summaryrefslogtreecommitdiff
path: root/byterun/compact.c
blob: ba1042fbe50bfba98fa6ee13bf32c003680294c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
/***********************************************************************/
/*                                                                     */
/*                           Objective Caml                            */
/*                                                                     */
/*             Damien Doligez, projet Para, INRIA Rocquencourt         */
/*                                                                     */
/*  Copyright 1996 Institut National de Recherche en Informatique et   */
/*  en Automatique.  All rights reserved.  This file is distributed    */
/*  under the terms of the GNU Library General Public License, with    */
/*  the special exception on linking described in file ../LICENSE.     */
/*                                                                     */
/***********************************************************************/

/* $Id$ */

#include <string.h>

#include "config.h"
#include "finalise.h"
#include "freelist.h"
#include "gc.h"
#include "gc_ctrl.h"
#include "major_gc.h"
#include "memory.h"
#include "mlvalues.h"
#include "roots.h"
#include "weak.h"

extern uintnat caml_percent_free;                   /* major_gc.c */
extern void caml_shrink_heap (char *);              /* memory.c */

/* Encoded headers: the color is stored in the 2 least significant bits.
   (For pointer inversion, we need to distinguish headers from pointers.)
   s is a Wosize, t is a tag, and c is a color (a two-bit number)

   For the purpose of compaction, "colors" are:
   0: pointers (direct or inverted)
   1: integer or (unencoded) infix header
   2: inverted pointer for infix header
   3: integer or encoded (noninfix) header

  XXX Should be fixed:
  XXX The above assumes that all roots are aligned on a 4-byte boundary,
  XXX which is not always guaranteed by C.
  XXX (see [caml_register_global_roots] and [caml_init_exceptions])
  XXX Should be able to fix it to only assume 2-byte alignment.
*/
#define Make_ehd(s,t,c) (((s) << 10) | (t) << 2 | (c))
#define Whsize_ehd(h) Whsize_hd (h)
#define Wosize_ehd(h) Wosize_hd (h)
#define Tag_ehd(h) (((h) >> 2) & 0xFF)
#define Ecolor(w) ((w) & 3)

typedef uintnat word;

static void invert_pointer_at (word *p)
{
  word q = *p;
                                            Assert (Ecolor ((intnat) p) == 0);

  /* Use Ecolor (q) == 0 instead of Is_block (q) because q could be an
     inverted pointer for an infix header (with Ecolor == 2). */
  if (Ecolor (q) == 0 && (Classify_addr (q) & In_heap)){
    switch (Ecolor (Hd_val (q))){
    case 0:
    case 3: /* Pointer or header: insert in inverted list. */
      *p = Hd_val (q);
      Hd_val (q) = (header_t) p;
      break;
    case 1: /* Infix header: make inverted infix list. */
      /* Double inversion: the last of the inverted infix list points to
         the next infix header in this block.  The last of the last list
         contains the original block header. */
      {
        /* This block as a value. */
        value val = (value) q - Infix_offset_val (q);
        /* Get the block header. */
        word *hp = (word *) Hp_val (val);

        while (Ecolor (*hp) == 0) hp = (word *) *hp;
                                                   Assert (Ecolor (*hp) == 3);
        if (Tag_ehd (*hp) == Closure_tag){
          /* This is the first infix found in this block. */
          /* Save original header. */
          *p = *hp;
          /* Link inverted infix list. */
          Hd_val (q) = (header_t) ((word) p | 2);
          /* Change block header's tag to Infix_tag, and change its size
             to point to the infix list. */
          *hp = Make_ehd (Wosize_bhsize (q - val), Infix_tag, 3);
        }else{                            Assert (Tag_ehd (*hp) == Infix_tag);
          /* Point the last of this infix list to the current first infix
             list of the block. */
          *p = (word) &Field (val, Wosize_ehd (*hp)) | 1;
          /* Point the head of this infix list to the above. */
          Hd_val (q) = (header_t) ((word) p | 2);
          /* Change block header's size to point to this infix list. */
          *hp = Make_ehd (Wosize_bhsize (q - val), Infix_tag, 3);
        }
      }
      break;
    case 2: /* Inverted infix list: insert. */
      *p = Hd_val (q);
      Hd_val (q) = (header_t) ((word) p | 2);
      break;
    }
  }
}

static void invert_root (value v, value *p)
{
  invert_pointer_at ((word *) p);
}

static char *compact_fl;

static void init_compact_allocate (void)
{
  char *ch = caml_heap_start;
  while (ch != NULL){
    Chunk_alloc (ch) = 0;
    ch = Chunk_next (ch);
  }
  compact_fl = caml_heap_start;
}

static char *compact_allocate (mlsize_t size)
                                      /* in bytes, including header */
{
  char *chunk, *adr;

  while (Chunk_size (compact_fl) - Chunk_alloc (compact_fl) <= Bhsize_wosize (3)
         && Chunk_size (Chunk_next (compact_fl))
            - Chunk_alloc (Chunk_next (compact_fl))
            <= Bhsize_wosize (3)){
    compact_fl = Chunk_next (compact_fl);
  }
  chunk = compact_fl;
  while (Chunk_size (chunk) - Chunk_alloc (chunk) < size){
    chunk = Chunk_next (chunk);                         Assert (chunk != NULL);
  }
  adr = chunk + Chunk_alloc (chunk);
  Chunk_alloc (chunk) += size;
  return adr;
}

void caml_compact_heap (void)
{
  char *ch, *chend;
                                          Assert (caml_gc_phase == Phase_idle);
  caml_gc_message (0x10, "Compacting heap...\n", 0);

