summaryrefslogtreecommitdiff
path: root/lambda/matching.ml
blob: 0dc275d971c1b07ee2bc6c6a7e1777e4f1167019 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(* Compilation of pattern matching

   Based upon Lefessant-Maranget ``Optimizing Pattern-Matching'' ICFP'2001.

   A previous version was based on Peyton-Jones, ``The Implementation of
   functional programming languages'', chapter 5.


   Overview of the implementation
   ==============================

       1. Precompilation
       -----------------

     (split_and_precompile)
   We first split the initial pattern matching (or "pm") along its first column
   -- simplifying pattern heads in the process --, so that we obtain an ordered
   list of pms.
   For every pm in this list, and any two patterns in its first column, either
   the patterns have the same head, or their heads match disjoint sets of
   values. (In particular, two extension constructors that may or may not be
   equal due to hidden rebinding cannot occur in the same simple pm.)

       2. Compilation
       --------------

   The compilation of one of these pms obtained after precompiling is done as
   follows:

     (divide)
   We split the match along the first column again, this time grouping rows
   which start with the same head, and removing the first column.
   As a result we get a "division", which is a list a "cells" of the form:
         discriminating pattern head * specialized pm

     (compile_list + compile_match)
   We then map over the division to compile each cell: we simply restart the
   whole process on the second element of each cell.
   Each cell is now of the form:
         discriminating pattern head * lambda

     (combine_constant, combine_construct, combine_array, ...)
   We recombine the cells using a switch or some ifs, and if the matching can
   fail, introduce a jump to the next pm that could potentially match the
   scrutiny.

       3. Chaining of pms
       ------------------

     (comp_match_handlers)
   Once the pms have been compiled, we stitch them back together in the order
   produced by precompilation, resulting in the following structure:
   {v
       catch
         catch
           <first body>
         with <exit i> ->
           <second body>
       with <exit j> ->
         <third body>
   v}

   Additionally, bodies whose corresponding exit-number is never used are
   discarded. So for instance, if in the pseudo-example above we know that exit
   [i] is never taken, we would actually generate:
   {v
       catch
         <first body>
       with <exit j> ->
         <third body>
   v}

*)

open Misc
open Asttypes
open Types
open Typedtree
open Lambda
open Parmatch
open Printf
open Printpat

module Scoped_location = Debuginfo.Scoped_location

let dbg = false

(*
   Compatibility predicate that considers potential rebindings of constructors
   of an extension type.

   "may_compat p q" returns false when p and q never admit a common instance;
   returns true when they may have a common instance.
*)

module MayCompat = Parmatch.Compat (struct
  let equal = Types.may_equal_constr
end)

let may_compat = MayCompat.compat

and may_compats = MayCompat.compats

(*
   Many functions on the various data structures of the algorithm :
     - Pattern matrices.
     - Default environments: mapping from matrices to exit numbers.
     - Contexts:  matrices whose column are partitioned into
       left and right.
     - Jump summaries: mapping from exit numbers to contexts
*)

let string_of_lam lam =
  Printlambda.lambda Format.str_formatter lam;
  Format.flush_str_formatter ()

let all_record_args lbls =
  match lbls with
  | [] -> fatal_error "Matching.all_record_args"
  | (_, { lbl_all }, _) :: _ ->
      let t =
        Array.map
          (fun lbl -> (mknoloc (Longident.Lident "?temp?"), lbl, omega))
          lbl_all
      in
      List.iter (fun ((_, lbl, _) as x) -> t.(lbl.lbl_pos) <- x) lbls;
      Array.to_list t

let rec expand_record p =
  match p.pat_desc with
  | Tpat_record (l, _) ->
      { p with pat_desc = Tpat_record (all_record_args l, Closed) }
  | Tpat_alias (p, _, _) -> expand_record p
  | _ -> p

let expand_record_head head =
  match Pattern_head.desc head with
  | Record _ ->
      head |> Pattern_head.to_omega_pattern |> expand_record
      |> Pattern_head.deconstruct |> fst
  | _ -> head

let head_loc ~scopes head =
  Scoped_location.of_location ~scopes (Pattern_head.loc head)

type 'a clause = 'a * lambda

module Non_empty_clause = struct
  type 'a t = ('a * Typedtree.pattern list) clause

  let of_initial = function
    | [], _ -> assert false
    | pat :: patl, act -> ((pat, patl), act)

  let map_head f ((p, patl), act) = ((f p, patl), act)
end

type simple_view =
  [ `Any
  | `Constant of constant
  | `Tuple of pattern list
  | `Construct of Longident.t loc * constructor_description * pattern list
  | `Variant of label * pattern option * row_desc ref
  | `Record of
    (Longident.t loc * label_description * pattern) list * closed_flag
  | `Array of pattern list
  | `Lazy of pattern ]

type half_simple_view =
  [ simple_view | `Or of pattern * pattern * row_desc option ]

type general_view =
  [ half_simple_view
  | `Var of Ident.t * string loc
  | `Alias of pattern * Ident.t * string loc ]

module General : sig
  type pattern = general_view pattern_data

  type clause = pattern Non_empty_clause.t

  val view : Typedtree.pattern -> pattern

  val erase : [< general_view ] pattern_data -> Typedtree.pattern
end = struct
  type pattern = general_view pattern_data

  type clause = pattern Non_empty_clause.t

  let view_desc = function
    | Tpat_any -> `Any
    | Tpat_var (id, str) -> `Var (id, str)
    | Tpat_alias (p, id, str) -> `Alias (p, id, str)
    | Tpat_constant cst -> `Constant cst
    | Tpat_tuple ps -> `Tuple ps
    | Tpat_construct (cstr, cstr_descr, args) ->
        `Construct (cstr, cstr_descr, args)
    | Tpat_variant (cstr, arg, row_desc) -> `Variant (cstr, arg, row_desc)
    | Tpat_record (fields, closed) -> `Record (fields, closed)
    | Tpat_array ps -> `Array ps
    | Tpat_or (p, q, row_desc) -> `Or (p, q, row_desc)
    | Tpat_lazy p -> `Lazy p

  let view p : pattern = { p with pat_desc = view_desc p.pat_desc }

  let erase_desc = function
    | `Any -> Tpat_any
    | `Var (id, str) -> Tpat_var (id, str)
    | `Alias (p, id, str) -> Tpat_alias (p, id, str)
    | `Constant cst -> Tpat_constant cst
    | `Tuple ps -> Tpat_tuple ps
    | `Construct (cstr, cst_descr, args) ->
        Tpat_construct (cstr, cst_descr, args)
    | `Variant (cstr, arg, row_desc) -> Tpat_variant (cstr, arg, row_desc)
    | `Record (fields, closed) -> Tpat_record (fields, closed)
    | `Array ps -> Tpat_array ps
    | `Or (p, q, row_desc) -> Tpat_or (p, q, row_desc)
    | `Lazy p -> Tpat_lazy p

  let erase p = { p with pat_desc = erase_desc p.pat_desc }
end

module Half_simple : sig
  (** Half-simplified patterns are patterns where:
        - records are expanded so that they possess all fields
        - aliases are removed and replaced by bindings in actions.

      Or-patterns are not removed, they are only "half-simplified":
        - aliases under or-patterns are kept
        - or-patterns whose right-hand-side is subsumed by their lhs
          are simplified to their lhs.
          For instance: [(_ :: _ | 1 :: _)] is changed into [_ :: _]
        - or-patterns whose left-hand-side is not simplified
          are preserved: (p|q) is changed into (simpl(p)|simpl(q))
            {v
                # match lazy (print_int 3; 3) with _ | lazy 2 -> ();;
                - : unit = ()
                # match lazy (print_int 3; 3) with lazy 2 | _ -> ();;
                3- : unit = ()
            v}

      In particular, or-patterns may still occur in the leading column,
      so this is only a "half-simplification". *)

  type pattern = half_simple_view pattern_data

  type clause = pattern Non_empty_clause.t

  val of_clause : arg:lambda -> General.clause -> clause
end = struct
  type pattern = half_simple_view pattern_data

  type clause = pattern Non_empty_clause.t

  let rec simpl_under_orpat p =
    match p.pat_desc with
    | Tpat_any
    | Tpat_var _ ->
        p
    | Tpat_alias (q, id, s) ->
        { p with pat_desc = Tpat_alias (simpl_under_orpat q, id, s) }
    | Tpat_or (p1, p2, o) ->
        let p1, p2 = (simpl_under_orpat p1, simpl_under_orpat p2) in
        if le_pat p1 p2 then
          p1
        else
          { p with pat_desc = Tpat_or (p1, p2, o) }
    | Tpat_record (lbls, closed) ->
        let all_lbls = all_record_args lbls in
        { p with pat_desc = Tpat_record (all_lbls, closed) }
    | _ -> p

  (* Explode or-patterns and turn aliases into bindings in actions *)
  let of_clause ~arg cl =
    let rec aux (((p, patl), action) : General.clause) : clause =
      let continue p (view : general_view) : clause =
        aux (({ p with pat_desc = view }, patl), action)
      in
      let stop p (view : half_simple_view) : clause =
        (({ p with pat_desc = view }, patl), action)
      in
      match p.pat_desc with
      | `Any -> stop p `Any
      | `Var (id, s) -> continue p (`Alias (omega, id, s))
      | `Alias (p, id, _) ->
          let k = Typeopt.value_kind p.pat_env p.pat_type in
          aux
            ( (General.view p, patl),
              bind_with_value_kind Alias (id, k) arg action )
      | `Record ([], _) as view -> stop p view
      | `Record (lbls, closed) ->
          let full_view = `Record (all_record_args lbls, closed) in
          stop p full_view
      | `Or _ -> (
          let orpat = General.view (simpl_under_orpat (General.erase p)) in
          match orpat.pat_desc with
          | `Or _ as or_view -> stop orpat or_view
          | other_view -> continue orpat other_view
        )
      | ( `Constant _ | `Tuple _ | `Construct _ | `Variant _ | `Array _
        | `Lazy _ ) as view ->
          stop p view
    in
    aux cl
end

exception Cannot_flatten

module Simple : sig
  type pattern = simple_view pattern_data

  type clause = pattern Non_empty_clause.t

  val head : pattern -> Pattern_head.t

  val explode_or_pat :
    Half_simple.pattern * Typedtree.pattern list ->
    arg:Ident.t option ->
    mk_action:(vars:Ident.t list -> lambda) ->
    vars:Ident.t list ->
    clause list ->
    clause list
end = struct
  type pattern = simple_view pattern_data

  type clause = pattern Non_empty_clause.t

  let head p =
    fst (Pattern_head.deconstruct (General.erase (p :> General.pattern)))

  let alpha env (p : pattern) : pattern =
    let alpha_pat env p = Typedtree.alpha_pat env p in
    let pat_desc =
      match p.pat_desc with
      | `Any -> `Any
      | `Constant cst -> `Constant cst
      | `Tuple ps -> `Tuple (List.map (alpha_pat env) ps)
      | `Construct (cstr, cst_descr, args) ->
          `Construct (cstr, cst_descr, List.map (alpha_pat env) args)
      | `Variant (cstr, argo, row_desc) ->
          `Variant (cstr, Option.map (alpha_pat env) argo, row_desc)
      | `Record (fields, closed) ->
          let alpha_field env (lid, l, p) = (lid, l, alpha_pat env p) in
          `Record (List.map (alpha_field env) fields, closed)
      | `Array ps -> `Array (List.map (alpha_pat env) ps)
      | `Lazy p -> `Lazy (alpha_pat env p)
    in
    { p with pat_desc }

  let mk_alpha_env arg aliases ids =
    List.map
      (fun id ->
        ( id,
          if List.mem id aliases then
            match arg with
            | Some v -> v
            | _ -> raise Cannot_flatten
          else
            Ident.create_local (Ident.name id) ))
      ids

  let explode_or_pat ((p : Half_simple.pattern), patl) ~arg ~mk_action ~vars
      (rem : clause list) : clause list =
    let rec explode p aliases rem =
      let split_explode p aliases rem = explode (General.view p) aliases rem in
      match p.pat_desc with
      | `Or (p1, p2, _) ->
          split_explode p1 aliases (split_explode p2 aliases rem)
      | `Alias (p, id, _) -> split_explode p (id :: aliases) rem
      | `Var (id, str) ->
          explode
            { p with pat_desc = `Alias (Parmatch.omega, id, str) }
            aliases rem
      | #simple_view as view ->
          let env = mk_alpha_env arg aliases vars in
          ( (alpha env { p with pat_desc = view }, patl),
            mk_action ~vars:(List.map snd env) )
          :: rem
    in
    explode (p : Half_simple.pattern :> General.pattern) [] rem
end

let expand_record_simple : Simple.pattern -> Simple.pattern =
 fun p ->
  match p.pat_desc with
  | `Record (l, _) -> { p with pat_desc = `Record (all_record_args l, Closed) }
  | _ -> p

type initial_clause = pattern list clause

type matrix = pattern list list

let add_omega_column pss = List.map (fun ps -> omega :: ps) pss

let rec rev_split_at n ps =
  if n <= 0 then
    ([], ps)
  else
    match ps with
    | p :: rem ->
        let left, right = rev_split_at (n - 1) rem in
        (p :: left, right)
    | _ -> assert false

exception NoMatch

let matcher discr (p : Simple.pattern) rem =
  let discr = expand_record_head discr in
  let p = expand_record_simple p in
  let omegas = omegas (Pattern_head.arity discr) in
  let ph, args = Pattern_head.deconstruct (General.erase p) in
  let yes () = args @ rem in
  let no () = raise NoMatch in
  let yesif b =
    if b then
      yes ()
    else
      no ()
  in
  match (Pattern_head.desc discr, Pattern_head.desc ph) with
  | Any, _ -> rem
  | ( ( Constant _ | Construct _ | Variant _ | Lazy | Array _ | Record _
      | Tuple _ ),
      Any ) ->
      omegas @ rem
  | Constant cst, Constant cst' -> yesif (const_compare cst cst' = 0)
  | Constant _, (Construct _ | Variant _ | Lazy | Array _ | Record _ | Tuple _)
    ->
      no ()
  | Construct cstr, Construct cstr' ->
      (* NB: may_equal_constr considers (potential) constructor rebinding;
          Types.may_equal_constr does check that the arities are the same,
          preserving row-size coherence. *)
      yesif (Types.may_equal_constr cstr cstr')
  | Construct _, (Constant _ | Variant _ | Lazy | Array _ | Record _ | Tuple _)
    ->
      no ()
  | Variant { tag; has_arg }, Variant { tag = tag'; has_arg = has_arg' } ->
      yesif (tag = tag' && has_arg = has_arg')
  | Variant _, (Constant _ | Construct _ | Lazy | Array _ | Record _ | Tuple _)
    ->
      no ()
  | Array n1, Array n2 -> yesif (n1 = n2)
  | Array _, (Constant _ | Construct _ | Variant _ | Lazy | Record _ | Tuple _)
    ->
      no ()
  | Tuple n1, Tuple n2 -> yesif (n1 = n2)
  | Tuple _, (Constant _ | Construct _ | Variant _ | Lazy | Array _ | Record _)
    ->
      no ()
  | Record l, Record l' ->
      (* we already expanded the record fully *)
      yesif (List.length l = List.length l')
  | Record _, (Constant _ | Construct _ | Variant _ | Lazy | Array _ | Tuple _)
    ->
      no ()
  | Lazy, Lazy -> yes ()
  | Lazy, (Constant _ | Construct _ | Variant _ | Array _ | Record _ | Tuple _)
    ->
      no ()

let ncols = function
  | [] -> 0
  | ps :: _ -> List.length ps

module Context : sig
  type t

  val empty : t

  val is_empty : t -> bool

  val start : int -> t

  val eprintf : t -> unit

  val specialize : Pattern_head.t -> t -> t

  val lshift : t -> t

  val rshift : t -> t

  val rshift_num : int -> t -> t

  val lub : pattern -> t -> t

  val matches : t -> matrix -> bool

  val combine : t -> t

  val select_columns : matrix -> t -> t

  val union : t -> t -> t
end = struct
  module Row = struct
    type t = { left : pattern list; right : pattern list }

    let eprintf { left; right } =
      Format.eprintf "LEFT:%a RIGHT:%a\n" pretty_line left pretty_line right

    let le c1 c2 = le_pats c1.left c2.left && le_pats c1.right c2.right

    let lshift { left; right } =
      match right with
      | x :: xs -> { left = x :: left; right = xs }
      | _ -> assert false

    let lforget { left; right } =
      match right with
      | _ :: xs -> { left = omega :: left; right = xs }
      | _ -> assert false

    let rshift { left; right } =
      match left with
      | p :: ps -> { left = ps; right = p :: right }
      | _ -> assert false

    let rshift_num n { left; right } =
      let shifted, left = rev_split_at n left in
      { left; right = shifted @ right }

