              -> ev', ev
    | _,             Event_pseudo                   -> ev,  ev'
    (* Keep following event, supposedly more informative *)
    | Event_before,  (Event_after _ | Event_before) -> ev',  ev
    (* Discard following events, supposedly less informative *)
    | Event_after _, (Event_after _ | Event_before) -> ev, ev'
  in
  copy_event maj maj.ev_kind (merge_infos maj min) (merge_repr maj min)

let weaken_event ev cont =
  match ev.ev_kind with
    Event_after _ ->
      begin match cont with
        Kpush :: Kevent ({ev_repr = Event_none} as ev') :: c ->
          begin match ev.ev_info with
            Event_return _ ->
              (* Weaken event *)
              let repr = ref 1 in
              let ev =
                copy_event ev Event_pseudo ev.ev_info (Event_parent repr)
              and ev' =
                copy_event ev' ev'.ev_kind ev'.ev_info (Event_child repr)
              in
              Kevent ev :: Kpush :: Kevent ev' :: c
          | _ ->
              (* Only keep following event, equivalent *)
              cont
          end
      | _ ->
          Kevent ev :: cont
      end
  | _ ->
      Kevent ev :: cont

let add_event ev =
  function
    Kevent ev' :: cont -> weaken_event (merge_events ev ev') cont
  | cont               -> weaken_event ev cont

(* Pseudo events are ignored by the debugger. They are only used for
   generating backtraces.

   We prefer adding this event here rather than in lambda generation
   1) there are many different situations where a Pmakeblock can
      be generated
   2) we prefer inserting a pseudo event rather than an event after
      to prevent the debugger to stop at every single allocation. *)
let add_pseudo_event loc modname c =
  if !Clflags.debug then
    let ev_defname = string_of_scoped_location loc in
    let ev =
      { ev_pos = 0;                   (* patched in emitcode *)
        ev_module = modname;
        ev_loc = to_location loc;
        ev_defname;
        ev_kind = Event_pseudo;
        ev_info = Event_other;        (* Dummy *)
        ev_typenv = Env.Env_empty;    (* Dummy *)
        ev_typsubst = Subst.identity; (* Dummy *)
        ev_compenv = empty_env;       (* Dummy *)
        ev_stacksize = 0;             (* Dummy *)
        ev_repr = Event_none }        (* Dummy *)
    in
    add_event ev c
  else c

(**** Compilation of a lambda expression ****)

type stack_info = {
  try_blocks : int list;
  (* list of stack size for each nested try block *)
  sz_static_raises : (int * (int * int * int list)) list;
  (* association staticraise numbers -> (lbl,size of stack, try_blocks *)
  max_stack_used : int ref;
  (* Maximal stack size reached during the current function body *)
}

let create_stack_info () = {
  try_blocks = [];
  sz_static_raises = [];
  max_stack_used = ref 0
}

(* association staticraise numbers -> (lbl,size of stack, try_blocks *)

let push_static_raise stack_info i lbl_handler sz =
  { stack_info
    with
      sz_static_raises = (i, (lbl_handler, sz, stack_info.try_blocks))
                         :: stack_info.sz_static_raises
  }

let find_raise_label stack_info i =
  try
    List.assoc i stack_info.sz_static_raises
  with
  | Not_found ->
      Misc.fatal_error
        ("exit("^Int.to_string i^") outside appropriated catch")

(* Will the translation of l lead to a jump to label ? *)
let code_as_jump stack_info l sz = match l with
| Lstaticraise (i,[]) ->
    let label,size,tb = find_raise_label stack_info i in
    if sz = size && tb == stack_info.try_blocks then
      Some label
    else
      None
| _ -> None

(* Function bodies that remain to be compiled *)

type function_to_compile =
  { params: Ident.t list;               (* function parameters *)
    body: lambda;                       (* the function body *)
    label: label;                       (* the label of the function entry *)
    free_vars: Ident.t list;            (* free variables of the function *)
    num_defs: int;            (* number of mutually recursive definitions *)
    rec_vars: Ident.t list;             (* mutually recursive fn names *)
    rec_pos: int }                      (* rank in recursive definition *)

let functions_to_compile  = (Stack.create () : function_to_compile Stack.t)

(* Name of current compilation unit (for debugging events) *)

let compunit_name = ref ""

let check_stack stack_info sz =
  let curr = stack_info.max_stack_used in
  if sz > !curr then curr := sz

(* Sequence of string tests *)


(* Translate a primitive to a bytecode instruction (possibly a call to a C
   function) *)

let comp_bint_primitive bi suff args =
  let pref =
    match bi with Pnativeint -> "caml_nativeint_"
                | Pint32 -> "caml_int32_"
                | Pint64 -> "caml_int64_" in
  Kccall(pref ^ suff, List.length args)