#ifdef DEBUG
  caml_heap_check ();
#endif

  /* First pass: encode all noninfix headers. */
  {
    ch = caml_heap_start;
    while (ch != NULL){
      header_t *p = (header_t *) ch;

      chend = ch + Chunk_size (ch);
      while ((char *) p < chend){
        header_t hd = Hd_hp (p);
        mlsize_t sz = Wosize_hd (hd);

        if (Is_blue_hd (hd)){
          /* Free object.  Give it a string tag. */
          Hd_hp (p) = Make_ehd (sz, String_tag, 3);
        }else{                                      Assert (Is_white_hd (hd));
          /* Live object.  Keep its tag. */
          Hd_hp (p) = Make_ehd (sz, Tag_hd (hd), 3);
        }
        p += Whsize_wosize (sz);
      }
      ch = Chunk_next (ch);
    }
  }


  /* Second pass: invert pointers.
     Link infix headers in each block in an inverted list of inverted lists.
     Don't forget roots and weak pointers. */
  {
    /* Invert roots first because the threads library needs some heap
       data structures to find its roots.  Fortunately, it doesn't need
       the headers (see above). */
    caml_do_roots (invert_root);
    caml_final_do_weak_roots (invert_root);

    ch = caml_heap_start;
    while (ch != NULL){
      word *p = (word *) ch;
      chend = ch + Chunk_size (ch);

      while ((char *) p < chend){
        word q = *p;
        size_t sz, i;
        tag_t t;
        word *infixes;

        while (Ecolor (q) == 0) q = * (word *) q;
        sz = Whsize_ehd (q);
        t = Tag_ehd (q);

        if (t == Infix_tag){
          /* Get the original header of this block. */
          infixes = p + sz;
          q = *infixes;
          while (Ecolor (q) != 3) q = * (word *) (q & ~(uintnat)3);
          sz = Whsize_ehd (q);
          t = Tag_ehd (q);
        }

        if (t < No_scan_tag){
          for (i = 1; i < sz; i++) invert_pointer_at (&(p[i]));
        }
        p += sz;
      }
      ch = Chunk_next (ch);
    }
    /* Invert weak pointers. */
    {
      value *pp = &caml_weak_list_head;
      value p;
      word q;
      size_t sz, i;

      while (1){
        p = *pp;
        if (p == (value) NULL) break;
        q = Hd_val (p);
        while (Ecolor (q) == 0) q = * (word *) q;
        sz = Wosize_ehd (q);
        for (i = 1; i < sz; i++){
          if (Field (p,i) != caml_weak_none){
            invert_pointer_at ((word *) &(Field (p,i)));
          }
        }
        invert_pointer_at ((word *) pp);
        pp = &Field (p, 0);
      }
    }
  }


  /* Third pass: reallocate virtually; revert pointers; decode headers.
     Rebuild infix headers. */
  {
    init_compact_allocate ();
    ch = caml_heap_start;
    while (ch != NULL){
      word *p = (word *) ch;

      chend = ch + Chunk_size (ch);
      while ((char *) p < chend){
        word q = *p;

        if (Ecolor (q) == 0 || Tag_ehd (q) == Infix_tag){
          /* There were (normal or infix) pointers to this block. */
          size_t sz;
          tag_t t;
          char *newadr;
          word *infixes = NULL;

          while (Ecolor (q) == 0) q = * (word *) q;
          sz = Whsize_ehd (q);
          t = Tag_ehd (q);

          if (t == Infix_tag){
            /* Get the original header of this block. */
            infixes = p + sz;
            q = *infixes;                             Assert (Ecolor (q) == 2);
            while (Ecolor (q) != 3) q = * (word *) (q & ~(uintnat)3);
            sz = Whsize_ehd (q);
            t = Tag_ehd (q);
          }

          newadr = compact_allocate (Bsize_wsize (sz));
          q = *p;
          while (Ecolor (q) == 0){
            word next = * (word *) q;
            * (word *) q = (word) Val_hp (newadr);
            q = next;
          }
          *p = Make_header (Wosize_whsize (sz), t, Caml_white);

          if (infixes != NULL){
            /* Rebuild the infix headers and revert the infix pointers. */
            while (Ecolor ((word) infixes) != 3){
              infixes = (word *) ((word) infixes & ~(uintnat) 3);
              q = *infixes;
              while (Ecolor (q) == 2){
                word next;
                q = (word) q & ~(uintnat) 3;
                next = * (word *) q;
                * (word *) q = (word) Val_hp ((word *) newadr + (infixes - p));
                q = next;
              }                    Assert (Ecolor (q) == 1 || Ecolor (q) == 3);
              *infixes = Make_header (infixes - p, Infix_tag, Caml_white);
              infixes = (word *) q;
            }
          }
          p += sz;
        }else{                                        Assert (Ecolor (q) == 3);
          /* This is guaranteed only if caml_compact_heap was called after a
             nonincremental major GC:       Assert (Tag_ehd (q) == String_tag);
          */
          /* No pointers to the header and no infix header:
             the object was free. */
          *p = Make_header (Wosize_ehd (q), Tag_ehd (q), Caml_blue);
          p += Whsize_ehd (q);
        }
      }
      ch = Chunk_next (ch);
    }
  }