    (** Recombination of contexts (eg: (_,_)::p1::p2::rem ->  (p1,p2)::rem)
  All mutable fields are replaced by '_', since side-effects in
  guards can alter these fields *)
    let combine { left; right } =
      match left with
      | p :: ps -> { left = ps; right = set_args_erase_mutable p right }
      | _ -> assert false
  end

  type t = Row.t list

  let empty = []

  let start n : t = [ { left = []; right = omegas n } ]

  let is_empty = function
    | [] -> true
    | _ -> false

  let eprintf ctx = List.iter Row.eprintf ctx

  let lshift ctx =
    if List.length ctx < !Clflags.match_context_rows then
      List.map Row.lshift ctx
    else
      (* Context pruning *)
      get_mins Row.le (List.map Row.lforget ctx)

  let rshift ctx = List.map Row.rshift ctx

  let rshift_num n ctx = List.map (Row.rshift_num n) ctx

  let combine ctx = List.map Row.combine ctx

  let specialize head ctx =
    let non_empty = function
      | { Row.left = _; right = [] } ->
          fatal_error "Matching.Context.specialize"
      | { Row.left; right = p :: ps } -> (left, p, ps)
    in
    let ctx = List.map non_empty ctx in
    let rec filter_rec = function
      | [] -> []
      | (left, p, right) :: rem -> (
          let p = General.view p in
          match p.pat_desc with
          | `Or (p1, p2, _) ->
              filter_rec ((left, p1, right) :: (left, p2, right) :: rem)
          | `Alias (p, _, _) -> filter_rec ((left, p, right) :: rem)
          | `Var _ -> filter_rec ((left, omega, right) :: rem)
          | #simple_view as view -> (
              let p = { p with pat_desc = view } in
              match matcher head p right with
              | exception NoMatch -> filter_rec rem
              | right ->
                  let left = Pattern_head.to_omega_pattern head :: left in
                  { Row.left; right }
                  :: filter_rec rem
            )
        )
    in
    filter_rec ctx

  let select_columns pss ctx =
    let n = ncols pss in
    let lub_row ps { Row.left; right } =
      let transfer, right = rev_split_at n right in
      match lubs transfer ps with
      | exception Empty -> None
      | inter -> Some { Row.left = inter @ left; right }
    in
    let lub_with_ctx ps = List.filter_map (lub_row ps) ctx in
    List.flatten (List.map lub_with_ctx pss)

  let lub p ctx =
    List.filter_map
      (fun { Row.left; right } ->
        match right with
        | q :: rem -> (
            try Some { Row.left; right = lub p q :: rem } with Empty -> None
          )
        | _ -> fatal_error "Matching.Context.lub")
      ctx

  let matches ctx pss =
    List.exists
      (fun { Row.right = qs } -> List.exists (fun ps -> may_compats qs ps) pss)
      ctx

  let union pss qss = get_mins Row.le (pss @ qss)
end

let rec flatten_pat_line size p k =
  match p.pat_desc with
  | Tpat_any -> omegas size :: k
  | Tpat_tuple args -> args :: k
  | Tpat_or (p1, p2, _) ->
      flatten_pat_line size p1 (flatten_pat_line size p2 k)
  | Tpat_alias (p, _, _) ->
      (* Note: if this 'as' pat is here, then this is a
                           useless binding, solves PR#3780 *)
      flatten_pat_line size p k
  | _ -> fatal_error "Matching.flatten_pat_line"

let flatten_matrix size pss =
  List.fold_right
    (fun ps r ->
      match ps with
      | [ p ] -> flatten_pat_line size p r
      | _ -> fatal_error "Matching.flatten_matrix")
    pss []

(** A default environment (referred to as "reachable trap handlers" in the
    paper), is an ordered list of [matrix * raise_num] pairs, and is used to
    decide where to jump next if none of the rows in a given matrix match the
    input.

    In such situations, one thing you can do is to jump to the first (leftmost)
    [raise_num] in that list (by doing a raise to the static-cach handler number
    [raise_num]); and you can assume that if the associated pm doesn't match
    either, it will do the same thing, etc.
    This is what [mk_failaction_neg] (and its callers) does.

    A more sophisticated alternative is to use what you know about the input
    (what you might already have matched) and the current pm (what you know you
    can't match) to directly jump to a pm that might match it instead of the
    next one; that is why we don't just keep [raise_num]s but also the
    associated matrices.
    [mk_failaction_pos] does (a slightly more sophisticated version of) this.
*)
module Default_environment : sig
  type t

  val is_empty : t -> bool

  val pop : t -> ((matrix * int) * t) option

  val empty : t

  val cons : matrix -> int -> t -> t

  val specialize : Pattern_head.t -> t -> t

  val pop_column : t -> t

  val pop_compat : pattern -> t -> t

  val flatten : int -> t -> t

  val pp : t -> unit
end = struct
  type t = (matrix * int) list
  (** All matrices in the list should have the same arity -- their rows should
      have the same number of columns -- as it should match the arity of the
      current scrutiny vector. *)

  let empty = []

  let is_empty = function
    | [] -> true
    | _ -> false

  let cons matrix raise_num default =
    match matrix with
    | [] -> default
    | _ -> (matrix, raise_num) :: default

  let specialize_matrix arity matcher pss =
    let rec filter_rec = function
      | [] -> []
      | (p, ps) :: rem -> (
          let p = General.view p in
          match p.pat_desc with
          | `Alias (p, _, _) -> filter_rec ((p, ps) :: rem)
          | `Var _ -> filter_rec ((omega, ps) :: rem)
          | `Or (p1, p2, _) -> filter_rec_or p1 p2 ps rem
          | #simple_view as view -> (
              let p = { p with pat_desc = view } in
              match matcher p ps with
              | exception NoMatch -> filter_rec rem
              | specialized ->
                  assert (List.length specialized = List.length ps + arity);
                  specialized :: filter_rec rem
            )
        )

    (* Filter just one row, without a `rem` accumulator
       of further rows to process.
       The following equality holds:
         filter_rec ((p :: ps) :: rem)
         = filter_one p ps @ filter_rec rem
    *)
    and filter_one p ps =
      filter_rec [ (p, ps) ]

    and filter_rec_or p1 p2 ps rem =
      match arity with
      | 0 -> (
          (* if K has arity 0, specializing ((K|K)::rem) returns just (rem):
             if either sides works (filters into a non-empty list),
             no need to keep the other. *)
          match filter_one p1 ps with
          | [] -> filter_rec ((p2, ps) :: rem)
          | matches -> matches @ filter_rec rem
        )
      | 1 -> (
          (* if K has arity 1, ((K p | K q) :: rem) can be expressed
             as ((p | q) :: rem): even if both sides of an or-pattern
             match, we can compress the output in a single row,
             instead of duplicating the row.

             In particular, filtering a single row (the filter_one calls)
             returns a result that respects the following properties:
             - "row count": the result is either an empty list or a single row
             - "row shape": if there is a row in the result, it contains one
               pattern consed to the tail [ps] of our input row; in particular
               the row is not empty. *)
          match (filter_one p1 ps, filter_one p2 ps) with
          | [], row
          | row, [] ->
              row @ filter_rec rem
          | [ (arg1 :: _) ], [ (arg2 :: _) ] ->
              (* By the row shape property,
                 the wildcard patterns can only be ps. *)
              (* The output below is a single row,
                  respecting the row count property. *)
              ({ arg1 with
                 pat_desc = Tpat_or (arg1, arg2, None);
                 pat_loc = Location.none
               }
              :: ps
              )
              :: filter_rec rem
          | (_ :: _ :: _), _
          | _, (_ :: _ :: _) ->
              (* Cannot happen from the row count property. *)
              assert false
          | [ [] ], _
          | _, [ [] ] ->
              (* Cannot happen from the row shape property. *)
              assert false
        )
      | _ ->
          (* we cannot preserve the or-pattern as in the arity-1 case,
             because we cannot express
                (K (p1, .., pn) | K (q1, .. qn))
             as (p1 .. pn | q1 .. qn) *)
          filter_rec ((p1, ps) :: (p2, ps) :: rem)
    in
    filter_rec pss

  let specialize_ arity matcher env =
    let rec make_rec = function
      | [] -> []
      | (([] :: _), i) :: _ -> [ ([ [] ], i) ]
      | (pss, i) :: rem -> (
          (* we already handled the empty-row case
             so we know that all rows in pss are non-empty *)
          let non_empty = function
            | [] -> assert false
            | p :: ps -> (p, ps)
          in
          let pss = List.map non_empty pss in
          match specialize_matrix arity matcher pss with
          | [] -> make_rec rem
          | [] :: _ -> [ ([ [] ], i) ]
          | pss -> (pss, i) :: make_rec rem
        )
    in
    make_rec env

  let specialize head def =
    specialize_ (Pattern_head.arity head) (matcher head) def

  let pop_column def = specialize_ 0 (fun _p rem -> rem) def

  let pop_compat p def =
    let compat_matcher q rem =
      if may_compat p (General.erase q) then
        rem
      else
        raise NoMatch
    in
    specialize_ 0 compat_matcher def

  let pop = function
    | [] -> None
    | def :: defs -> Some (def, defs)

  let pp def =
    Format.eprintf "+++++ Defaults +++++\n";
    List.iter
      (fun (pss, i) -> Format.eprintf "Matrix for %d\n%a" i pretty_matrix pss)
      def;
    Format.eprintf "+++++++++++++++++++++\n"

  let flatten size def =
    List.map (fun (pss, i) -> (flatten_matrix size pss, i)) def
end

module Jumps : sig
  type t

  val is_empty : t -> bool

  val empty : t

  val singleton : int -> Context.t -> t

  val add : int -> Context.t -> t -> t

  val union : t -> t -> t

  val unions : t list -> t

  val map : (Context.t -> Context.t) -> t -> t

  val remove : int -> t -> t

  val extract : int -> t -> Context.t * t

  val eprintf : t -> unit
end = struct
  type t = (int * Context.t) list

  let eprintf (env : t) =
    List.iter
      (fun (i, ctx) ->
        Printf.eprintf "jump for %d\n" i;
        Context.eprintf ctx)
      env

  let rec extract i = function
    | [] -> (Context.empty, [])
    | ((j, pss) as x) :: rem as all ->
        if i = j then
          (pss, rem)
        else if j < i then
          (Context.empty, all)
        else
          let r, rem = extract i rem in
          (r, x :: rem)

  let rec remove i = function
    | [] -> []
    | (j, _) :: rem when i = j -> rem
    | x :: rem -> x :: remove i rem

  let empty = []

  and is_empty = function
    | [] -> true
    | _ -> false

  let singleton i ctx =
    if Context.is_empty ctx then
      []
    else
      [ (i, ctx) ]

  let add i ctx jumps =
    let rec add = function
      | [] -> [ (i, ctx) ]
      | ((j, qss) as x) :: rem as all ->
          if j > i then
            x :: add rem
          else if j < i then
            (i, ctx) :: all
          else
            (i, Context.union ctx qss) :: rem
    in
    if Context.is_empty ctx then
      jumps
    else
      add jumps

  let rec union (env1 : t) env2 =
    match (env1, env2) with
    | [], _ -> env2
    | _, [] -> env1
    | ((i1, pss1) as x1) :: rem1, ((i2, pss2) as x2) :: rem2 ->
        if i1 = i2 then
          (i1, Context.union pss1 pss2) :: union rem1 rem2
        else if i1 > i2 then
          x1 :: union rem1 env2
        else
          x2 :: union env1 rem2

  let rec merge = function
    | env1 :: env2 :: rem -> union env1 env2 :: merge rem
    | envs -> envs

  let rec unions envs =
    match envs with
    | [] -> []
    | [ env ] -> env
    | _ -> unions (merge envs)

  let map f env = List.map (fun (i, pss) -> (i, f pss)) env
end

(* Pattern matching before any compilation *)

type 'row pattern_matching = {
  mutable cases : 'row list;
  args : (lambda * let_kind) list;
      (** args are not just Ident.t in at least the following cases:
        - when matching the arguments of a constructor,
          direct field projections are used (make_field_args)
        - with lazy patterns args can be of the form [Lazy.force ...]
          (inline_lazy_force). *)
  default : Default_environment.t
}

type handler = {
  provenance : matrix;
  exit : int;
  vars : (Ident.t * Lambda.value_kind) list;
  pm : initial_clause pattern_matching
}

type 'head_pat pm_or_compiled = {
  body : 'head_pat Non_empty_clause.t pattern_matching;
  handlers : handler list;
  or_matrix : matrix
}

(* Pattern matching after application of both the or-pat rule and the
   mixture rule *)

type pm_half_compiled =
  | PmOr of Simple.pattern pm_or_compiled
  | PmVar of { inside : pm_half_compiled }
  | Pm of Simple.clause pattern_matching