let comp_primitive stack_info p sz args =
  check_stack stack_info sz;
  match p with
    Pgetglobal id -> Kgetglobal id
  | Psetglobal id -> Ksetglobal id
  | Pintcomp cmp -> Kintcomp cmp
  | Pcompare_ints -> Kccall("caml_int_compare", 2)
  | Pcompare_floats -> Kccall("caml_float_compare", 2)
  | Pcompare_bints bi -> comp_bint_primitive bi "compare" args
  | Pfield(n, _ptr, _mut) -> Kgetfield n
  | Pfield_computed -> Kgetvectitem
  | Psetfield(n, _ptr, _init) -> Ksetfield n
  | Psetfield_computed(_ptr, _init) -> Ksetvectitem
  | Psetfloatfield (n, _init) -> Ksetfloatfield n
  | Pduprecord _ -> Kccall("caml_obj_dup", 1)
  | Pccall p -> Kccall(p.prim_name, p.prim_arity)
  | Pperform ->
      check_stack stack_info (sz + 4);
      Kperform
  | Pnegint -> Knegint
  | Paddint -> Kaddint
  | Psubint -> Ksubint
  | Pmulint -> Kmulint
  | Pdivint _ -> Kdivint
  | Pmodint _ -> Kmodint
  | Pandint -> Kandint
  | Porint -> Korint
  | Pxorint -> Kxorint
  | Plslint -> Klslint
  | Plsrint -> Klsrint
  | Pasrint -> Kasrint
  | Poffsetint n -> Koffsetint n
  | Poffsetref n -> Koffsetref n
  | Pintoffloat -> Kccall("caml_int_of_float", 1)
  | Pfloatofint -> Kccall("caml_float_of_int", 1)
  | Pnegfloat -> Kccall("caml_neg_float", 1)
  | Pabsfloat -> Kccall("caml_abs_float", 1)
  | Paddfloat -> Kccall("caml_add_float", 2)
  | Psubfloat -> Kccall("caml_sub_float", 2)
  | Pmulfloat -> Kccall("caml_mul_float", 2)
  | Pdivfloat -> Kccall("caml_div_float", 2)
  | Pstringlength -> Kccall("caml_ml_string_length", 1)
  | Pbyteslength -> Kccall("caml_ml_bytes_length", 1)
  | Pstringrefs -> Kccall("caml_string_get", 2)
  | Pbytesrefs -> Kccall("caml_bytes_get", 2)
  | Pbytessets -> Kccall("caml_bytes_set", 3)
  | Pstringrefu -> Kgetstringchar
  | Pbytesrefu -> Kgetbyteschar
  | Pbytessetu -> Ksetbyteschar
  | Pstring_load_16(_) -> Kccall("caml_string_get16", 2)
  | Pstring_load_32(_) -> Kccall("caml_string_get32", 2)
  | Pstring_load_64(_) -> Kccall("caml_string_get64", 2)
  | Pbytes_set_16(_) -> Kccall("caml_bytes_set16", 3)
  | Pbytes_set_32(_) -> Kccall("caml_bytes_set32", 3)
  | Pbytes_set_64(_) -> Kccall("caml_bytes_set64", 3)
  | Pbytes_load_16(_) -> Kccall("caml_bytes_get16", 2)
  | Pbytes_load_32(_) -> Kccall("caml_bytes_get32", 2)
  | Pbytes_load_64(_) -> Kccall("caml_bytes_get64", 2)
  | Parraylength _ -> Kvectlength
  | Parrayrefs Pgenarray -> Kccall("caml_array_get", 2)
  | Parrayrefs Pfloatarray -> Kccall("caml_floatarray_get", 2)
  | Parrayrefs _ -> Kccall("caml_array_get_addr", 2)
  | Parraysets Pgenarray -> Kccall("caml_array_set", 3)
  | Parraysets Pfloatarray -> Kccall("caml_floatarray_set", 3)
  | Parraysets _ -> Kccall("caml_array_set_addr", 3)
  | Parrayrefu Pgenarray -> Kccall("caml_array_unsafe_get", 2)
  | Parrayrefu Pfloatarray -> Kccall("caml_floatarray_unsafe_get", 2)
  | Parrayrefu _ -> Kgetvectitem
  | Parraysetu Pgenarray -> Kccall("caml_array_unsafe_set", 3)
  | Parraysetu Pfloatarray -> Kccall("caml_floatarray_unsafe_set", 3)
  | Parraysetu _ -> Ksetvectitem
  | Pctconst c ->
     let const_name = match c with
       | Big_endian -> "big_endian"
       | Word_size -> "word_size"
       | Int_size -> "int_size"
       | Max_wosize -> "max_wosize"
       | Ostype_unix -> "ostype_unix"
       | Ostype_win32 -> "ostype_win32"
       | Ostype_cygwin -> "ostype_cygwin"
       | Backend_type -> "backend_type" in
     Kccall(Printf.sprintf "caml_sys_const_%s" const_name, 1)
  | Pisint -> Kisint
  | Pisout -> Kisout
  | Pbintofint bi -> comp_bint_primitive bi "of_int" args
  | Pintofbint bi -> comp_bint_primitive bi "to_int" args
  | Pcvtbint(src, dst) ->
      begin match (src, dst) with
      | (Pint32, Pnativeint) -> Kccall("caml_nativeint_of_int32", 1)
      | (Pnativeint, Pint32) -> Kccall("caml_nativeint_to_int32", 1)
      | (Pint32, Pint64) -> Kccall("caml_int64_of_int32", 1)
      | (Pint64, Pint32) -> Kccall("caml_int64_to_int32", 1)
      | (Pnativeint, Pint64) -> Kccall("caml_int64_of_nativeint", 1)
      | (Pint64, Pnativeint) -> Kccall("caml_int64_to_nativeint", 1)
      | ((Pint32 | Pint64 | Pnativeint), _) ->
          fatal_error "Bytegen.comp_primitive: invalid Pcvtbint cast"
      end
  | Pnegbint bi -> comp_bint_primitive bi "neg" args
  | Paddbint bi -> comp_bint_primitive bi "add" args
  | Psubbint bi -> comp_bint_primitive bi "sub" args
  | Pmulbint bi -> comp_bint_primitive bi "mul" args
  | Pdivbint { size = bi } -> comp_bint_primitive bi "div" args
  | Pmodbint { size = bi } -> comp_bint_primitive bi "mod" args
  | Pandbint bi -> comp_bint_primitive bi "and" args
  | Porbint bi -> comp_bint_primitive bi "or" args
  | Pxorbint bi -> comp_bint_primitive bi "xor" args
  | Plslbint bi -> comp_bint_primitive bi "shift_left" args
  | Plsrbint bi -> comp_bint_primitive bi "shift_right_unsigned" args
  | Pasrbint bi -> comp_bint_primitive bi "shift_right" args
  | Pbintcomp(_, Ceq) -> Kccall("caml_equal", 2)
  | Pbintcomp(_, Cne) -> Kccall("caml_notequal", 2)
  | Pbintcomp(_, Clt) -> Kccall("caml_lessthan", 2)
  | Pbintcomp(_, Cgt) -> Kccall("caml_greaterthan", 2)
  | Pbintcomp(_, Cle) -> Kccall("caml_lessequal", 2)
  | Pbintcomp(_, Cge) -> Kccall("caml_greaterequal", 2)
  | Pbigarrayref(_, n, _, _) -> Kccall("caml_ba_get_" ^ Int.to_string n, n + 1)
  | Pbigarrayset(_, n, _, _) -> Kccall("caml_ba_set_" ^ Int.to_string n, n + 2)
  | Pbigarraydim(n) -> Kccall("caml_ba_dim_" ^ Int.to_string n, 1)
  | Pbigstring_load_16(_) -> Kccall("caml_ba_uint8_get16", 2)
  | Pbigstring_load_32(_) -> Kccall("caml_ba_uint8_get32", 2)
  | Pbigstring_load_64(_) -> Kccall("caml_ba_uint8_get64", 2)
  | Pbigstring_set_16(_) -> Kccall("caml_ba_uint8_set16", 3)
  | Pbigstring_set_32(_) -> Kccall("caml_ba_uint8_set32", 3)
  | Pbigstring_set_64(_) -> Kccall("caml_ba_uint8_set64", 3)
  | Pbswap16 -> Kccall("caml_bswap16", 1)
  | Pbbswap(bi) -> comp_bint_primitive bi "bswap" args
  | Pint_as_pointer -> Kccall("caml_int_as_pointer", 1)
  | Pbytes_to_string -> Kccall("caml_string_of_bytes", 1)
  | Pbytes_of_string -> Kccall("caml_bytes_of_string", 1)
  | Patomic_load _ -> Kccall("caml_atomic_load", 1)
  | Patomic_exchange -> Kccall("caml_atomic_exchange", 2)
  | Patomic_cas -> Kccall("caml_atomic_cas", 3)
  | Patomic_fetch_add -> Kccall("caml_atomic_fetch_add", 2)
  | Pdls_get -> Kccall("caml_domain_dls_get", 1)
  (* The cases below are handled in [comp_expr] before the [comp_primitive] call
     (in the order in which they appear below),
     so they should never be reached in this function. *)
  | Prunstack | Presume | Preperform
  | Pignore | Popaque
  | Pnot | Psequand | Psequor
  | Praise _
  | Pmakearray _ | Pduparray _
  | Pfloatcomp _
  | Pmakeblock _
  | Pfloatfield _
    ->
      fatal_error "Bytegen.comp_primitive"