  /* Fourth pass: reallocate and move objects.
     Use the exact same allocation algorithm as pass 3. */
  {
    init_compact_allocate ();
    ch = caml_heap_start;
    while (ch != NULL){
      word *p = (word *) ch;

      chend = ch + Chunk_size (ch);
      while ((char *) p < chend){
        word q = *p;
        if (Color_hd (q) == Caml_white){
          size_t sz = Bhsize_hd (q);
          char *newadr = compact_allocate (sz);  Assert (newadr <= (char *)p);
          memmove (newadr, p, sz);
          p += Wsize_bsize (sz);
        }else{
          Assert (Color_hd (q) == Caml_blue);
          p += Whsize_hd (q);
        }
      }
      ch = Chunk_next (ch);
    }
  }

  /* Shrink the heap if needed. */
  {
    /* Find the amount of live data and the unshrinkable free space. */
    asize_t live = 0;
    asize_t free = 0;
    asize_t wanted;

    ch = caml_heap_start;
    while (ch != NULL){
      if (Chunk_alloc (ch) != 0){
        live += Wsize_bsize (Chunk_alloc (ch));
        free += Wsize_bsize (Chunk_size (ch) - Chunk_alloc (ch));
      }
      ch = Chunk_next (ch);
    }

    /* Add up the empty chunks until there are enough, then remove the
       other empty chunks. */
    wanted = caml_percent_free * (live / 100 + 1);
    ch = caml_heap_start;
    while (ch != NULL){
      char *next_chunk = Chunk_next (ch);  /* Chunk_next (ch) will be erased */

      if (Chunk_alloc (ch) == 0){
        if (free < wanted){
          free += Wsize_bsize (Chunk_size (ch));
        }else{
          caml_shrink_heap (ch);
        }
      }
      ch = next_chunk;
    }
  }

  /* Rebuild the free list. */
  {
    ch = caml_heap_start;
    caml_fl_reset ();
    while (ch != NULL){
      if (Chunk_size (ch) > Chunk_alloc (ch)){
        caml_make_free_blocks ((value *) (ch + Chunk_alloc (ch)),
                               Wsize_bsize (Chunk_size(ch)-Chunk_alloc(ch)), 1);
      }
      ch = Chunk_next (ch);
    }
  }
  ++ caml_stat_compactions;
  caml_gc_message (0x10, "done.\n", 0);
}

uintnat caml_percent_max;  /* used in gc_ctrl.c and memory.c */

void caml_compact_heap_maybe (void)
{
  /* Estimated free words in the heap:
         FW = fl_size_at_change + 3 * (caml_fl_cur_size
                                       - caml_fl_size_at_phase_change)
         FW = 3 * caml_fl_cur_size - 2 * caml_fl_size_at_phase_change
     Estimated live words:      LW = caml_stat_heap_size - FW
     Estimated free percentage: FP = 100 * FW / LW
     We compact the heap if FP > caml_percent_max
  */
  float fw, fp;
                                          Assert (caml_gc_phase == Phase_idle);
  if (caml_percent_max >= 1000000) return;
  if (caml_stat_major_collections < 3 || caml_stat_heap_chunks < 3) return;

  fw = 3.0 * caml_fl_cur_size - 2.0 * caml_fl_size_at_phase_change;
  if (fw < 0) fw = caml_fl_cur_size;

  if (fw >= Wsize_bsize (caml_stat_heap_size)){
    fp = 1000000.0;
  }else{
    fp = 100.0 * fw / (Wsize_bsize (caml_stat_heap_size) - fw);
    if (fp > 1000000.0) fp = 1000000.0;
  }
  caml_gc_message (0x200, "FL size at phase change = %"
                          ARCH_INTNAT_PRINTF_FORMAT "u\n",
                   (uintnat) caml_fl_size_at_phase_change);
  caml_gc_message (0x200, "Estimated overhead = %"
                          ARCH_INTNAT_PRINTF_FORMAT "u%%\n",
                   (uintnat) fp);
  if (fp >= caml_percent_max){
    caml_gc_message (0x200, "Automatic compaction triggered.\n", 0);
    caml_finish_major_cycle ();

    /* We just did a complete GC, so we can measure the overhead exactly. */
    fw = caml_fl_cur_size;
    fp = 100.0 * fw / (Wsize_bsize (caml_stat_heap_size) - fw);
    caml_gc_message (0x200, "Measured overhead: %"
                            ARCH_INTNAT_PRINTF_FORMAT "u%%\n",
                     (uintnat) fp);

    caml_compact_heap ();
  }
}