(* Only used inside the various split functions, we only keep [me] when we're
   done splitting / precompiling. *)
type pm_half_compiled_info = {
  me : pm_half_compiled;
  matrix : matrix;
  (* the matrix matched by [me]. Is used to extend the list of reachable trap
        handlers (aka "default environments") when returning from recursive
        calls. *)
  top_default : Default_environment.t
}

let erase_cases f cases =
  List.map (fun ((p, ps), act) -> (f p :: ps, act)) cases

let erase_pm pm =
  { pm with cases = erase_cases General.erase pm.cases }

let pretty_cases cases =
  List.iter
    (fun (ps, _l) ->
      List.iter (fun p -> Format.eprintf " %a%!" top_pretty p) ps;
      Format.eprintf "\n")
    cases

let pretty_pm pm =
  pretty_cases pm.cases;
  if not (Default_environment.is_empty pm.default) then
    Default_environment.pp pm.default

let rec pretty_precompiled = function
  | Pm pm ->
      Format.eprintf "++++ PM ++++\n";
      pretty_pm (erase_pm pm)
  | PmVar x ->
      Format.eprintf "++++ VAR ++++\n";
      pretty_precompiled x.inside
  | PmOr x ->
      Format.eprintf "++++ OR ++++\n";
      pretty_pm (erase_pm x.body);
      pretty_matrix Format.err_formatter x.or_matrix;
      List.iter
        (fun { exit = i; pm; _ } ->
          eprintf "++ Handler %d ++\n" i;
          pretty_pm pm)
        x.handlers

let pretty_precompiled_res first nexts =
  pretty_precompiled first;
  List.iter
    (fun (e, pmh) ->
      eprintf "** DEFAULT %d **\n" e;
      pretty_precompiled pmh)
    nexts

(* Identifying some semantically equivalent lambda-expressions,
   Our goal here is also to
   find alpha-equivalent (simple) terms *)

(* However, as shown by PR#6359 such sharing may hinders the
   lambda-code invariant that all bound idents are unique,
   when switches are compiled to test sequences.
   The definitive fix is the systematic introduction of exit/catch
   in case action sharing is present.
*)

module StoreExp = Switch.Store (struct
  type t = lambda

  type key = lambda

  let compare_key = Stdlib.compare

  let make_key = Lambda.make_key
end)

let make_exit i = Lstaticraise (i, [])

(* Introduce a catch, if worth it *)
let make_catch d k =
  match d with
  | Lstaticraise (_, []) -> k d
  | _ ->
      let e = next_raise_count () in
      Lstaticcatch (k (make_exit e), (e, []), d)

(* Introduce a catch, if worth it, delayed version *)
let rec as_simple_exit = function
  | Lstaticraise (i, []) -> Some i
  | Llet (Alias, _k, _, _, e) -> as_simple_exit e
  | _ -> None

let make_catch_delayed handler =
  match as_simple_exit handler with
  | Some i -> (i, fun act -> act)
  | None -> (
      let i = next_raise_count () in
      (*
    Printf.eprintf "SHARE LAMBDA: %i\n%s\n" i (string_of_lam handler);
*)
      ( i,
        fun body ->
          match body with
          | Lstaticraise (j, _) ->
              if i = j then
                handler
              else
                body
          | _ -> Lstaticcatch (body, (i, []), handler) )
    )

let raw_action l =
  match make_key l with
  | Some l -> l
  | None -> l

let same_actions = function
  | [] -> None
  | [ (_, act) ] -> Some act
  | (_, act0) :: rem -> (
      match make_key act0 with
      | None -> None
      | key0_opt ->
          let same_act (_, act) = make_key act = key0_opt in
          if List.for_all same_act rem then
            Some act0
          else
            None
    )

let safe_before ((p, ps), act_p) l =
  (* Test for swapping two clauses *)
  let same_actions act1 act2 =
    match (make_key act1, make_key act2) with
    | Some key1, Some key2 -> key1 = key2
    | None, _
    | _, None ->
        false
  in
  List.for_all
    (fun ((q, qs), act_q) ->
      same_actions act_p act_q
      || not (may_compats (General.erase p :: ps) (General.erase q :: qs)))
    l

let half_simplify_nonempty ~arg (cls : Typedtree.pattern Non_empty_clause.t) :
    Half_simple.clause =
  cls |> Non_empty_clause.map_head General.view |> Half_simple.of_clause ~arg

let half_simplify_clause ~arg (cls : Typedtree.pattern list clause) =
  cls |> Non_empty_clause.of_initial |> half_simplify_nonempty ~arg

(* Once matchings are *fully* simplified, one can easily find
   their nature. *)

let rec what_is_cases ~skip_any cases =
  match cases with
  | [] -> Pattern_head.omega
  | ((p, _), _) :: rem -> (
      let head = Simple.head p in
      match Pattern_head.desc head with
      | Any when skip_any -> what_is_cases ~skip_any rem
      | _ -> head
    )

let what_is_first_case = what_is_cases ~skip_any:false

let what_is_cases = what_is_cases ~skip_any:true

let pm_free_variables { cases } =
  List.fold_right
    (fun (_, act) r -> Ident.Set.union (free_variables act) r)
    cases Ident.Set.empty

(* Basic grouping predicates *)

let can_group discr pat =
  match (Pattern_head.desc discr, Pattern_head.desc (Simple.head pat)) with
  | Any, Any
  | Constant (Const_int _), Constant (Const_int _)
  | Constant (Const_char _), Constant (Const_char _)
  | Constant (Const_string _), Constant (Const_string _)
  | Constant (Const_float _), Constant (Const_float _)
  | Constant (Const_int32 _), Constant (Const_int32 _)
  | Constant (Const_int64 _), Constant (Const_int64 _)
  | Constant (Const_nativeint _), Constant (Const_nativeint _) ->
      true
  | Construct { cstr_tag = Cstr_extension _ as discr_tag }, Construct pat_cstr
    ->
      (* Extension constructors with distinct names may be equal thanks to
         constructor rebinding. So we need to produce a specialized
         submatrix for each syntactically-distinct constructor (with a threading
         of exits such that each submatrix falls back to the
         potentially-compatible submatrices below it).  *)
      Types.equal_tag discr_tag pat_cstr.cstr_tag
  | Construct _, Construct _
  | Tuple _, (Tuple _ | Any)
  | Record _, (Record _ | Any)
  | Array _, Array _
  | Variant _, Variant _
  | Lazy, Lazy ->
      true
  | ( _,
      ( Any
      | Constant
          ( Const_int _ | Const_char _ | Const_string _ | Const_float _
          | Const_int32 _ | Const_int64 _ | Const_nativeint _ )
      | Construct _ | Tuple _ | Record _ | Array _ | Variant _ | Lazy ) ) ->
      false

let is_or p =
  match p.pat_desc with
  | Tpat_or _ -> true
  | _ -> false

let rec omega_like p =
  match p.pat_desc with
  | Tpat_any
  | Tpat_var _ ->
      true
  | Tpat_alias (p, _, _) -> omega_like p
  | Tpat_or (p1, p2, _) -> omega_like p1 || omega_like p2
  | _ -> false

let simple_omega_like p =
  match Pattern_head.desc (Simple.head p) with
  | Any -> true
  | _ -> false

let equiv_pat p q = le_pat p q && le_pat q p

let rec extract_equiv_head p l =
  match l with
  | (((q, _), _) as cl) :: rem ->
      if equiv_pat p (General.erase q) then
        let others, rem = extract_equiv_head p rem in
        (cl :: others, rem)
      else
        ([], l)
  | _ -> ([], l)

module Or_matrix = struct
  (* Splitting a matrix uses an or-matrix that contains or-patterns (at
     the head of some of its rows).

     The property that we want to maintain for the rows of the
     or-matrix is that if the row p::ps is before q::qs and p is an
     or-pattern, and v::vs matches p but not ps, then we don't need to
     try q::qs. This is necessary because the compilation of the
     or-pattern p will exit to a sub-matrix and never come back.

     For this to hold, (p::ps) and (q::qs) must satisfy one of:
     - disjointness: p and q are not compatible
     - ordering: if p and q are compatible, ps is more general than qs
       (this only works if the row p::ps is not guarded; otherwise the
        guard could fail and q::qs should still be tried)
  *)

  (* Conditions for appending to the Or matrix *)
  let disjoint p q = not (may_compat p q)

  let safe_below (ps, act) qs =
    (not (is_guarded act)) && Parmatch.le_pats ps qs

  let safe_below_or_matrix l (q, qs) =
    List.for_all
      (fun ((p, ps), act_p) ->
        let p = General.erase p in
        match p.pat_desc with
        | Tpat_or _ -> disjoint p q || safe_below (ps, act_p) qs
        | _ -> true)
      l

  (* Insert or append a clause in the Or matrix:
     - insert: adding the clause in the middle of the or_matrix
     - append: adding the clause at the bottom of the or_matrix

     If neither are possible we add to the bottom of the No matrix.
   *)
  let insert_or_append (head, ps, act) rev_ors rev_no =
    let safe_to_insert rem (p, ps) seen =
      let _, not_e = extract_equiv_head p rem in
      (* check append condition for head of O *)
      safe_below_or_matrix not_e (p, ps)
      && (* check insert condition for tail of O *)
         List.for_all (fun ((q, _), _) -> disjoint p (General.erase q)) seen
    in
    let rec attempt seen = function
      (* invariant: the new clause is safe to append at the end of
         [seen] (but maybe not [rem] yet) *)
      | [] -> (((head, ps), act) :: rev_ors, rev_no)
      | (((q, qs), act_q) as cl) :: rem ->
          let p = General.erase head in
          let q = General.erase q in
          if (not (is_or q)) || disjoint p q then
            attempt (cl :: seen) rem
          else if
            Typedtree.pat_bound_idents p = []
            && Typedtree.pat_bound_idents q = []
            && equiv_pat p q
          then
            (* attempt insertion, for equivalent orpats with no variables *)
            if safe_to_insert rem (p, ps) seen then
              (List.rev_append seen (((head, ps), act) :: cl :: rem), rev_no)
            else
              (* fail to insert or append *)
              (rev_ors, ((head, ps), act) :: rev_no)
          else if safe_below (qs, act_q) ps then
            attempt (cl :: seen) rem
          else
            (rev_ors, ((head, ps), act) :: rev_no)
    in
    attempt [] rev_ors
end

(* Reconstruct default information from half_compiled  pm list *)

let as_matrix cases =
  get_mins le_pats (List.map (fun ((p, ps), _) -> General.erase p :: ps) cases)

(*
  Split a matching along the first column.

    Splitting is first directed by or-patterns, then by
    tests (e.g. constructors)/variable transitions.

    The approach is greedy, every split function attempts to
    raise rows as much as possible in the top matrix,
    then splitting applies again to the remaining rows.

    Some precompilation of or-patterns and
    variable pattern occurs. Mostly this means that bindings
    are performed now,  being replaced by let-bindings
    in actions (cf. Half_simple.of_clause).

    Additionally, if the match argument is a variable, matchings whose
    first column is made of variables only are split further
    (cf. precompile_var).

  ---

  Note: we assume that the first column of each pattern is coherent -- all
  patterns match values of the same type. This comes from the fact that
  we make aggressive splitting decisions, splitting pattern heads that
  may be different into different submatrices; in particular, in a given
  submatrix the first column is formed of first arguments to the same
  constructor.

  GADTs are not an issue because we split columns left-to-right, and
  GADT typing also introduces typing equations left-to-right. In
  particular, a leftmost column in matching.ml will be well-typed under
  a set of equations accepted by the type-checker, and those equations
  are forced to remain consistent: they can equate known types to
  abstract types, but they cannot equate two incompatible known types
  together, and in particular incompatible pattern heads do not appear
  in a leftmost column.

  Parmatch has to be more conservative because it splits less
  aggressively: submatrices will contain not just the arguments of
  a given pattern head, but also other lines that may be compatible with
  it, in particular those with a leftmost omega and those starting with
  an extension constructor that may be equal to it.

*)

let rec split_or argo (cls : Half_simple.clause list) args def =
  let rec do_split (rev_before : Simple.clause list) rev_ors rev_no = function
    | [] ->
        cons_next (List.rev rev_before) (List.rev rev_ors) (List.rev rev_no)
    | cl :: rem when not (safe_before cl rev_no) ->
        do_split rev_before rev_ors (cl :: rev_no) rem
    | (((p, ps), act) as cl) :: rem -> (
        match p.pat_desc with
        | #simple_view as view when safe_before cl rev_ors ->
            do_split
              ((({ p with pat_desc = view }, ps), act) :: rev_before)
              rev_ors rev_no rem
        | _ ->
            let rev_ors, rev_no =
              Or_matrix.insert_or_append (p, ps, act) rev_ors rev_no
            in
            do_split rev_before rev_ors rev_no rem
      )
  and cons_next yes yesor no =
    let def, nexts =
      match no with
      | [] -> (def, [])
      | _ ->
          let { me = next; matrix; top_default = def }, nexts =
            do_split [] [] [] no
          in
          let idef = next_raise_count () in
          (Default_environment.cons matrix idef def, (idef, next) :: nexts)
    in
    match yesor with
    | [] -> split_no_or yes args def nexts
    | _ -> precompile_or argo yes yesor args def nexts
  in
  do_split [] [] [] cls

and split_no_or cls args def k =
  (* We split the remaining clauses in as few pms as possible while maintaining
     the property stated earlier (cf. {1. Precompilation}), i.e. for
     any pm in the result, it is possible to decide for any two patterns
     on the first column whether their heads are equal or not.

     This generally means that we'll have two kinds of pms: ones where the first
     column is made of variables only, and ones where the head is actually a
     discriminating pattern.

     There is some subtlety regarding the handling of extension constructors
     (where it is not always possible to syntactically decide whether two
     different heads match different values), but this is handled by the
     [can_group] function. *)
  let rec split (cls : Simple.clause list) =
    let discr = what_is_first_case cls in
    collect discr [] [] cls
  and collect group_discr rev_yes rev_no = function
    | [ (((p, ps), _) as cl) ]
      when rev_yes <> [] && simple_omega_like p && List.for_all omega_like ps ->
        (* This enables an extra division in some frequent cases:
               last row is made of variables only

           Splitting a matrix there creates two default environments (instead of
           one for the non-split matrix), the first of which often gets
           specialized away by further refinement, and the second one jumping
           directly to the catch-all case -- this produces better code.

           This optimisation is tested in the first part of
           testsuite/tests/basic/patmatch_split_no_or.ml *)
        collect group_discr rev_yes (cl :: rev_no) []
    | (((p, _), _) as cl) :: rem ->
        if can_group group_discr p && safe_before cl rev_no then
          collect group_discr (cl :: rev_yes) rev_no rem
        else if should_split group_discr then (
          assert (rev_no = []);
          let yes = List.rev rev_yes in
          insert_split group_discr yes (cl :: rem) def k
        ) else
          collect group_discr rev_yes (cl :: rev_no) rem
    | [] ->
        let yes = List.rev rev_yes and no = List.rev rev_no in
        insert_split group_discr yes no def k
  and insert_split group_discr yes no def k =
    let precompile_group =
      match Pattern_head.desc group_discr with
      | Any -> precompile_var
      | _ -> do_not_precompile
    in
    match no with
    | [] -> precompile_group args yes def k
    | _ ->
        let { me = next; matrix; top_default = def }, nexts = split no in
        let idef = next_raise_count () in
        precompile_group args yes
          (Default_environment.cons matrix idef def)
          ((idef, next) :: nexts)
  and should_split group_discr =
    match Pattern_head.desc group_discr with
    | Construct { cstr_tag = Cstr_extension _ } ->
        (* it is unlikely that we will raise anything, so we split now *)
        true
    | _ -> false
  in
  split cls

and precompile_var args cls def k =
  (* Strategy: pop the first column,
     precompile the rest, add a PmVar to all precompiled submatrices.