let is_immed n = immed_min <= n && n <= immed_max

module Storer =
  Switch.Store
    (struct type t = lambda type key = lambda
      let compare_key = Stdlib.compare
      let make_key = Lambda.make_key end)

(* Compile an expression.
   The value of the expression is left in the accumulator.
   env = compilation environment
   exp = the lambda expression to compile
   sz = current size of the stack frame
   cont = list of instructions to execute afterwards
   Result = list of instructions that evaluate exp, then perform cont. *)

let rec comp_expr stack_info env exp sz cont =
  check_stack stack_info sz;
  match exp with
    Lvar id | Lmutvar id ->
      begin try
        let pos = Ident.find_same id env.ce_stack in
        Kacc(sz - pos) :: cont
      with Not_found ->
      try
        let pos = Ident.find_same id env.ce_heap in
        Kenvacc(pos) :: cont
      with Not_found ->
      try
        let ofs = Ident.find_same id env.ce_rec in
        Koffsetclosure(ofs) :: cont
      with Not_found ->
        fatal_error ("Bytegen.comp_expr: var " ^ Ident.unique_name id)
      end
  | Lconst cst ->
      Kconst cst :: cont
  | Lapply{ap_func = func; ap_args = args} ->
      let nargs = List.length args in
      if is_tailcall cont then begin
        comp_args stack_info env args sz
          (Kpush :: comp_expr stack_info env func (sz + nargs)
            (Kappterm(nargs, sz + nargs) :: discard_dead_code cont))
      end else begin
        if nargs < 4 then
          comp_args stack_info env args sz
            (Kpush ::
             comp_expr stack_info env func (sz + nargs) (Kapply nargs :: cont))
        else begin
          let (lbl, cont1) = label_code cont in
          Kpush_retaddr lbl ::
          comp_args stack_info env args (sz + 3)
            (Kpush :: comp_expr stack_info env func (sz + 3 + nargs)
                      (Kapply nargs :: cont1))
        end
      end
  | Lsend(kind, met, obj, args, _) ->
      assert (kind <> Cached);
      let nargs = List.length args + 1 in
      let getmethod, args' =
        if kind = Self then (Kgetmethod, met::obj::args) else
        match met with
          Lconst(Const_base(Const_int n)) -> (Kgetpubmet n, obj::args)
        | _ -> (Kgetdynmet, met::obj::args)
      in
      if is_tailcall cont then
        comp_args stack_info env args' sz
          (getmethod :: Kappterm(nargs, sz + nargs) :: discard_dead_code cont)
      else
        if nargs < 4 then
          comp_args stack_info env args' sz
            (getmethod :: Kapply nargs :: cont)
        else begin
          let (lbl, cont1) = label_code cont in
          Kpush_retaddr lbl ::
          comp_args stack_info env args' (sz + 3)
            (getmethod :: Kapply nargs :: cont1)
        end
  | Lfunction{params; body; loc} -> (* assume kind = Curried *)
      let cont = add_pseudo_event loc !compunit_name cont in
      let lbl = new_label() in
      let fv = Ident.Set.elements(free_variables exp) in
      let to_compile =
        { params = List.map fst params; body = body; label = lbl;
          free_vars = fv; num_defs = 1; rec_vars = []; rec_pos = 0 } in
      Stack.push to_compile functions_to_compile;
      comp_args stack_info env (List.map (fun n -> Lvar n) fv) sz
        (Kclosure(lbl, List.length fv) :: cont)
  | Llet(_, _k, id, arg, body)
  | Lmutlet(_k, id, arg, body) ->
      comp_expr stack_info env arg sz
        (Kpush :: comp_expr stack_info (add_var id (sz+1) env) body (sz+1)
          (add_pop 1 cont))
  | Lletrec(decl, body) ->
      let ndecl = List.length decl in
      if List.for_all (function (_, Lfunction _) -> true | _ -> false)
                      decl then begin
        (* let rec of functions *)
        let fv =
          Ident.Set.elements (free_variables (Lletrec(decl, lambda_unit))) in
        let rec_idents = List.map (fun (id, _lam) -> id) decl in
        let rec comp_fun pos = function
            [] -> []
          | (_id, Lfunction{params; body}) :: rem ->
              let lbl = new_label() in
              let to_compile =
                { params = List.map fst params; body = body; label = lbl;
                  free_vars = fv; num_defs = ndecl; rec_vars = rec_idents;
                  rec_pos = pos} in
              Stack.push to_compile functions_to_compile;
              lbl :: comp_fun (pos + 1) rem
          | _ -> assert false in
        let lbls = comp_fun 0 decl in
        comp_args stack_info env (List.map (fun n -> Lvar n) fv) sz
          (Kclosurerec(lbls, List.length fv) ::
           (comp_expr stack_info
              (add_vars rec_idents (sz+1) env) body (sz + ndecl)
              (add_pop ndecl cont)))
      end else begin
        let decl_size =
          List.map (fun (id, exp) -> (id, exp, size_of_lambda Ident.empty exp))
            decl in
        let rec comp_init new_env sz = function
          | [] -> comp_nonrec new_env sz ndecl decl_size
          | (id, _exp, RHS_floatblock blocksize) :: rem ->
              Kconst(Const_base(Const_int blocksize)) ::
              Kccall("caml_alloc_dummy_float", 1) :: Kpush ::
              comp_init (add_var id (sz+1) new_env) (sz+1) rem
          | (id, _exp, RHS_block blocksize) :: rem ->
              Kconst(Const_base(Const_int blocksize)) ::
              Kccall("caml_alloc_dummy", 1) :: Kpush ::
              comp_init (add_var id (sz+1) new_env) (sz+1) rem
          | (id, _exp, RHS_infix { blocksize; offset }) :: rem ->
              Kconst(Const_base(Const_int offset)) ::
              Kpush ::
              Kconst(Const_base(Const_int blocksize)) ::
              Kccall("caml_alloc_dummy_infix", 2) :: Kpush ::
              comp_init (add_var id (sz+1) new_env) (sz+1) rem
          | (id, _exp, RHS_function (blocksize,arity)) :: rem ->
              Kconst(Const_base(Const_int arity)) ::
              Kpush ::
              Kconst(Const_base(Const_int blocksize)) ::
              Kccall("caml_alloc_dummy_function", 2) :: Kpush ::
              comp_init (add_var id (sz+1) new_env) (sz+1) rem
          | (id, _exp, RHS_nonrec) :: rem ->
              Kconst(Const_base(Const_int 0)) :: Kpush ::
              comp_init (add_var id (sz+1) new_env) (sz+1) rem
        and comp_nonrec new_env sz i = function
          | [] -> comp_rec new_env sz ndecl decl_size
          | (_id, _exp, (RHS_block _ | RHS_infix _ |
                         RHS_floatblock _ | RHS_function _))
            :: rem ->
              comp_nonrec new_env sz (i-1) rem
          | (_id, exp, RHS_nonrec) :: rem ->
              comp_expr stack_info new_env exp sz
                (Kassign (i-1) :: comp_nonrec new_env sz (i-1) rem)
        and comp_rec new_env sz i = function
          | [] -> comp_expr stack_info new_env body sz (add_pop ndecl cont)
          | (_id, exp, (RHS_block _ | RHS_infix _ |
                        RHS_floatblock _ | RHS_function _))
            :: rem ->
              comp_expr stack_info new_env exp sz
                (Kpush :: Kacc i :: Kccall("caml_update_dummy", 2) ::
                 comp_rec new_env sz (i-1) rem)
          | (_id, _exp, RHS_nonrec) :: rem ->
              comp_rec new_env sz (i-1) rem
        in
        comp_init env sz decl_size
      end
  | Lprim(Popaque, [arg], _) ->
      comp_expr stack_info env arg sz cont
  | Lprim(Pignore, [arg], _) ->
      comp_expr stack_info env arg sz (add_const_unit cont)
  | Lprim(Pnot, [arg], _) ->
      let newcont =
        match cont with
          Kbranchif lbl :: cont1 -> Kbranchifnot lbl :: cont1
        | Kbranchifnot lbl :: cont1 -> Kbranchif lbl :: cont1
        | _ -> Kboolnot :: cont in
      comp_expr stack_info env arg sz newcont
  | Lprim(Psequand, [exp1; exp2], _) ->
      begin match cont with
        Kbranchifnot lbl :: _ ->
          comp_expr stack_info env exp1 sz (Kbranchifnot lbl ::
            comp_expr stack_info env exp2 sz cont)
      | Kbranchif lbl :: cont1 ->
          let (lbl2, cont2) = label_code cont1 in
          comp_expr stack_info env exp1 sz (Kbranchifnot lbl2 ::
            comp_expr stack_info env exp2 sz (Kbranchif lbl :: cont2))
      | _ ->
          let (lbl, cont1) = label_code cont in
          comp_expr stack_info env exp1 sz (Kstrictbranchifnot lbl ::
            comp_expr stack_info env exp2 sz cont1)
      end
  | Lprim(Psequor, [exp1; exp2], _) ->
      begin match cont with
        Kbranchif lbl :: _ ->
          comp_expr stack_info env exp1 sz (Kbranchif lbl ::
            comp_expr stack_info env exp2 sz cont)
      | Kbranchifnot lbl :: cont1 ->
          let (lbl2, cont2) = label_code cont1 in
          comp_expr stack_info env exp1 sz (Kbranchif lbl2 ::
            comp_expr stack_info env exp2 sz (Kbranchifnot lbl :: cont2))
      | _ ->
          let (lbl, cont1) = label_code cont in
          comp_expr stack_info env exp1 sz (Kstrictbranchif lbl ::
            comp_expr stack_info env exp2 sz cont1)
      end
  | Lprim(Praise k, [arg], _) ->
      comp_expr stack_info env arg sz (Kraise k :: discard_dead_code cont)
  | Lprim(Paddint, [arg; Lconst(Const_base(Const_int n))], _)
    when is_immed n ->
      comp_expr stack_info env arg sz (Koffsetint n :: cont)
  | Lprim(Psubint, [arg; Lconst(Const_base(Const_int n))], _)
    when is_immed (-n) ->
      comp_expr stack_info env arg sz (Koffsetint (-n) :: cont)
  | Lprim (Poffsetint n, [arg], _)
    when not (is_immed n) ->
      comp_expr stack_info env arg sz
        (Kpush::
         Kconst (Const_base (Const_int n))::
         Kaddint::cont)
  | Lprim(Pmakearray (kind, _), args, loc) ->
      let cont = add_pseudo_event loc !compunit_name cont in
      begin match kind with
        Pintarray | Paddrarray ->
          comp_args stack_info env args sz
            (Kmakeblock(List.length args, 0) :: cont)
      | Pfloatarray ->
          comp_args stack_info env args sz
            (Kmakefloatblock(List.length args) :: cont)
      | Pgenarray ->
          if args = []
          then Kmakeblock(0, 0) :: cont
          else comp_args stack_info env args sz
                 (Kmakeblock(List.length args, 0) ::
                  Kccall("caml_make_array", 1) :: cont)
      end
  | Lprim((Presume|Prunstack), args, _) ->
      let nargs = List.length args - 1 in
      assert (nargs = 2);
      (* Resume itself only pushes 3 words, but perform adds another *)
      check_stack stack_info (sz + 4);
      if is_tailcall cont then
        comp_args stack_info env args sz
          (Kresumeterm(sz + nargs) :: discard_dead_code cont)
      else
        comp_args stack_info env args sz (Kresume :: cont)
  | Lprim(Preperform, args, _) ->
      let nargs = List.length args - 1 in
      assert (nargs = 2);
      check_stack stack_info (sz + 3);
      if is_tailcall cont then
        comp_args stack_info env args sz
          (Kreperformterm(sz + nargs) :: discard_dead_code cont)
      else
        fatal_error "Reperform used in non-tail position"
  | Lprim (Pduparray (kind, mutability),
           [Lprim (Pmakearray (kind',_),args,_)], loc) ->
      assert (kind = kind');
      comp_expr stack_info env
        (Lprim (Pmakearray (kind, mutability), args, loc)) sz cont
  | Lprim (Pduparray _, [arg], loc) ->
      let prim_obj_dup =