     If the rest doesn't generate any split, abort and do_not_precompile. *)
  match args with
  | [] -> assert false
  | _ :: ((Lvar v, _) as arg) :: rargs -> (
      (* We will use the name of the head column of the submatrix
         we compile, and this is the *second* column of our argument. *)
      match cls with
      | [ _ ] ->
          (* as split as it can *)
          do_not_precompile args cls def k
      | _ -> (
          (* Precompile *)
          let var_args = arg :: rargs in
          let var_cls =
            List.map
              (fun ((p, ps), act) ->
                assert (simple_omega_like p);

                (* we learned by pattern-matching on [args]
                   that [p::ps] has at least two arguments,
                   so [ps] must be non-empty *)
                half_simplify_clause ~arg:(fst arg) (ps, act))
              cls
          and var_def = Default_environment.pop_column def in
          let { me = first; matrix }, nexts =
            split_or (Some v) var_cls var_args var_def
          in
          (* Compute top information *)
          match nexts with
          | [] ->
              (* If you need *)
              do_not_precompile args cls def k
          | _ ->
              let rec rebuild_matrix pmh =
                match pmh with
                | Pm pm -> as_matrix pm.cases
                | PmOr { or_matrix = m } -> m
                | PmVar x -> add_omega_column (rebuild_matrix x.inside)
              in
              let rebuild_default nexts def =
                (* We can't just do:
                   {[
                     List.map
                       (fun (mat, e) -> add_omega_column mat, e)
                       top_default (* assuming it'd been bound. *)
                   ]}
                   As we would be losing information: [def] is more precise
                   than [add_omega_column (pop_column def)]. *)
                List.fold_right
                  (fun (e, pmh) ->
                    Default_environment.cons
                      (add_omega_column (rebuild_matrix pmh))
                      e)
                  nexts def
              in
              let rebuild_nexts nexts k =
                map_end (fun (e, pm) -> (e, PmVar { inside = pm })) nexts k
              in
              let rfirst =
                { me = PmVar { inside = first };
                  matrix = add_omega_column matrix;
                  top_default = rebuild_default nexts def
                }
              and rnexts = rebuild_nexts nexts k in
              (rfirst, rnexts)
        )
    )
  | _ -> do_not_precompile args cls def k

and do_not_precompile args cls def k =
  ( { me = Pm { cases = cls; args; default = def };
      matrix = as_matrix cls;
      top_default = def
    },
    k )

and precompile_or argo (cls : Simple.clause list) ors args def k =
  let rec do_cases = function
    | [] -> ([], [])
    | ((p, patl), action) :: rem -> (
        match p.pat_desc with
        | #simple_view as view ->
            let new_ord, new_to_catch = do_cases rem in
            ( (({ p with pat_desc = view }, patl), action) :: new_ord,
              new_to_catch )
        | `Or _ ->
            let orp = General.erase p in
            let others, rem = extract_equiv_head orp rem in
            let orpm =
              { cases =
                  (patl, action)
                  :: List.map (fun ((_, ps), action) -> (ps, action)) others;
                args =
                  ( match args with
                  | _ :: r -> r
                  | _ -> assert false
                  );
                default = Default_environment.pop_compat orp def
              }
            in
            let pm_fv = pm_free_variables orpm in
            let vars =
              (* bound variables of the or-pattern and used in the orpm
                 actions *)
              Typedtree.pat_bound_idents_full orp
              |> List.filter (fun (id, _, _) -> Ident.Set.mem id pm_fv)
              |> List.map (fun (id, _, ty) ->
                     (id, Typeopt.value_kind orp.pat_env ty))
            in
            let or_num = next_raise_count () in
            let new_patl = Parmatch.omega_list patl in
            let mk_new_action ~vars =
              Lstaticraise (or_num, List.map (fun v -> Lvar v) vars)
            in
            let rem_cases, rem_handlers = do_cases rem in
            let cases =
              Simple.explode_or_pat (p, new_patl) ~arg:argo
                ~mk_action:mk_new_action ~vars:(List.map fst vars) rem_cases
            in
            let handler =
              { provenance = [ [ orp ] ];
                exit = or_num;
                vars;
                pm = orpm
              }
            in
            (cases, handler :: rem_handlers)
      )
  in
  let cases, handlers = do_cases ors in
  let matrix =
    as_matrix
      ((cls : Simple.clause list :> General.clause list)
      @ (ors : Half_simple.clause list :> General.clause list)
      )
  and body = { cases = cls @ cases; args; default = def } in
  ( { me = PmOr { body; handlers; or_matrix = matrix };
      matrix;
      top_default = def
    },
    k )

let dbg_split_and_precompile pm next nexts =
  if
    dbg
    && (nexts <> []
       ||
       match next with
       | PmOr _ -> true
       | _ -> false
       )
  then (
    Format.eprintf "** SPLIT **\n";
    pretty_pm (erase_pm pm);
    pretty_precompiled_res next nexts
  )

let split_and_precompile_simplified pm =
  let { me = next }, nexts = split_no_or pm.cases pm.args pm.default [] in
  dbg_split_and_precompile pm next nexts;
  (next, nexts)

let split_and_precompile_half_simplified ~arg pm =
  let { me = next }, nexts = split_or arg pm.cases pm.args pm.default in
  dbg_split_and_precompile pm next nexts;
  (next, nexts)

let split_and_precompile ~arg_id ~arg_lambda pm =
  let pm =
    { pm with cases = List.map (half_simplify_clause ~arg:arg_lambda) pm.cases }
  in
  split_and_precompile_half_simplified ~arg:arg_id pm

(* General divide functions *)

type cell = {
  pm : initial_clause pattern_matching;
  ctx : Context.t;
  discr : Pattern_head.t
}
(** a submatrix after specializing by discriminant pattern;
    [ctx] is the context shared by all rows. *)

let make_matching get_expr_args head def ctx = function
  | [] -> fatal_error "Matching.make_matching"
  | arg :: rem ->
      let def = Default_environment.specialize head def
      and args = get_expr_args head arg rem
      and ctx = Context.specialize head ctx in
      { pm = { cases = []; args; default = def }; ctx; discr = head }

let make_line_matching get_expr_args head def = function
  | [] -> fatal_error "Matching.make_line_matching"
  | arg :: rem ->
      { cases = [];
        args = get_expr_args head arg rem;
        default = Default_environment.specialize head def
      }

type 'a division = {
  args : (lambda * let_kind) list;
  cells : ('a * cell) list
}

let add_in_div make_matching_fun eq_key key patl_action division =
  let cells =
    match List.find_opt (fun (k, _) -> eq_key key k) division.cells with
    | None ->
        let cell = make_matching_fun division.args in
        cell.pm.cases <- [ patl_action ];
        (key, cell) :: division.cells
    | Some (_, cell) ->
        cell.pm.cases <- patl_action :: cell.pm.cases;
        division.cells
  in
  { division with cells }

let divide get_expr_args eq_key get_key get_pat_args ctx
    (pm : Simple.clause pattern_matching) =
  let add ((p, patl), action) division =
    let ph = Simple.head p in
    let p = General.erase p in
    add_in_div
      (make_matching get_expr_args ph pm.default ctx)
      eq_key (get_key p)
      (get_pat_args p patl, action)
      division
  in
  List.fold_right add pm.cases { args = pm.args; cells = [] }

let add_line patl_action pm =
  pm.cases <- patl_action :: pm.cases;
  pm

let divide_line make_ctx get_expr_args get_pat_args discr ctx
    (pm : Simple.clause pattern_matching) =
  let add ((p, patl), action) submatrix =
    let p = General.erase p in
    add_line (get_pat_args p patl, action) submatrix
  in
  let pm =
    List.fold_right add pm.cases
      (make_line_matching get_expr_args discr pm.default pm.args)
  in
  { pm; ctx = make_ctx ctx; discr }

let drop_pat_arg _p rem = rem
let drop_expr_arg _head _arg rem = rem

(* Then come various functions,
   There is one set of functions per matching style
   (constants, constructors etc.)

   - get_{expr,pat}_args and get_key are for the compiled matrices,
     note that selection and getting arguments are separated.

   - make_*_matching combines the previous functions for producing
   new  ``pattern_matching'' records.
*)

(* Matching against a constant *)

let get_key_constant caller = function
  | { pat_desc = Tpat_constant cst } -> cst
  | p ->
      Format.eprintf "BAD: %s" caller;
      pretty_pat p;
      assert false

let get_pat_args_constant = drop_pat_arg
let get_expr_args_constant = drop_expr_arg

let divide_constant ctx m =
  divide
    get_expr_args_constant
    (fun c d -> const_compare c d = 0)
    (get_key_constant "divide")
    get_pat_args_constant ctx m

(* Matching against a constructor *)

let get_key_constr = function
  | { pat_desc = Tpat_construct (_, cstr, _) } -> cstr.cstr_tag
  | _ -> assert false

let get_pat_args_constr p rem =
  match p with
  | { pat_desc = Tpat_construct (_, _, args) } -> args @ rem
  | _ -> assert false

let get_expr_args_constr ~scopes head (arg, _mut) rem =
  let cstr =
    match Pattern_head.desc head with
    | Construct cstr -> cstr
    | _ -> fatal_error "Matching.get_expr_args_constr"
  in
  let loc = head_loc ~scopes head in
  let make_field_accesses binding_kind first_pos last_pos argl =
    let rec make_args pos =
      if pos > last_pos then
        argl
      else
        (Lprim (Pfield pos, [ arg ], loc), binding_kind) :: make_args (pos + 1)
    in
    make_args first_pos
  in
  if cstr.cstr_inlined <> None then
    (arg, Alias) :: rem
  else
    match cstr.cstr_tag with
    | Cstr_constant _
    | Cstr_block _ ->
        make_field_accesses Alias 0 (cstr.cstr_arity - 1) rem
    | Cstr_unboxed -> (arg, Alias) :: rem
    | Cstr_extension _ -> make_field_accesses Alias 1 cstr.cstr_arity rem

let divide_constructor ~scopes ctx pm =
  divide
    (get_expr_args_constr ~scopes)
    ( = )
    get_key_constr
    get_pat_args_constr
    ctx pm

(* Matching against a variant *)

let get_expr_args_variant_constant = drop_expr_arg

let get_expr_args_variant_nonconst ~scopes head (arg, _mut) rem =
  let loc = head_loc ~scopes head in
  (Lprim (Pfield 1, [ arg ], loc), Alias) :: rem

let divide_variant ~scopes row ctx { cases = cl; args; default = def } =
  let row = Btype.row_repr row in
  let rec divide = function
    | [] -> { args; cells = [] }
    | ((p, patl), action) :: rem
      -> (
        let lab, pato = match p.pat_desc with
          | `Variant (lab, pato, _) -> lab, pato
          | _ -> assert false
        in
        let head = Simple.head p in
        let variants = divide rem in
        if
          try Btype.row_field_repr (List.assoc lab row.row_fields) = Rabsent
          with Not_found -> true
        then
          variants
        else
          let tag = Btype.hash_variant lab in
          match pato with
          | None ->
              add_in_div
                (make_matching get_expr_args_variant_constant head def ctx)
                ( = ) (Cstr_constant tag) (patl, action) variants
          | Some pat ->
              add_in_div
                (make_matching
                   (get_expr_args_variant_nonconst ~scopes)
                   head def ctx)
                ( = ) (Cstr_block tag)
                (pat :: patl, action)
                variants
      )
  in
  divide cl

(*
  Three ``no-test'' cases
  *)

(* Matching against a variable *)

let get_pat_args_var = drop_pat_arg
let get_expr_args_var = drop_expr_arg

let divide_var ctx pm =
  divide_line Context.lshift
    get_expr_args_var
    get_pat_args_var
    Pattern_head.omega ctx pm

(* Matching and forcing a lazy value *)

let get_pat_args_lazy p rem =
  match p with
  | { pat_desc = Tpat_any } -> omega :: rem
  | { pat_desc = Tpat_lazy arg } -> arg :: rem
  | _ -> assert false

(* Inlining the tag tests before calling the primitive that works on
   lazy blocks. This is also used in translcore.ml.
   No other call than Obj.tag when the value has been forced before.
*)

let prim_obj_tag = Primitive.simple ~name:"caml_obj_tag" ~arity:1 ~alloc:false

let get_mod_field modname field =
  lazy
    (let mod_ident = Ident.create_persistent modname in
     let env =
       Env.add_persistent_structure mod_ident Env.initial_safe_string
     in
     match Env.open_pers_signature modname env with
     | exception Not_found ->
         fatal_error ("Module " ^ modname ^ " unavailable.")
     | env -> (
         match Env.find_value_by_name (Longident.Lident field) env with
         | exception Not_found ->
             fatal_error ("Primitive " ^ modname ^ "." ^ field ^ " not found.")
         | path, _ -> transl_value_path Loc_unknown env path
       ))

let code_force_lazy_block = get_mod_field "CamlinternalLazy" "force_lazy_block"

let code_force_lazy = get_mod_field "CamlinternalLazy" "force"

(* inline_lazy_force inlines the beginning of the code of Lazy.force. When
   the value argument is tagged as:
   - forward, take field 0
   - lazy, call the primitive that forces (without testing again the tag)
   - anything else, return it

   Using Lswitch below relies on the fact that the GC does not shortcut
   Forward(val_out_of_heap).
*)

let inline_lazy_force_cond arg loc =
  let idarg = Ident.create_local "lzarg" in
  let varg = Lvar idarg in
  let tag = Ident.create_local "tag" in
  let tag_var = Lvar tag in
  let force_fun = Lazy.force code_force_lazy_block in
  Llet
    ( Strict,
      Pgenval,
      idarg,
      arg,
      Llet
        ( Alias,
          Pgenval,
          tag,
          Lprim (Pccall prim_obj_tag, [ varg ], loc),
          Lifthenelse
            (* if (tag == Obj.forward_tag) then varg.(0) else ... *)
            ( Lprim
                ( Pintcomp Ceq,
                  [ tag_var; Lconst (Const_base (Const_int Obj.forward_tag)) ],
                  loc ),
              Lprim (Pfield 0, [ varg ], loc),
              Lifthenelse
                (* if (tag == Obj.lazy_tag) then Lazy.force varg else ... *)
                ( Lprim
                    ( Pintcomp Ceq,
                      [ tag_var; Lconst (Const_base (Const_int Obj.lazy_tag)) ],
                      loc ),
                  Lapply
                    { ap_should_be_tailcall = false;
                      ap_loc = loc;
                      ap_func = force_fun;
                      ap_args = [ varg ];
                      ap_inlined = Default_inline;
                      ap_specialised = Default_specialise
                    },
                  (* ... arg *)
                  varg ) ) ) )

let inline_lazy_force_switch arg loc =
  let idarg = Ident.create_local "lzarg" in
  let varg = Lvar idarg in
  let force_fun = Lazy.force code_force_lazy_block in
  Llet
    ( Strict,
      Pgenval,
      idarg,
      arg,
      Lifthenelse
        ( Lprim (Pisint, [ varg ], loc),
          varg,
          Lswitch
            ( varg,
              { sw_numconsts = 0;
                sw_consts = [];
                sw_numblocks = 256;
                (* PR#6033 - tag ranges from 0 to 255 *)
                sw_blocks =
                  [ (Obj.forward_tag, Lprim (Pfield 0, [ varg ], loc));
                    ( Obj.lazy_tag,
                      Lapply
                        { ap_should_be_tailcall = false;
                          ap_loc = loc;
                          ap_func = force_fun;
                          ap_args = [ varg ];
                          ap_inlined = Default_inline;
                          ap_specialised = Default_specialise
                        } )
                  ];
                sw_failaction = Some varg
              },
              loc ) ) )

let inline_lazy_force arg loc =
  if !Clflags.afl_instrument then
    (* Disable inlining optimisation if AFL instrumentation active,
       so that the GC forwarding optimisation is not visible in the
       instrumentation output.
       (see https://github.com/stedolan/crowbar/issues/14) *)
    Lapply
      { ap_should_be_tailcall = false;
        ap_loc = loc;
        ap_func = Lazy.force code_force_lazy;
        ap_args = [ arg ];
        ap_inlined = Default_inline;
        ap_specialised = Default_specialise
      }
  else if !Clflags.native_code then
    (* Lswitch generates compact and efficient native code *)
    inline_lazy_force_switch arg loc
  else
    (* generating bytecode: Lswitch would generate too many rather big
         tables (~ 250 elts); conditionals are better *)
    inline_lazy_force_cond arg loc

let get_expr_args_lazy ~scopes head (arg, _mut) rem =
  let loc = head_loc ~scopes head in
  (inline_lazy_force arg loc, Strict) :: rem

let divide_lazy ~scopes head ctx pm =
  divide_line (Context.specialize head)
    (get_expr_args_lazy ~scopes)
    get_pat_args_lazy
    head ctx pm