        Primitive.simple ~name:"caml_obj_dup" ~arity:1 ~alloc:true
      in
      comp_expr stack_info env (Lprim (Pccall prim_obj_dup, [arg], loc)) sz cont
  | Lprim (Pduparray _, _, _) ->
      Misc.fatal_error "Bytegen.comp_expr: Pduparray takes exactly one arg"
(* Integer first for enabling further optimization (cf. emitcode.ml)  *)
  | Lprim (Pintcomp c, [arg ; (Lconst _ as k)], _) ->
      let p = Pintcomp (swap_integer_comparison c)
      and args = [k ; arg] in
      let nargs = List.length args - 1 in
      comp_args stack_info env args sz
        (comp_primitive stack_info p (sz + nargs - 1) args :: cont)
  | Lprim (Pfloatcomp cmp, args, _) ->
      let cont =
        match cmp with
        | CFeq -> Kccall("caml_eq_float", 2) :: cont
        | CFneq -> Kccall("caml_neq_float", 2) :: cont
        | CFlt -> Kccall("caml_lt_float", 2) :: cont
        | CFnlt -> Kccall("caml_lt_float", 2) :: Kboolnot :: cont
        | CFgt -> Kccall("caml_gt_float", 2) :: cont
        | CFngt -> Kccall("caml_gt_float", 2) :: Kboolnot :: cont
        | CFle -> Kccall("caml_le_float", 2) :: cont
        | CFnle -> Kccall("caml_le_float", 2) :: Kboolnot :: cont
        | CFge -> Kccall("caml_ge_float", 2) :: cont
        | CFnge -> Kccall("caml_ge_float", 2) :: Kboolnot :: cont
      in
      comp_args stack_info env args sz cont
  | Lprim(Pmakeblock(tag, _mut, _), args, loc) ->
      let cont = add_pseudo_event loc !compunit_name cont in
      comp_args stack_info env args sz
        (Kmakeblock(List.length args, tag) :: cont)
  | Lprim(Pfloatfield n, args, loc) ->
      let cont = add_pseudo_event loc !compunit_name cont in
      comp_args stack_info env args sz (Kgetfloatfield n :: cont)
  | Lprim(p, args, _) ->
      let nargs = List.length args - 1 in
      comp_args stack_info env args sz
        (comp_primitive stack_info p (sz + nargs - 1) args :: cont)
  | Lstaticcatch (body, (i, vars) , handler) ->
      let vars = List.map fst vars in
      let nvars = List.length vars in
      let branch1, cont1 = make_branch cont in
      let r =
        if nvars <> 1 then begin (* general case *)
          let lbl_handler, cont2 =
            label_code
              (comp_expr
                stack_info
                (add_vars vars (sz+1) env)
                handler (sz+nvars) (add_pop nvars cont1)) in
          let stack_info =
            push_static_raise stack_info i lbl_handler (sz+nvars) in
          push_dummies nvars
            (comp_expr stack_info env body (sz+nvars)
            (add_pop nvars (branch1 :: cont2)))
        end else begin (* small optimization for nvars = 1 *)
          let var = match vars with [var] -> var | _ -> assert false in
          let lbl_handler, cont2 =
            label_code
              (Kpush::comp_expr stack_info
                (add_var var (sz+1) env)
                handler (sz+1) (add_pop 1 cont1)) in
          let stack_info =
            push_static_raise stack_info i lbl_handler sz in
          comp_expr stack_info env body sz (branch1 :: cont2)
        end in
      r
  | Lstaticraise (i, args) ->
      let cont = discard_dead_code cont in
      let label,size,tb = find_raise_label stack_info i in
      let cont = branch_to label cont in
      let rec loop sz tbb =
        if tb == tbb then add_pop (sz-size) cont
        else match tbb with
        | [] -> assert false
        | try_sz :: tbb -> add_pop (sz-try_sz-4) (Kpoptrap :: loop try_sz tbb)
      in
      let cont = loop sz stack_info.try_blocks in
      begin match args with
      | [arg] -> (* optim, argument passed in accumulator *)
          comp_expr stack_info env arg sz cont
      | _ -> comp_exit_args stack_info env args sz size cont
      end
  | Ltrywith(body, id, handler) ->
      let (branch1, cont1) = make_branch cont in
      let lbl_handler = new_label() in
      let body_cont =
        Kpoptrap :: branch1 ::
        Klabel lbl_handler :: Kpush ::
        comp_expr
          stack_info (add_var id (sz+1) env) handler (sz+1) (add_pop 1 cont1)
      in
      let stack_info =
        { stack_info with try_blocks = sz :: stack_info.try_blocks } in
      let l = comp_expr stack_info env body (sz+4) body_cont in
      Kpushtrap lbl_handler :: l
  | Lifthenelse(cond, ifso, ifnot) ->
      comp_binary_test stack_info env cond ifso ifnot sz cont
  | Lsequence(exp1, exp2) ->
      comp_expr stack_info env exp1 sz (comp_expr stack_info env exp2 sz cont)
  | Lwhile(cond, body) ->
      let lbl_loop = new_label() in
      let lbl_test = new_label() in
      Kbranch lbl_test :: Klabel lbl_loop :: Kcheck_signals ::
        comp_expr stack_info env body sz
          (Klabel lbl_test ::
           comp_expr stack_info env cond sz
             (Kbranchif lbl_loop :: add_const_unit cont))
  | Lfor(param, start, stop, dir, body) ->
      let lbl_loop = new_label() in
      let lbl_exit = new_label() in
      let offset = match dir with Upto -> 1 | Downto -> -1 in
      let comp = match dir with Upto -> Cgt | Downto -> Clt in
      comp_expr stack_info env start sz
        (Kpush :: comp_expr stack_info env stop (sz+1)
          (Kpush :: Kpush :: Kacc 2 :: Kintcomp comp :: Kbranchif lbl_exit ::
           Klabel lbl_loop :: Kcheck_signals ::
           comp_expr stack_info (add_var param (sz+1) env) body (sz+2)
             (Kacc 1 :: Kpush :: Koffsetint offset :: Kassign 2 ::
              Kacc 1 :: Kintcomp Cne :: Kbranchif lbl_loop ::
              Klabel lbl_exit :: add_const_unit (add_pop 2 cont))))
  | Lswitch(arg, sw, _loc) ->
      let (branch, cont1) = make_branch cont in
      let c = ref (discard_dead_code cont1) in

(* Build indirection vectors *)
      let store = Storer.mk_store () in
      let act_consts = Array.make sw.sw_numconsts 0
      and act_blocks = Array.make sw.sw_numblocks 0 in
      begin match sw.sw_failaction with (* default is index 0 *)
      | Some fail -> ignore (store.act_store () fail)
      | None      -> ()
      end ;
      List.iter
        (fun (n, act) -> act_consts.(n) <- store.act_store () act) sw.sw_consts;
      List.iter
        (fun (n, act) -> act_blocks.(n) <- store.act_store () act) sw.sw_blocks;
(* Compile and label actions *)
      let acts = store.act_get () in
(*
      let a = store.act_get_shared () in
      Array.iter
        (function
          | Switch.Shared (Lstaticraise _) -> ()
          | Switch.Shared act ->
              Printlambda.lambda Format.str_formatter act ;
              Printf.eprintf "SHARE BYTE:\n%s\n" (Format.flush_str_formatter ())
          | _ -> ())
        a ;
*)
      let lbls = Array.make (Array.length acts) 0 in
      for i = Array.length acts-1 downto 0 do
        let lbl,c1 =
          label_code (comp_expr stack_info env acts.(i) sz (branch :: !c)) in
        lbls.(i) <- lbl ;
        c := discard_dead_code c1
      done ;