(* Matching against a tuple pattern *)

let get_pat_args_tuple arity p rem =
  match p with
  | { pat_desc = Tpat_any } -> omegas arity @ rem
  | { pat_desc = Tpat_tuple args } -> args @ rem
  | _ -> assert false

let get_expr_args_tuple ~scopes head (arg, _mut) rem =
  let loc = head_loc ~scopes head in
  let arity = Pattern_head.arity head in
  let rec make_args pos =
    if pos >= arity then
      rem
    else
      (Lprim (Pfield pos, [ arg ], loc), Alias) :: make_args (pos + 1)
  in
  make_args 0

let divide_tuple ~scopes head ctx pm =
  let arity = Pattern_head.arity head in
  divide_line (Context.specialize head)
    (get_expr_args_tuple ~scopes)
    (get_pat_args_tuple arity)
    head ctx pm

(* Matching against a record pattern *)

let record_matching_line num_fields lbl_pat_list =
  let patv = Array.make num_fields omega in
  List.iter (fun (_, lbl, pat) -> patv.(lbl.lbl_pos) <- pat) lbl_pat_list;
  Array.to_list patv

let get_pat_args_record num_fields p rem =
  match p with
  | { pat_desc = Tpat_any } -> record_matching_line num_fields [] @ rem
  | { pat_desc = Tpat_record (lbl_pat_list, _) } ->
      record_matching_line num_fields lbl_pat_list @ rem
  | _ -> assert false

let get_expr_args_record ~scopes head (arg, _mut) rem =
  let loc = head_loc ~scopes head in
  let all_labels =
    match Pattern_head.desc head with
    | Record (lbl :: _) -> lbl.lbl_all
    | Record []
    | _ ->
        assert false
  in
  let rec make_args pos =
    if pos >= Array.length all_labels then
      rem
    else
      let lbl = all_labels.(pos) in
      let access =
        match lbl.lbl_repres with
        | Record_regular
        | Record_inlined _ ->
            Lprim (Pfield lbl.lbl_pos, [ arg ], loc)
        | Record_unboxed _ -> arg
        | Record_float -> Lprim (Pfloatfield lbl.lbl_pos, [ arg ], loc)
        | Record_extension _ -> Lprim (Pfield (lbl.lbl_pos + 1), [ arg ], loc)
      in
      let str =
        match lbl.lbl_mut with
        | Immutable -> Alias
        | Mutable -> StrictOpt
      in
      (access, str) :: make_args (pos + 1)
  in
  make_args 0

let divide_record all_labels ~scopes head ctx pm =
  (* There is some redundancy in the expansions here, [head] is
     expanded here and again in the matcher. It would be
     nicer to have a type-level distinction between expanded heads
     and non-expanded heads, to be able to reason confidently on
     when expansions must happen. *)
  let head = expand_record_head head in
  divide_line (Context.specialize head)
    (get_expr_args_record ~scopes)
    (get_pat_args_record (Array.length all_labels))
    head ctx pm

(* Matching against an array pattern *)

let get_key_array = function
  | { pat_desc = Tpat_array patl } -> List.length patl
  | _ -> assert false

let get_pat_args_array p rem =
  match p with
  | { pat_desc = Tpat_array patl } -> patl @ rem
  | _ -> assert false

let get_expr_args_array ~scopes kind head (arg, _mut) rem =
  let len =
    match Pattern_head.desc head with
    | Array len -> len
    | _ -> assert false
  in
  let loc = head_loc ~scopes head in
  let rec make_args pos =
    if pos >= len then
      rem
    else
      ( Lprim
          (Parrayrefu kind, [ arg; Lconst (Const_base (Const_int pos)) ], loc),
        StrictOpt )
      :: make_args (pos + 1)
  in
  make_args 0

let divide_array ~scopes kind ctx pm =
  divide
    (get_expr_args_array ~scopes kind)
    ( = )
    get_key_array get_pat_args_array
    ctx pm

(*
   Specific string test sequence
   Will be called by the bytecode compiler, from bytegen.ml.
   The strategy is first dichotomic search (we perform 3-way tests
   with compare_string), then sequence of equality tests
   when there are less then T=strings_test_threshold static strings to match.

  Increasing T entails (slightly) less code, decreasing T
  (slightly) favors runtime speed.
  T=8 looks a decent tradeoff.
*)

(* Utilities *)

let strings_test_threshold = 8

let prim_string_notequal =
  Pccall (Primitive.simple ~name:"caml_string_notequal" ~arity:2 ~alloc:false)

let prim_string_compare =
  Pccall (Primitive.simple ~name:"caml_string_compare" ~arity:2 ~alloc:false)

let bind_sw arg k =
  match arg with
  | Lvar _ -> k arg
  | _ ->
      let id = Ident.create_local "switch" in
      Llet (Strict, Pgenval, id, arg, k (Lvar id))

(* Sequential equality tests *)

let make_string_test_sequence loc arg sw d =
  let d, sw =
    match d with
    | None -> (
        match sw with
        | (_, d) :: sw -> (d, sw)
        | [] -> assert false
      )
    | Some d -> (d, sw)
  in
  bind_sw arg (fun arg ->
      List.fold_right
        (fun (str, lam) k ->
          Lifthenelse
            ( Lprim
                ( prim_string_notequal,
                  [ arg; Lconst (Const_immstring str) ],
                  loc ),
              k,
              lam ))
        sw d)

let rec split k xs =
  match xs with
  | [] -> assert false
  | x0 :: xs ->
      if k <= 1 then
        ([], x0, xs)
      else
        let xs, y0, ys = split (k - 2) xs in
        (x0 :: xs, y0, ys)

let zero_lam = Lconst (Const_base (Const_int 0))

let tree_way_test loc arg lt eq gt =
  Lifthenelse
    ( Lprim (Pintcomp Clt, [ arg; zero_lam ], loc),
      lt,
      Lifthenelse (Lprim (Pintcomp Clt, [ zero_lam; arg ], loc), gt, eq) )

(* Dichotomic tree *)

let rec do_make_string_test_tree loc arg sw delta d =
  let len = List.length sw in
  if len <= strings_test_threshold + delta then
    make_string_test_sequence loc arg sw d
  else
    let lt, (s, act), gt = split len sw in
    bind_sw
      (Lprim (prim_string_compare, [ arg; Lconst (Const_immstring s) ], loc))
      (fun r ->
        tree_way_test loc r
          (do_make_string_test_tree loc arg lt delta d)
          act
          (do_make_string_test_tree loc arg gt delta d))

(* Entry point *)
let expand_stringswitch loc arg sw d =
  match d with
  | None -> bind_sw arg (fun arg -> do_make_string_test_tree loc arg sw 0 None)
  | Some e ->
      bind_sw arg (fun arg ->
          make_catch e (fun d ->
              do_make_string_test_tree loc arg sw 1 (Some d)))

(**********************)
(* Generic test trees *)
(**********************)

(* Sharing *)

(* Add handler, if shared *)
let handle_shared () =
  let hs = ref (fun x -> x) in
  let handle_shared act =
    match act with
    | Switch.Single act -> act
    | Switch.Shared act ->
        let i, h = make_catch_delayed act in
        let ohs = !hs in
        (hs := fun act -> h (ohs act));
        make_exit i
  in
  (hs, handle_shared)

let share_actions_tree sw d =
  let store = StoreExp.mk_store () in
  (* Default action is always shared *)
  let d =
    match d with
    | None -> None
    | Some d -> Some (store.Switch.act_store_shared () d)
  in
  (* Store all other actions *)
  let sw =
    List.map (fun (cst, act) -> (cst, store.Switch.act_store () act)) sw
  in
  (* Retrieve all actions, including potential default *)
  let acts = store.Switch.act_get_shared () in
  (* Array of actual actions *)
  let hs, handle_shared = handle_shared () in
  let acts = Array.map handle_shared acts in
  (* Reconstruct default and switch list *)
  let d =
    match d with
    | None -> None
    | Some d -> Some acts.(d)
  in
  let sw = List.map (fun (cst, j) -> (cst, acts.(j))) sw in
  (!hs, sw, d)

(* Note: dichotomic search requires sorted input with no duplicates *)
let rec uniq_lambda_list sw =
  match sw with
  | []
  | [ _ ] ->
      sw
  | ((c1, _) as p1) :: ((c2, _) :: sw2 as sw1) ->
      if const_compare c1 c2 = 0 then
        uniq_lambda_list (p1 :: sw2)
      else
        p1 :: uniq_lambda_list sw1

let sort_lambda_list l =
  let l = List.stable_sort (fun (x, _) (y, _) -> const_compare x y) l in
  uniq_lambda_list l

let rec do_tests_fail loc fail tst arg = function
  | [] -> fail
  | (c, act) :: rem ->
      Lifthenelse
        ( Lprim (tst, [ arg; Lconst (Const_base c) ], loc),
          do_tests_fail loc fail tst arg rem,
          act )

let rec do_tests_nofail loc tst arg = function
  | [] -> fatal_error "Matching.do_tests_nofail"
  | [ (_, act) ] -> act
  | (c, act) :: rem ->
      Lifthenelse
        ( Lprim (tst, [ arg; Lconst (Const_base c) ], loc),
          do_tests_nofail loc tst arg rem,
          act )

let make_test_sequence loc fail tst lt_tst arg const_lambda_list =
  let const_lambda_list = sort_lambda_list const_lambda_list in
  let hs, const_lambda_list, fail =
    share_actions_tree const_lambda_list fail
  in
  let rec make_test_sequence const_lambda_list =
    if List.length const_lambda_list >= 4 && lt_tst <> Pignore then
      split_sequence const_lambda_list
    else
      match fail with
      | None -> do_tests_nofail loc tst arg const_lambda_list
      | Some fail -> do_tests_fail loc fail tst arg const_lambda_list
  and split_sequence const_lambda_list =
    let list1, list2 =
      rev_split_at (List.length const_lambda_list / 2) const_lambda_list
    in
    Lifthenelse
      ( Lprim (lt_tst, [ arg; Lconst (Const_base (fst (List.hd list2))) ], loc),
        make_test_sequence list1,
        make_test_sequence list2 )
  in
  hs (make_test_sequence const_lambda_list)

module SArg = struct
  type primitive = Lambda.primitive

  let eqint = Pintcomp Ceq

  let neint = Pintcomp Cne

  let leint = Pintcomp Cle

  let ltint = Pintcomp Clt

  let geint = Pintcomp Cge

  let gtint = Pintcomp Cgt

  type act = Lambda.lambda

  type loc = Lambda.scoped_location

  let make_prim p args = Lprim (p, args, Loc_unknown)

  let make_offset arg n =
    match n with
    | 0 -> arg
    | _ -> Lprim (Poffsetint n, [ arg ], Loc_unknown)

  let bind arg body =
    let newvar, newarg =
      match arg with
      | Lvar v -> (v, arg)
      | _ ->
          let newvar = Ident.create_local "switcher" in
          (newvar, Lvar newvar)
    in
    bind Alias newvar arg (body newarg)

  let make_const i = Lconst (Const_base (Const_int i))

  let make_isout h arg = Lprim (Pisout, [ h; arg ], Loc_unknown)

  let make_isin h arg = Lprim (Pnot, [ make_isout h arg ], Loc_unknown)

  let make_if cond ifso ifnot = Lifthenelse (cond, ifso, ifnot)

  let make_switch loc arg cases acts =
    let l = ref [] in
    for i = Array.length cases - 1 downto 0 do
      l := (i, acts.(cases.(i))) :: !l
    done;
    Lswitch
      ( arg,
        { sw_numconsts = Array.length cases;
          sw_consts = !l;
          sw_numblocks = 0;
          sw_blocks = [];
          sw_failaction = None
        },
        loc )

  let make_catch = make_catch_delayed

  let make_exit = make_exit
end

(* Action sharing for Lswitch argument *)
let share_actions_sw sw =
  (* Attempt sharing on all actions *)
  let store = StoreExp.mk_store () in
  let fail =
    match sw.sw_failaction with
    | None -> None
    | Some fail ->
        (* Fail is translated to exit, whatever happens *)
        Some (store.Switch.act_store_shared () fail)
  in
  let consts =
    List.map (fun (i, e) -> (i, store.Switch.act_store () e)) sw.sw_consts
  and blocks =
    List.map (fun (i, e) -> (i, store.Switch.act_store () e)) sw.sw_blocks
  in
  let acts = store.Switch.act_get_shared () in
  let hs, handle_shared = handle_shared () in
  let acts = Array.map handle_shared acts in
  let fail =
    match fail with
    | None -> None
    | Some fail -> Some acts.(fail)
  in
  ( !hs,
    { sw with
      sw_consts = List.map (fun (i, j) -> (i, acts.(j))) consts;
      sw_blocks = List.map (fun (i, j) -> (i, acts.(j))) blocks;
      sw_failaction = fail
    } )