(* Build label vectors *)
      let lbl_blocks = Array.make sw.sw_numblocks 0 in
      for i = sw.sw_numblocks - 1 downto 0 do
        lbl_blocks.(i) <- lbls.(act_blocks.(i))
      done;
      let lbl_consts = Array.make sw.sw_numconsts 0 in
      for i = sw.sw_numconsts - 1 downto 0 do
        lbl_consts.(i) <- lbls.(act_consts.(i))
      done;
      comp_expr stack_info env arg sz (Kswitch(lbl_consts, lbl_blocks) :: !c)
  | Lstringswitch (arg,sw,d,loc) ->
      comp_expr stack_info env
        (Matching.expand_stringswitch loc arg sw d) sz cont
  | Lassign(id, expr) ->
      begin try
        let pos = Ident.find_same id env.ce_stack in
        comp_expr stack_info env expr sz (Kassign(sz - pos) :: cont)
      with Not_found ->
        fatal_error "Bytegen.comp_expr: assign"
      end
  | Levent(lam, lev) ->
      let ev_defname = string_of_scoped_location lev.lev_loc in
      let event kind info =
        { ev_pos = 0;                   (* patched in emitcode *)
          ev_module = !compunit_name;
          ev_loc = to_location lev.lev_loc;
          ev_kind = kind;
          ev_defname;
          ev_info = info;
          ev_typenv = Env.summary lev.lev_env;
          ev_typsubst = Subst.identity;
          ev_compenv = env;
          ev_stacksize = sz;
          ev_repr =
            begin match lev.lev_repr with
              None ->
                Event_none
            | Some ({contents = 1} as repr) when lev.lev_kind = Lev_function ->
                Event_child repr
            | Some ({contents = 1} as repr) ->
                Event_parent repr
            | Some repr when lev.lev_kind = Lev_function ->
                Event_parent repr
            | Some repr ->
                Event_child repr
            end }
      in
      begin match lev.lev_kind with
        Lev_before ->
          let c = comp_expr stack_info env lam sz cont in
          let ev = event Event_before Event_other in
          add_event ev c
      | Lev_function ->
          let c = comp_expr stack_info env lam sz cont in
          let ev = event Event_pseudo Event_function in
          add_event ev c
      | Lev_pseudo ->
          let c = comp_expr stack_info env lam sz cont in
          let ev = event Event_pseudo Event_other in
          add_event ev c
      | Lev_after ty ->
          let preserve_tailcall =
            match lam with
            | Lprim(prim, _, _) -> preserve_tailcall_for_prim prim
            | _ -> true
          in
          if preserve_tailcall && is_tailcall cont then
            (* don't destroy tail call opt *)
            comp_expr stack_info env lam sz cont
          else begin
            let info =
              match lam with
                Lapply{ap_args = args}  -> Event_return (List.length args)
              | Lsend(_, _, _, args, _) -> Event_return (List.length args + 1)
              | Lprim(_,args,_)         -> Event_return (List.length args)
              | _                       -> Event_other
            in
            let ev = event (Event_after ty) info in
            let cont1 = add_event ev cont in
            comp_expr stack_info env lam sz cont1
          end
      | Lev_module_definition _ ->
          comp_expr stack_info env lam sz cont
      end
  | Lifused (_, exp) ->
      comp_expr stack_info env exp sz cont

(* Compile a list of arguments [e1; ...; eN] to a primitive operation.
   The values of eN ... e2 are pushed on the stack, e2 at top of stack,
   then e3, then ... The value of e1 is left in the accumulator. *)

and comp_args stack_info env argl sz cont =
  comp_expr_list stack_info env (List.rev argl) sz cont

and comp_expr_list stack_info env exprl sz cont = match exprl with
    [] -> cont
  | [exp] -> comp_expr stack_info env exp sz cont
  | exp :: rem ->
      comp_expr stack_info env exp sz
        (Kpush :: comp_expr_list stack_info env rem (sz+1) cont)

and comp_exit_args stack_info env argl sz pos cont =
   comp_expr_list_assign stack_info env (List.rev argl) sz pos cont

and comp_expr_list_assign stack_info env exprl sz pos cont = match exprl with
  | [] -> cont
  | exp :: rem ->
      comp_expr stack_info env exp sz
        (Kassign (sz-pos)
         ::comp_expr_list_assign stack_info env rem sz (pos-1) cont)

(* Compile an if-then-else test. *)

and comp_binary_test stack_info env cond ifso ifnot sz cont =
  let cont_cond =
    if ifnot = Lconst const_unit then begin
      let (lbl_end, cont1) = label_code cont in
      Kstrictbranchifnot lbl_end :: comp_expr stack_info env ifso sz cont1
    end else
    match code_as_jump stack_info ifso sz with
    | Some label ->
      let cont = comp_expr stack_info env ifnot sz cont in
      Kbranchif label :: cont
    | None ->
        match code_as_jump stack_info ifnot sz with
        | Some label ->
            let cont = comp_expr stack_info env ifso sz cont in
            Kbranchifnot label :: cont
        | None ->
            let (branch_end, cont1) = make_branch cont in
            let (lbl_not, cont2) =
              label_code(comp_expr stack_info env ifnot sz cont1) in
            Kbranchifnot lbl_not ::
            comp_expr stack_info env ifso sz (branch_end :: cont2) in

  comp_expr stack_info env cond sz cont_cond

(**** Compilation of a code block (with tracking of stack usage) ****)

let comp_block env exp sz cont =
  let stack_info = create_stack_info () in
  let code = comp_expr stack_info env exp sz cont in
  let used_safe = !(stack_info.max_stack_used) + Config.stack_safety_margin in
  if used_safe > Config.stack_threshold then
    Kconst(Const_base(Const_int used_safe)) ::
    Kccall("caml_ensure_stack_capacity", 1) ::
    code
  else
    code

(**** Compilation of functions ****)

let comp_function tc cont =
  let arity = List.length tc.params in
  let rec positions pos delta = function
      [] -> Ident.empty
    | id :: rem -> Ident.add id pos (positions (pos + delta) delta rem) in
  let env =
    { ce_stack = positions arity (-1) tc.params;
      ce_heap = positions (3 * (tc.num_defs - tc.rec_pos) - 1) 1 tc.free_vars;
      ce_rec = positions (-3 * tc.rec_pos) 3 tc.rec_vars } in
  let cont =
    comp_block env tc.body arity (Kreturn arity :: cont) in
  if arity > 1 then
    Krestart :: Klabel tc.label :: Kgrab(arity - 1) :: cont
  else
    Klabel tc.label :: cont

let comp_remainder cont =
  let c = ref cont in
  begin try
    while true do
      c := comp_function (Stack.pop functions_to_compile) !c
    done
  with Stack.Empty ->
    ()
  end;
  !c

(**** Compilation of a lambda phrase ****)

let reset () =
  label_counter := 0;
  compunit_name := "";
  Stack.clear functions_to_compile

let compile_implementation modulename expr =
  reset ();
  compunit_name := modulename;
  Fun.protect ~finally:reset (fun () ->
  let init_code = comp_block empty_env expr 0 [] in
  if Stack.length functions_to_compile > 0 then begin
    let lbl_init = new_label() in
    Kbranch lbl_init :: comp_remainder (Klabel lbl_init :: init_code)
  end else
    init_code)

let compile_phrase expr =
  reset ();
  Fun.protect ~finally:reset (fun () ->
  let init_code = comp_block empty_env expr 1 [Kreturn 1] in
  let fun_code = comp_remainder [] in
  (init_code, fun_code))