(* Reintroduce fail action in switch argument,
   for the sake of avoiding carrying over huge switches *)

let reintroduce_fail sw =
  match sw.sw_failaction with
  | None ->
      let t = Hashtbl.create 17 in
      let seen (_, l) =
        match as_simple_exit l with
        | Some i ->
            let old = try Hashtbl.find t i with Not_found -> 0 in
            Hashtbl.replace t i (old + 1)
        | None -> ()
      in
      List.iter seen sw.sw_consts;
      List.iter seen sw.sw_blocks;
      let i_max = ref (-1) and max = ref (-1) in
      Hashtbl.iter
        (fun i c ->
          if c > !max then (
            i_max := i;
            max := c
          ))
        t;
      if !max >= 3 then
        let default = !i_max in
        let remove =
          List.filter (fun (_, lam) ->
              match as_simple_exit lam with
              | Some j -> j <> default
              | None -> true)
        in
        { sw with
          sw_consts = remove sw.sw_consts;
          sw_blocks = remove sw.sw_blocks;
          sw_failaction = Some (make_exit default)
        }
      else
        sw
  | Some _ -> sw

module Switcher = Switch.Make (SArg)
open Switch

let rec last def = function
  | [] -> def
  | [ (x, _) ] -> x
  | _ :: rem -> last def rem

let get_edges low high l =
  match l with
  | [] -> (low, high)
  | (x, _) :: _ -> (x, last high l)

let as_interval_canfail fail low high l =
  let store = StoreExp.mk_store () in
  let do_store _tag act =
    let i = store.act_store () act in
    (*
    eprintf "STORE [%s] %i %s\n" tag i (string_of_lam act) ;
*)
    i
  in
  let rec nofail_rec cur_low cur_high cur_act = function
    | [] ->
        if cur_high = high then
          [ (cur_low, cur_high, cur_act) ]
        else
          [ (cur_low, cur_high, cur_act); (cur_high + 1, high, 0) ]
    | (i, act_i) :: rem as all ->
        let act_index = do_store "NO" act_i in
        if cur_high + 1 = i then
          if act_index = cur_act then
            nofail_rec cur_low i cur_act rem
          else if act_index = 0 then
            (cur_low, i - 1, cur_act) :: fail_rec i i rem
          else
            (cur_low, i - 1, cur_act) :: nofail_rec i i act_index rem
        else if act_index = 0 then
          (cur_low, cur_high, cur_act)
          :: fail_rec (cur_high + 1) (cur_high + 1) all
        else
          (cur_low, cur_high, cur_act)
          :: (cur_high + 1, i - 1, 0)
          :: nofail_rec i i act_index rem
  and fail_rec cur_low cur_high = function
    | [] -> [ (cur_low, cur_high, 0) ]
    | (i, act_i) :: rem ->
        let index = do_store "YES" act_i in
        if index = 0 then
          fail_rec cur_low i rem
        else
          (cur_low, i - 1, 0) :: nofail_rec i i index rem
  in
  let init_rec = function
    | [] -> [ (low, high, 0) ]
    | (i, act_i) :: rem ->
        let index = do_store "INIT" act_i in
        if index = 0 then
          fail_rec low i rem
        else if low < i then
          (low, i - 1, 0) :: nofail_rec i i index rem
        else
          nofail_rec i i index rem
  in
  assert (do_store "FAIL" fail = 0);

  (* fail has action index 0 *)
  let r = init_rec l in
  (Array.of_list r, store)

let as_interval_nofail l =
  let store = StoreExp.mk_store () in
  let rec some_hole = function
    | []
    | [ _ ] ->
        false
    | (i, _) :: ((j, _) :: _ as rem) -> j > i + 1 || some_hole rem
  in
  let rec i_rec cur_low cur_high cur_act = function
    | [] -> [ (cur_low, cur_high, cur_act) ]
    | (i, act) :: rem ->
        let act_index = store.act_store () act in
        if act_index = cur_act then
          i_rec cur_low i cur_act rem
        else
          (cur_low, cur_high, cur_act) :: i_rec i i act_index rem
  in
  let inters =
    match l with
    | (i, act) :: rem ->
        let act_index =
          (* In case there is some hole and that a switch is emitted,
             action 0 will be used as the action of unreachable
             cases (cf. switch.ml, make_switch).
             Hence, this action will be shared *)
          if some_hole rem then
            store.act_store_shared () act
          else
            store.act_store () act
        in
        assert (act_index = 0);
        i_rec i i act_index rem
    | _ -> assert false
  in
  (Array.of_list inters, store)

let sort_int_lambda_list l =
  List.sort
    (fun (i1, _) (i2, _) ->
      if i1 < i2 then
        -1
      else if i2 < i1 then
        1
      else
        0)
    l

let as_interval fail low high l =
  let l = sort_int_lambda_list l in
  ( get_edges low high l,
    match fail with
    | None -> as_interval_nofail l
    | Some act -> as_interval_canfail act low high l )

let call_switcher loc fail arg low high int_lambda_list =
  let edges, (cases, actions) = as_interval fail low high int_lambda_list in
  Switcher.zyva loc edges arg cases actions

let rec list_as_pat = function
  | [] -> fatal_error "Matching.list_as_pat"
  | [ pat ] -> pat
  | pat :: rem -> { pat with pat_desc = Tpat_or (pat, list_as_pat rem, None) }

let complete_pats_constrs = function
  | p :: _ as pats ->
      List.map (pat_of_constr p)
        (complete_constrs p (List.map get_key_constr pats))
  | _ -> assert false

(*
     Following two ``failaction'' function compute n, the trap handler
    to jump to in case of failure of elementary tests
*)

let mk_failaction_neg partial ctx def =
  match partial with
  | Partial -> (
      match Default_environment.pop def with
      | Some ((_, idef), _) ->
          (Some (Lstaticraise (idef, [])), Jumps.singleton idef ctx)
      | None ->
          (* Act as Total, this means
             If no appropriate default matrix exists,
             then this switch cannot fail *)
          (None, Jumps.empty)
    )
  | Total -> (None, Jumps.empty)

(* In line with the article and simpler than before *)
let mk_failaction_pos partial seen ctx defs =
  if dbg then (
    Format.eprintf "**POS**\n";
    Default_environment.pp defs;
    ()
  );
  let rec scan_def env to_test defs =
    match (to_test, Default_environment.pop defs) with
    | [], _
    | _, None ->
        List.fold_left
          (fun (klist, jumps) (pats, i) ->
            let action = Lstaticraise (i, []) in
            let klist =
              List.fold_right
                (fun pat r -> (get_key_constr pat, action) :: r)
                pats klist
            and jumps =
              Jumps.add i (Context.lub (list_as_pat pats) ctx) jumps
            in
            (klist, jumps))
          ([], Jumps.empty) env
    | _, Some ((pss, idef), rem) -> (
        let now, later =
          List.partition (fun (_p, p_ctx) -> Context.matches p_ctx pss) to_test
        in
        match now with
        | [] -> scan_def env to_test rem
        | _ -> scan_def ((List.map fst now, idef) :: env) later rem
      )
  in
  let fail_pats = complete_pats_constrs seen in
  if List.length fail_pats < !Clflags.match_context_rows then (
    let fail, jmps =
      scan_def []
        (List.map (fun pat -> (pat, Context.lub pat ctx)) fail_pats)
        defs
    in
    if dbg then (
      eprintf "POSITIVE JUMPS [%i]:\n" (List.length fail_pats);
      Jumps.eprintf jmps
    );
    (None, fail, jmps)
  ) else (
    (* Too many non-matched constructors -> reduced information *)
    if dbg then eprintf "POS->NEG!!!\n%!";
    let fail, jumps = mk_failaction_neg partial ctx defs in
    if dbg then
      eprintf "FAIL: %s\n"
        ( match fail with
        | None -> "<none>"
        | Some lam -> string_of_lam lam
        );
    (fail, [], jumps)
  )

let combine_constant loc arg cst partial ctx def
    (const_lambda_list, total, _pats) =
  let fail, local_jumps = mk_failaction_neg partial ctx def in
  let lambda1 =
    match cst with
    | Const_int _ ->
        let int_lambda_list =
          List.map
            (function
              | Const_int n, l -> (n, l)
              | _ -> assert false)
            const_lambda_list
        in
        call_switcher loc fail arg min_int max_int int_lambda_list
    | Const_char _ ->
        let int_lambda_list =
          List.map
            (function
              | Const_char c, l -> (Char.code c, l)
              | _ -> assert false)
            const_lambda_list
        in
        call_switcher loc fail arg 0 255 int_lambda_list
    | Const_string _ ->
        (* Note as the bytecode compiler may resort to dichotomic search,
   the clauses of stringswitch  are sorted with duplicates removed.
   This partly applies to the native code compiler, which requires
   no duplicates *)
        let const_lambda_list = sort_lambda_list const_lambda_list in
        let sw =
          List.map
            (fun (c, act) ->
              match c with
              | Const_string (s, _, _) -> (s, act)
              | _ -> assert false)
            const_lambda_list
        in
        let hs, sw, fail = share_actions_tree sw fail in
        hs (Lstringswitch (arg, sw, fail, loc))
    | Const_float _ ->
        make_test_sequence loc fail (Pfloatcomp CFneq) (Pfloatcomp CFlt) arg
          const_lambda_list
    | Const_int32 _ ->
        make_test_sequence loc fail
          (Pbintcomp (Pint32, Cne))
          (Pbintcomp (Pint32, Clt))
          arg const_lambda_list
    | Const_int64 _ ->
        make_test_sequence loc fail
          (Pbintcomp (Pint64, Cne))
          (Pbintcomp (Pint64, Clt))
          arg const_lambda_list
    | Const_nativeint _ ->
        make_test_sequence loc fail
          (Pbintcomp (Pnativeint, Cne))
          (Pbintcomp (Pnativeint, Clt))
          arg const_lambda_list
  in
  (lambda1, Jumps.union local_jumps total)

let split_cases tag_lambda_list =
  let rec split_rec = function
    | [] -> ([], [])
    | (cstr, act) :: rem -> (
        let consts, nonconsts = split_rec rem in
        match cstr with
        | Cstr_constant n -> ((n, act) :: consts, nonconsts)
        | Cstr_block n -> (consts, (n, act) :: nonconsts)
        | Cstr_unboxed -> (consts, (0, act) :: nonconsts)
        | Cstr_extension _ -> assert false
      )
  in
  let const, nonconst = split_rec tag_lambda_list in
  (sort_int_lambda_list const, sort_int_lambda_list nonconst)

let split_extension_cases tag_lambda_list =
  let rec split_rec = function
    | [] -> ([], [])
    | (cstr, act) :: rem -> (
        let consts, nonconsts = split_rec rem in
        match cstr with
        | Cstr_extension (path, true) -> ((path, act) :: consts, nonconsts)
        | Cstr_extension (path, false) -> (consts, (path, act) :: nonconsts)
        | _ -> assert false
      )
  in
  split_rec tag_lambda_list

let combine_constructor loc arg pat_env cstr partial ctx def
    (tag_lambda_list, total1, pats) =
  match cstr.cstr_tag with
  | Cstr_extension _ ->
      (* Special cases for extensions *)
      let fail, local_jumps = mk_failaction_neg partial ctx def in
      let lambda1 =
        let consts, nonconsts = split_extension_cases tag_lambda_list in
        let default, consts, nonconsts =
          match fail with
          | None -> (
              match (consts, nonconsts) with
              | _, (_, act) :: rem -> (act, consts, rem)
              | (_, act) :: rem, _ -> (act, rem, nonconsts)
              | _ -> assert false
            )
          | Some fail -> (fail, consts, nonconsts)
        in
        let nonconst_lambda =
          match nonconsts with
          | [] -> default
          | _ ->
              let tag = Ident.create_local "tag" in
              let tests =
                List.fold_right
                  (fun (path, act) rem ->
                    let ext = transl_extension_path loc pat_env path in
                    Lifthenelse
                      (Lprim (Pintcomp Ceq, [ Lvar tag; ext ], loc), act, rem))
                  nonconsts default
              in
              Llet (Alias, Pgenval, tag, Lprim (Pfield 0, [ arg ], loc), tests)
        in
        List.fold_right
          (fun (path, act) rem ->
            let ext = transl_extension_path loc pat_env path in
            Lifthenelse (Lprim (Pintcomp Ceq, [ arg; ext ], loc), act, rem))
          consts nonconst_lambda
      in
      (lambda1, Jumps.union local_jumps total1)
  | _ ->
      (* Regular concrete type *)
      let ncases = List.length tag_lambda_list
      and nconstrs = cstr.cstr_consts + cstr.cstr_nonconsts in
      let sig_complete = ncases = nconstrs in
      let fail_opt, fails, local_jumps =
        if sig_complete then
          (None, [], Jumps.empty)
        else
          mk_failaction_pos partial pats ctx def
      in
      let tag_lambda_list = fails @ tag_lambda_list in
      let consts, nonconsts = split_cases tag_lambda_list in
      let lambda1 =
        match (fail_opt, same_actions tag_lambda_list) with
        | None, Some act -> act (* Identical actions, no failure *)
        | _ -> (
            match
              (cstr.cstr_consts, cstr.cstr_nonconsts, consts, nonconsts)
            with
            | 1, 1, [ (0, act1) ], [ (0, act2) ] ->
                (* Typically, match on lists, will avoid isint primitive in that
              case *)
                Lifthenelse (arg, act2, act1)
            | n, 0, _, [] ->
                (* The type defines constant constructors only *)
                call_switcher loc fail_opt arg 0 (n - 1) consts
            | n, _, _, _ -> (
                let act0 =
                  (* = Some act when all non-const constructors match to act *)
                  match (fail_opt, nonconsts) with
                  | Some a, [] -> Some a
                  | Some _, _ ->
                      if List.length nonconsts = cstr.cstr_nonconsts then
                        same_actions nonconsts
                      else
                        None
                  | None, _ -> same_actions nonconsts
                in
                match act0 with
                | Some act ->
                    Lifthenelse
                      ( Lprim (Pisint, [ arg ], loc),
                        call_switcher loc fail_opt arg 0 (n - 1) consts,
                        act )
                | None ->
                    (* Emit a switch, as bytecode implements this sophisticated
                      instruction *)
                    let sw =
                      { sw_numconsts = cstr.cstr_consts;
                        sw_consts = consts;
                        sw_numblocks = cstr.cstr_nonconsts;
                        sw_blocks = nonconsts;
                        sw_failaction = fail_opt
                      }
                    in
                    let hs, sw = share_actions_sw sw in
                    let sw = reintroduce_fail sw in
                    hs (Lswitch (arg, sw, loc))
              )
          )
      in
      (lambda1, Jumps.union local_jumps total1)

let make_test_sequence_variant_constant fail arg int_lambda_list =
  let _, (cases, actions) = as_interval fail min_int max_int int_lambda_list in
  Switcher.test_sequence arg cases actions

let call_switcher_variant_constant loc fail arg int_lambda_list =
  call_switcher loc fail arg min_int max_int int_lambda_list

let call_switcher_variant_constr loc fail arg int_lambda_list =
  let v = Ident.create_local "variant" in
  Llet
    ( Alias,
      Pgenval,
      v,
      Lprim (Pfield 0, [ arg ], loc),
      call_switcher loc fail (Lvar v) min_int max_int int_lambda_list )

let combine_variant loc row arg partial ctx def (tag_lambda_list, total1, _pats)
    =
  let row = Btype.row_repr row in
  let num_constr = ref 0 in
  if row.row_closed then
    List.iter
      (fun (_, f) ->
        match Btype.row_field_repr f with
        | Rabsent
        | Reither (true, _ :: _, _, _) ->
            ()
        | _ -> incr num_constr)
      row.row_fields
  else
    num_constr := max_int;
  let test_int_or_block arg if_int if_block =
    Lifthenelse (Lprim (Pisint, [ arg ], loc), if_int, if_block)
  in
  let sig_complete = List.length tag_lambda_list = !num_constr
  and one_action = same_actions tag_lambda_list in
  let fail, local_jumps =
    if
      sig_complete
      ||
      match partial with
      | Total -> true
      | _ -> false
    then
      (None, Jumps.empty)
    else
      mk_failaction_neg partial ctx def
  in
  let consts, nonconsts = split_cases tag_lambda_list in
  let lambda1 =
    match (fail, one_action) with
    | None, Some act -> act
    | _, _ -> (
        match (consts, nonconsts) with
        | [ (_, act1) ], [ (_, act2) ] when fail = None ->
            test_int_or_block arg act1 act2
        | _, [] ->
            (* One can compare integers and pointers *)
            make_test_sequence_variant_constant fail arg consts
        | [], _ -> (
            let lam = call_switcher_variant_constr loc fail arg nonconsts in
            (* One must not dereference integers *)
            match fail with
            | None -> lam
            | Some fail -> test_int_or_block arg fail lam
          )
        | _, _ ->
            let lam_const = call_switcher_variant_constant loc fail arg consts
            and lam_nonconst =
              call_switcher_variant_constr loc fail arg nonconsts
            in
            test_int_or_block arg lam_const lam_nonconst
      )
  in
  (lambda1, Jumps.union local_jumps total1)

let combine_array loc arg kind partial ctx def (len_lambda_list, total1, _pats)
    =
  let fail, local_jumps = mk_failaction_neg partial ctx def in
  let lambda1 =
    let newvar = Ident.create_local "len" in
    let switch =
      call_switcher loc fail (Lvar newvar) 0 max_int len_lambda_list
    in
    bind Alias newvar (Lprim (Parraylength kind, [ arg ], loc)) switch
  in
  (lambda1, Jumps.union local_jumps total1)

(* Insertion of debugging events *)

let rec event_branch repr lam =
  match (lam, repr) with
  | _, None -> lam
  | Levent (lam', ev), Some r ->
      incr r;
      Levent
        ( lam',
          { lev_loc = ev.lev_loc;
            lev_kind = ev.lev_kind;
            lev_repr = repr;
            lev_env = ev.lev_env
          } )
  | Llet (str, k, id, lam, body), _ ->
      Llet (str, k, id, lam, event_branch repr body)
  | Lstaticraise _, _ -> lam
  | _, Some _ ->
      Printlambda.lambda Format.str_formatter lam;
      fatal_error ("Matching.event_branch: " ^ Format.flush_str_formatter ())

(*
   This exception is raised when the compiler cannot produce code
   because control cannot reach the compiled clause,

   Unused is raised initially in compile_test.

   compile_list (for compiling switch results) catch Unused

   comp_match_handlers (for compiling split matches)
   may reraise Unused


*)

exception Unused

let compile_list compile_fun division =
  let rec c_rec totals = function
    | [] -> ([], Jumps.unions totals, [])
    | (key, cell) :: rem -> (
        if Context.is_empty cell.ctx then
          c_rec totals rem
        else
          try
            let lambda1, total1 = compile_fun cell.ctx cell.pm in
            let c_rem, total, new_discrs =
              c_rec (Jumps.map Context.combine total1 :: totals) rem
            in
            ( (key, lambda1) :: c_rem,
              total,
              Pattern_head.to_omega_pattern cell.discr :: new_discrs )
          with Unused -> c_rec totals rem
      )
  in
  c_rec [] division

let compile_orhandlers compile_fun lambda1 total1 ctx to_catch =
  let rec do_rec r total_r = function
    | [] -> (r, total_r)
    | { provenance = mat; exit = i; vars; pm } :: rem -> (
        try
          let ctx = Context.select_columns mat ctx in
          let handler_i, total_i = compile_fun ctx pm in
          match raw_action r with
          | Lstaticraise (j, args) ->
              if i = j then
                ( List.fold_right2
                    (bind_with_value_kind Alias)
                    vars args handler_i,
                  Jumps.map (Context.rshift_num (ncols mat)) total_i )
              else
                do_rec r total_r rem
          | _ ->
              do_rec
                (Lstaticcatch (r, (i, vars), handler_i))
                (Jumps.union (Jumps.remove i total_r)
                   (Jumps.map (Context.rshift_num (ncols mat)) total_i))
                rem
        with Unused ->
          do_rec (Lstaticcatch (r, (i, vars), lambda_unit)) total_r rem
      )
  in
  do_rec lambda1 total1 to_catch

let compile_test compile_fun partial divide combine ctx to_match =
  let division = divide ctx to_match in
  let c_div = compile_list compile_fun division.cells in
  match c_div with
  | [], _, _ -> (
      match mk_failaction_neg partial ctx to_match.default with
      | None, _ -> raise Unused
      | Some l, total -> (l, total)
    )
  | _ -> combine ctx to_match.default c_div

(* Attempt to avoid some useless bindings by lowering them *)

(* Approximation of v present in lam *)
let rec approx_present v = function
  | Lconst _ -> false
  | Lstaticraise (_, args) ->
      List.exists (fun lam -> approx_present v lam) args
  | Lprim (_, args, _) -> List.exists (fun lam -> approx_present v lam) args
  | Llet (Alias, _k, _, l1, l2) -> approx_present v l1 || approx_present v l2
  | Lvar vv -> Ident.same v vv
  | _ -> true

let rec lower_bind v arg lam =
  match lam with
  | Lifthenelse (cond, ifso, ifnot) -> (
      let pcond = approx_present v cond
      and pso = approx_present v ifso
      and pnot = approx_present v ifnot in
      match (pcond, pso, pnot) with
      | false, false, false -> lam
      | false, true, false -> Lifthenelse (cond, lower_bind v arg ifso, ifnot)
      | false, false, true -> Lifthenelse (cond, ifso, lower_bind v arg ifnot)
      | _, _, _ -> bind Alias v arg lam
    )
  | Lswitch (ls, ({ sw_consts = [ (i, act) ]; sw_blocks = [] } as sw), loc)
    when not (approx_present v ls) ->
      Lswitch (ls, { sw with sw_consts = [ (i, lower_bind v arg act) ] }, loc)
  | Lswitch (ls, ({ sw_consts = []; sw_blocks = [ (i, act) ] } as sw), loc)
    when not (approx_present v ls) ->
      Lswitch (ls, { sw with sw_blocks = [ (i, lower_bind v arg act) ] }, loc)
  | Llet (Alias, k, vv, lv, l) ->
      if approx_present v lv then
        bind Alias v arg lam
      else
        Llet (Alias, k, vv, lv, lower_bind v arg l)
  | _ -> bind Alias v arg lam

let bind_check str v arg lam =
  match (str, arg) with
  | _, Lvar _ -> bind str v arg lam
  | Alias, _ -> lower_bind v arg lam
  | _, _ -> bind str v arg lam

let comp_exit ctx m =
  match Default_environment.pop m.default with
  | Some ((_, i), _) -> (Lstaticraise (i, []), Jumps.singleton i ctx)
  | None -> fatal_error "Matching.comp_exit"

let rec comp_match_handlers comp_fun partial ctx first_match next_matchs =
  match next_matchs with
  | [] -> comp_fun partial ctx first_match
  | rem -> (
      let rec c_rec body total_body = function
        | [] -> (body, total_body)
        (* Hum, -1 means never taken
        | (-1,pm)::rem -> c_rec body total_body rem *)
        | (i, pm) :: rem -> (
            let ctx_i, total_rem = Jumps.extract i total_body in
            if Context.is_empty ctx_i then
              c_rec body total_body rem
            else
              try
                let li, total_i =
                  comp_fun
                    ( match rem with
                    | [] -> partial
                    | _ -> Partial
                    )
                    ctx_i pm
                in
                c_rec
                  (Lstaticcatch (body, (i, []), li))
                  (Jumps.union total_i total_rem)
                  rem
              with Unused ->
                c_rec (Lstaticcatch (body, (i, []), lambda_unit)) total_rem rem
          )
      in
      try
        let first_lam, total = comp_fun Partial ctx first_match in
        c_rec first_lam total rem
      with Unused -> (
        match next_matchs with
        | [] -> raise Unused
        | (_, x) :: xs -> comp_match_handlers comp_fun partial ctx x xs
      )
    )

(* To find reasonable names for variables *)

let rec name_pattern default = function
  | ((pat, _), _) :: rem -> (
      match pat.pat_desc with
      | Tpat_var (id, _) -> id
      | Tpat_alias (_, id, _) -> id
      | _ -> name_pattern default rem
    )
  | _ -> Ident.create_local default

let arg_to_var arg cls =
  match arg with
  | Lvar v -> (v, arg)
  | _ ->
      let v = name_pattern "*match*" cls in
      (v, Lvar v)

(*
  The main compilation function.
   Input:
      repr=used for inserting debug events
      partial=exhaustiveness information from Parmatch
      ctx=a context
      m=a pattern matching

   Output: a lambda term, a jump summary {..., exit number -> context, .. }
*)

let rec compile_match ~scopes repr partial ctx
    (m : initial_clause pattern_matching) =
  match m.cases with
  | ([], action) :: rem ->
      if is_guarded action then
        let lambda, total =
          compile_match ~scopes None partial ctx { m with cases = rem }
        in
        (event_branch repr (patch_guarded lambda action), total)
      else
        (event_branch repr action, Jumps.empty)
  | nonempty_cases ->
      compile_match_nonempty ~scopes repr partial ctx
        { m with cases = List.map Non_empty_clause.of_initial nonempty_cases }

and compile_match_nonempty ~scopes repr partial ctx
    (m : Typedtree.pattern Non_empty_clause.t pattern_matching) =
  match m with
  | { cases = []; args = [] } -> comp_exit ctx m
  | { args = (arg, str) :: argl } ->
      let v, newarg = arg_to_var arg m.cases in
      let args = (newarg, Alias) :: argl in
      let cases = List.map (half_simplify_nonempty ~arg:newarg) m.cases in
      let m = { m with args; cases } in
      let first_match, rem =
        split_and_precompile_half_simplified ~arg:(Some v) m in
      combine_handlers ~scopes repr partial ctx (v, str, arg) first_match rem
  | _ -> assert false

and compile_match_simplified ~scopes repr partial ctx
    (m : Simple.clause pattern_matching) =
  match m with
  | { cases = []; args = [] } -> comp_exit ctx m
  | { args = ((Lvar v as arg), str) :: argl } ->
      let args = (arg, Alias) :: argl in
      let m = { m with args } in
      let first_match, rem = split_and_precompile_simplified m in
      combine_handlers ~scopes repr partial ctx (v, str, arg) first_match rem
  | _ -> assert false

and combine_handlers ~scopes repr partial ctx (v, str, arg) first_match rem =
  let lam, total =
    comp_match_handlers
      (( if dbg then
         do_compile_matching_pr ~scopes
       else
         do_compile_matching ~scopes
       )
         repr)
      partial ctx first_match rem
  in
  (bind_check str v arg lam, total)

(* verbose version of do_compile_matching, for debug *)
and do_compile_matching_pr ~scopes repr partial ctx x =
  Format.eprintf "COMPILE: %s\nMATCH\n"
    ( match partial with
    | Partial -> "Partial"
    | Total -> "Total"
    );
  pretty_precompiled x;
  Format.eprintf "CTX\n";
  Context.eprintf ctx;
  let ((_, jumps) as r) = do_compile_matching ~scopes repr partial ctx x in
  Format.eprintf "JUMPS\n";
  Jumps.eprintf jumps;
  r

and do_compile_matching ~scopes repr partial ctx pmh =
  match pmh with
  | Pm pm -> (
      let arg =
        match pm.args with
        | (first_arg, _) :: _ -> first_arg
        | _ ->
            (* We arrive in do_compile_matching from:
               - compile_matching
               - recursive call on PmVars
               The first one explicitly checks that [args] is nonempty, the
               second one is only generated when the inner pm first looks at
               a variable (i.e. there is something to look at).
            *)
            assert false
      in
      let ph = what_is_cases pm.cases in
      let pomega = Pattern_head.to_omega_pattern ph in
      let ploc = head_loc ~scopes ph in
      match Pattern_head.desc ph with
      | Any ->
          compile_no_test ~scopes
            divide_var
            Context.rshift repr partial ctx pm
      | Tuple _ ->
          compile_no_test ~scopes
            (divide_tuple ~scopes ph)
            Context.combine repr partial ctx pm
      | Record [] -> assert false
      | Record (lbl :: _) ->
          compile_no_test ~scopes
            (divide_record ~scopes lbl.lbl_all ph)
            Context.combine repr partial ctx pm
      | Constant cst ->
          compile_test
            (compile_match ~scopes repr partial)
            partial divide_constant
            (combine_constant ploc arg cst partial)
            ctx pm
      | Construct cstr ->
          compile_test
            (compile_match ~scopes repr partial)
            partial (divide_constructor ~scopes)
            (combine_constructor ploc arg
               (Pattern_head.env ph) cstr partial)
            ctx pm
      | Array _ ->
          let kind = Typeopt.array_pattern_kind pomega in
          compile_test
            (compile_match ~scopes repr partial)
            partial (divide_array ~scopes kind)
            (combine_array ploc arg kind partial)
            ctx pm
      | Lazy ->
          compile_no_test ~scopes
            (divide_lazy ~scopes ph)
            Context.combine repr partial ctx pm
      | Variant { cstr_row = row } ->
          compile_test
            (compile_match ~scopes repr partial)
            partial (divide_variant ~scopes !row)
            (combine_variant ploc !row arg partial)
            ctx pm
    )
  | PmVar { inside = pmh } ->
      let lam, total =
        do_compile_matching ~scopes repr partial (Context.lshift ctx) pmh
      in
      (lam, Jumps.map Context.rshift total)
  | PmOr { body; handlers } ->
      let lam, total =
        compile_match_simplified ~scopes repr partial ctx body in
      compile_orhandlers (compile_match ~scopes repr partial)
        lam total ctx handlers

and compile_no_test ~scopes divide up_ctx repr partial ctx to_match =
  let { pm = this_match; ctx = this_ctx } = divide ctx to_match in
  let lambda, total =
    compile_match ~scopes repr partial this_ctx this_match in
  (lambda, Jumps.map up_ctx total)

(* The entry points *)

(*
   If there is a guard in a matching or a lazy pattern,
   then set exhaustiveness info to Partial.
   (because of side effects, assume the worst).

   Notice that exhaustiveness information is trusted by the compiler,
   that is, a match flagged as Total should not fail at runtime.
   More specifically, for instance if match y with x::_ -> x is flagged
   total (as it happens during JoCaml compilation) then y cannot be []
   at runtime. As a consequence, the static Total exhaustiveness information
   have to be downgraded to Partial, in the dubious cases where guards
   or lazy pattern execute arbitrary code that may perform side effects
   and change the subject values.
LM:
   Lazy pattern was PR#5992, initial patch by lpw25.
   I have  generalized the patch, so as to also find mutable fields.
*)

let is_lazy_pat p =
  match p.pat_desc with
  | Tpat_lazy _ -> true
  | Tpat_alias _
  | Tpat_variant _
  | Tpat_record _
  | Tpat_tuple _
  | Tpat_construct _
  | Tpat_array _
  | Tpat_or _
  | Tpat_constant _
  | Tpat_var _
  | Tpat_any ->
      false

let has_lazy p = Typedtree.exists_pattern is_lazy_pat p

let is_record_with_mutable_field p =
  match p.pat_desc with
  | Tpat_record (lps, _) ->
      List.exists
        (fun (_, lbl, _) ->
          match lbl.Types.lbl_mut with
          | Mutable -> true
          | Immutable -> false)
        lps
  | Tpat_alias _
  | Tpat_variant _
  | Tpat_lazy _
  | Tpat_tuple _
  | Tpat_construct _
  | Tpat_array _
  | Tpat_or _
  | Tpat_constant _
  | Tpat_var _
  | Tpat_any ->
      false

let has_mutable p = Typedtree.exists_pattern is_record_with_mutable_field p

(* Downgrade Total when
   1. Matching accesses some mutable fields;
   2. And there are  guards or lazy patterns.
*)

let check_partial has_mutable has_lazy pat_act_list = function
  | Partial -> Partial
  | Total ->
      if
        pat_act_list = []
        || (* allow empty case list *)
           List.exists
             (fun (pats, lam) ->
               has_mutable pats && (is_guarded lam || has_lazy pats))
             pat_act_list
      then
        Partial
      else
        Total

let check_partial_list pats_act_list =
  check_partial (List.exists has_mutable) (List.exists has_lazy) pats_act_list

let check_partial pat_act_list =
  check_partial has_mutable has_lazy pat_act_list

(* have toplevel handler when appropriate *)

let check_total total lambda i handler_fun =
  if Jumps.is_empty total then
    lambda
  else
    Lstaticcatch (lambda, (i, []), handler_fun ())

let compile_matching ~scopes repr handler_fun arg pat_act_list partial =
  let partial = check_partial pat_act_list partial in
  match partial with
  | Partial -> (
      let raise_num = next_raise_count () in
      let pm =
        { cases = List.map (fun (pat, act) -> ([ pat ], act)) pat_act_list;
          args = [ (arg, Strict) ];
          default = Default_environment.(cons [ [ omega ] ] raise_num empty)
        }
      in
      try
        let lambda, total =
          compile_match ~scopes repr partial (Context.start 1) pm in
        check_total total lambda raise_num handler_fun
      with Unused -> assert false
      (* ; handler_fun() *)
    )
  | Total ->
      let pm =
        { cases = List.map (fun (pat, act) -> ([ pat ], act)) pat_act_list;
          args = [ (arg, Strict) ];
          default = Default_environment.empty
        }
      in
      let lambda, total =
        compile_match ~scopes repr partial (Context.start 1) pm in
      assert (Jumps.is_empty total);
      lambda

let partial_function ~scopes loc () =
  let sloc = Scoped_location.of_location ~scopes loc in
  let slot =
    transl_extension_path sloc Env.initial_safe_string Predef.path_match_failure
  in
  let fname, line, char =
    Location.get_pos_info loc.Location.loc_start in
  Lprim
    ( Praise Raise_regular,
      [ Lprim
          ( Pmakeblock (0, Immutable, None),
            [ slot;
              Lconst
                (Const_block
                   ( 0,
                     [ Const_base (Const_string (fname, loc, None));
                       Const_base (Const_int line);
                       Const_base (Const_int char)
                     ] ))
            ],
            sloc )
      ],
      sloc )

let for_function ~scopes loc repr param pat_act_list partial =
  let f () = partial_function ~scopes loc () in
  compile_matching ~scopes repr f param pat_act_list partial

(* In the following two cases, exhaustiveness info is not available! *)
let for_trywith ~scopes param pat_act_list =
  compile_matching ~scopes None
    (fun () -> Lprim (Praise Raise_reraise, [ param ], Loc_unknown))
    param pat_act_list Partial

let simple_for_let ~scopes loc param pat body =
  compile_matching ~scopes None (partial_function ~scopes loc)
    param [ (pat, body) ] Partial

(* Optimize binding of immediate tuples

   The goal of the implementation of 'for_let' below, which replaces
   'simple_for_let', is to avoid tuple allocation in cases such as
   this one:

     let (x,y) =
        let foo = ... in
        if foo then (1, 2) else (3,4)
     in bar

   The compiler easily optimizes the simple `let (x,y) = (1,2) in ...`
   case (call to Matching.for_multiple_match from Translcore), but
   didn't optimize situations where the rhs tuples are hidden under
   a more complex context.

   The idea comes from Alain Frisch who suggested and implemented
   the following compilation method, based on Lassign:

     let x = dummy in let y = dummy in
     begin
      let foo = ... in
      if foo then
        (let x1 = 1 in let y1 = 2 in x <- x1; y <- y1)
      else
        (let x2 = 3 in let y2 = 4 in x <- x2; y <- y2)
     end;
     bar

   The current implementation from Gabriel Scherer uses Lstaticcatch /
   Lstaticraise instead:

     catch
       let foo = ... in
       if foo then
         (let x1 = 1 in let y1 = 2 in exit x1 y1)
       else
        (let x2 = 3 in let y2 = 4 in exit x2 y2)
     with x y ->
       bar

   The catch/exit is used to avoid duplication of the let body ('bar'
   in the example), on 'if' branches for example; it is useless for
   linear contexts such as 'let', but we don't need to be careful to
   generate nice code because Simplif will remove such useless
   catch/exit.
*)

let rec map_return f = function
  | Llet (str, k, id, l1, l2) -> Llet (str, k, id, l1, map_return f l2)
  | Lletrec (l1, l2) -> Lletrec (l1, map_return f l2)
  | Lifthenelse (lcond, lthen, lelse) ->
      Lifthenelse (lcond, map_return f lthen, map_return f lelse)
  | Lsequence (l1, l2) -> Lsequence (l1, map_return f l2)
  | Levent (l, ev) -> Levent (map_return f l, ev)
  | Ltrywith (l1, id, l2) -> Ltrywith (map_return f l1, id, map_return f l2)
  | Lstaticcatch (l1, b, l2) ->
      Lstaticcatch (map_return f l1, b, map_return f l2)
  | Lswitch (s, sw, loc) ->
      let map_cases cases =
        List.map (fun (i, l) -> (i, map_return f l)) cases
      in
      Lswitch
        ( s,
          { sw with
            sw_consts = map_cases sw.sw_consts;
            sw_blocks = map_cases sw.sw_blocks;
            sw_failaction = Option.map (map_return f) sw.sw_failaction
          },
          loc )
  | Lstringswitch (s, cases, def, loc) ->
      Lstringswitch
        ( s,
          List.map (fun (s, l) -> (s, map_return f l)) cases,
          Option.map (map_return f) def,
          loc )
  | (Lstaticraise _ | Lprim (Praise _, _, _)) as l -> l
  | ( Lvar _ | Lconst _ | Lapply _ | Lfunction _ | Lsend _ | Lprim _ | Lwhile _
    | Lfor _ | Lassign _ | Lifused _ ) as l ->
      f l

(* The 'opt' reference indicates if the optimization is worthy.

   It is shared by the different calls to 'assign_pat' performed from
   'map_return'. For example with the code
     let (x, y) = if foo then z else (1,2)
   the else-branch will activate the optimization for both branches.

   That means that the optimization is activated if *there exists* an
   interesting tuple in one hole of the let-rhs context. We could
   choose to activate it only if *all* holes are interesting. We made
   that choice because being optimistic is extremely cheap (one static
   exit/catch overhead in the "wrong cases"), while being pessimistic
   can be costly (one unnecessary tuple allocation).
*)

let assign_pat ~scopes opt nraise catch_ids loc pat lam =
  let rec collect acc pat lam =
    match (pat.pat_desc, lam) with
    | Tpat_tuple patl, Lprim (Pmakeblock _, lams, _) ->
        opt := true;
        List.fold_left2 collect acc patl lams
    | Tpat_tuple patl, Lconst (Const_block (_, scl)) ->
        opt := true;
        let collect_const acc pat sc = collect acc pat (Lconst sc) in
        List.fold_left2 collect_const acc patl scl
    | _ ->
        (* pattern idents will be bound in staticcatch (let body), so we
           refresh them here to guarantee binders uniqueness *)
        let pat_ids = pat_bound_idents pat in
        let fresh_ids = List.map (fun id -> (id, Ident.rename id)) pat_ids in
        (fresh_ids, alpha_pat fresh_ids pat, lam) :: acc
  in
  (* sublets were accumulated by 'collect' with the leftmost tuple
     pattern at the bottom of the list; to respect right-to-left
     evaluation order for tuples, we must evaluate sublets
     top-to-bottom. To preserve tail-rec, we will fold_left the
     reversed list. *)
  let rev_sublets = List.rev (collect [] pat lam) in
  let exit =
    (* build an Ident.tbl to avoid quadratic refreshing costs *)
    let add t (id, fresh_id) = Ident.add id fresh_id t in
    let add_ids acc (ids, _pat, _lam) = List.fold_left add acc ids in
    let tbl = List.fold_left add_ids Ident.empty rev_sublets in
    let fresh_var id = Lvar (Ident.find_same id tbl) in
    Lstaticraise (nraise, List.map fresh_var catch_ids)
  in
  let push_sublet code (_ids, pat, lam) =
    simple_for_let ~scopes loc lam pat code in
  List.fold_left push_sublet exit rev_sublets

let for_let ~scopes loc param pat body =
  match pat.pat_desc with
  | Tpat_any ->
      (* This eliminates a useless variable (and stack slot in bytecode)
         for "let _ = ...". See #6865. *)
      Lsequence (param, body)
  | Tpat_var (id, _) ->
      (* fast path, and keep track of simple bindings to unboxable numbers *)
      let k = Typeopt.value_kind pat.pat_env pat.pat_type in
      Llet (Strict, k, id, param, body)
  | _ ->
      let opt = ref false in
      let nraise = next_raise_count () in
      let catch_ids = pat_bound_idents_full pat in
      let ids_with_kinds =
        List.map
          (fun (id, _, typ) -> (id, Typeopt.value_kind pat.pat_env typ))
          catch_ids
      in
      let ids = List.map (fun (id, _, _) -> id) catch_ids in
      let bind =
        map_return (assign_pat ~scopes opt nraise ids loc pat) param in
      if !opt then
        Lstaticcatch (bind, (nraise, ids_with_kinds), body)
      else
        simple_for_let ~scopes loc param pat body

(* Handling of tupled functions and matchings *)

(* Easy case since variables are available *)
let for_tupled_function ~scopes loc paraml pats_act_list partial =
  let partial = check_partial_list pats_act_list partial in
  let raise_num = next_raise_count () in
  let omegas = [ List.map (fun _ -> omega) paraml ] in
  let pm =
    { cases = pats_act_list;
      args = List.map (fun id -> (Lvar id, Strict)) paraml;
      default = Default_environment.(cons omegas raise_num empty)
    }
  in
  try
    let lambda, total =
      compile_match ~scopes None partial
        (Context.start (List.length paraml)) pm
    in
    check_total total lambda raise_num (partial_function ~scopes loc)
  with Unused -> partial_function ~scopes loc ()

let flatten_pattern size p =
  match p.pat_desc with
  | Tpat_tuple args -> args
  | Tpat_any -> omegas size
  | _ -> raise Cannot_flatten

let flatten_cases size cases =
  List.map
    (function
      | (p, []), action -> (
          match flatten_pattern size (General.erase p) with
          | p :: ps -> ((p, ps), action)
          | [] -> assert false
        )
      | _ -> fatal_error "Matching.flatten_hc_cases")
    cases

let flatten_pm size args pm =
  { args;
    cases = flatten_cases size pm.cases;
    default = Default_environment.flatten size pm.default
  }

let flatten_handler size handler =
  { handler with provenance = flatten_matrix size handler.provenance }

type pm_flattened =
  | FPmOr of pattern pm_or_compiled
  | FPm of pattern Non_empty_clause.t pattern_matching

let flatten_precompiled size args pmh =
  match pmh with
  | Pm pm -> FPm (flatten_pm size args pm)
  | PmOr { body = b; handlers = hs; or_matrix = m } ->
      FPmOr
        { body = flatten_pm size args b;
          handlers = List.map (flatten_handler size) hs;
          or_matrix = flatten_matrix size m
        }
  | PmVar _ -> assert false

(*
   compiled_flattened is a ``comp_fun'' argument to comp_match_handlers.
   Hence it needs a fourth argument, which it ignores
*)

let compile_flattened ~scopes repr partial ctx pmh =
  match pmh with
  | FPm pm -> compile_match_nonempty ~scopes repr partial ctx pm
  | FPmOr { body = b; handlers = hs } ->
      let lam, total = compile_match_nonempty ~scopes repr partial ctx b in
      compile_orhandlers (compile_match ~scopes repr partial) lam total ctx hs

let do_for_multiple_match ~scopes loc paraml pat_act_list partial =
  let repr = None in
  let partial = check_partial pat_act_list partial in
  let raise_num, arg, pm1 =
    let raise_num, default =
      match partial with
      | Partial ->
          let raise_num = next_raise_count () in
          (raise_num, Default_environment.(cons [ [ omega ] ] raise_num empty))
      | Total -> (-1, Default_environment.empty)
    in
    let loc = Scoped_location.of_location ~scopes loc in
    let arg = Lprim (Pmakeblock (0, Immutable, None), paraml, loc) in
    ( raise_num,
      arg,
      { cases = List.map (fun (pat, act) -> ([ pat ], act)) pat_act_list;
        args = [ (arg, Strict) ];
        default
      } )
  in
  try
    try
      (* Once for checking that compilation is possible *)
      let next, nexts =
        split_and_precompile ~arg_id:None ~arg_lambda:arg pm1
      in
      let size = List.length paraml
      and idl = List.map (fun _ -> Ident.create_local "*match*") paraml in
      let args = List.map (fun id -> (Lvar id, Alias)) idl in
      let flat_next = flatten_precompiled size args next
      and flat_nexts =
        List.map (fun (e, pm) -> (e, flatten_precompiled size args pm)) nexts
      in
      let lam, total =
        comp_match_handlers (compile_flattened ~scopes repr) partial
          (Context.start size) flat_next flat_nexts
      in
      List.fold_right2 (bind Strict) idl paraml
        ( match partial with
        | Partial ->
            check_total total lam raise_num (partial_function ~scopes loc)
        | Total ->
            assert (Jumps.is_empty total);
            lam
        )
    with Cannot_flatten -> (
      let lambda, total =
        compile_match ~scopes None partial (Context.start 1) pm1 in
      match partial with
      | Partial ->
          check_total total lambda raise_num (partial_function ~scopes loc)
      | Total ->
          assert (Jumps.is_empty total);
          lambda
    )
  with Unused -> assert false

(* ; partial_function loc () *)

(* PR#4828: Believe it or not, the 'paraml' argument below
   may not be side effect free. *)

let param_to_var param =
  match param with
  | Lvar v -> (v, None)
  | _ -> (Ident.create_local "*match*", Some param)

let bind_opt (v, eo) k =
  match eo with
  | None -> k
  | Some e -> Lambda.bind Strict v e k

let for_multiple_match ~scopes loc paraml pat_act_list partial =
  let v_paraml = List.map param_to_var paraml in
  let paraml = List.map (fun (v, _) -> Lvar v) v_paraml in
  List.fold_right bind_opt v_paraml
    (do_for_multiple_match ~scopes loc paraml pat_act_list partial)