summaryrefslogtreecommitdiff
path: root/lambda/switch.ml
blob: 73e8f144af8ff4156e5b715e19fdd00c25718efd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Luc Maranget, projet Moscova, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 2000 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(* see high-level comments in switch.mli *)

type 'a shared = Shared of 'a | Single of 'a

type ('a, 'ctx) t_store =
  {act_get : unit -> 'a array ;
   act_get_shared : unit -> 'a shared array ;
   act_store : 'ctx -> 'a -> int ;
   act_store_shared : 'ctx -> 'a -> int ; }

module type Stored = sig
  type t
  type key
  val compare_key : key -> key -> int
  val make_key : t -> key option
end

module type CtxStored = sig
  include Stored
  type context
  val make_key : context -> t -> key option
end

module CtxStore(A:CtxStored) = struct
  module AMap =
    Map.Make(struct type t = A.key let compare = A.compare_key end)

  type intern =
    { mutable map : (bool * int)  AMap.t ;
      mutable next : int ;
      mutable acts : (bool * A.t) list; }

  let mk_store () =
    let st =
      { map = AMap.empty ;
        next = 0 ;
        acts = [] ; } in

    let add mustshare act =
      let i = st.next in
      st.acts <- (mustshare,act) :: st.acts ;
      st.next <- i+1 ;
      i in

    let store mustshare ctx act = match A.make_key ctx act with
      | Some key ->
          begin try
            let (shared,i) = AMap.find key st.map in
            if not shared then st.map <- AMap.add key (true,i) st.map ;
            i
          with Not_found ->
            let i = add mustshare act in
            st.map <- AMap.add key (mustshare,i) st.map ;
            i
          end
      | None ->
          add mustshare act

    and get () = Array.of_list (List.rev_map (fun (_,act) -> act) st.acts)

    and get_shared () =
      let acts =
        Array.of_list
          (List.rev_map
             (fun (shared,act) ->
                if shared then Shared act else Single act)
             st.acts) in
      AMap.iter
        (fun _ (shared,i) ->
           if shared then match acts.(i) with
             | Single act -> acts.(i) <- Shared act
             | Shared _ -> ())
        st.map ;
      acts in
    {act_store = store false ; act_store_shared = store true ;
     act_get = get; act_get_shared = get_shared; }
end

module Store(A:Stored) = struct
  module Me =
    CtxStore
      (struct
        include A
        type context = unit
        let make_key () = A.make_key
      end)

  let mk_store = Me.mk_store
end



module type S =
sig
  type primitive
  val eqint : primitive
  val neint : primitive
  val leint : primitive
  val ltint : primitive
  val geint : primitive
  val gtint : primitive

  type loc
  type arg
  type test
  type act

  val bind : arg -> (arg -> act) -> act
  val make_const : int -> arg
  val make_offset : arg -> int -> arg
  val make_prim : primitive -> arg list -> test
  val make_isout : arg -> arg -> test
  val make_isin : arg -> arg -> test
  val make_is_nonzero : arg -> test
  val arg_as_test : arg -> test

  val make_if : test -> act -> act -> act
  val make_switch : loc -> arg -> int array -> act array -> act

  val make_catch : act -> int * (act -> act)
  val make_exit : int -> act
end

(* The module will ``produce good code for the case statement''

  Adaptation of
   Robert L. Berstein
   ``Producing good code for the case statement''
   Software Practice and Experience, 15(10) (1985)
  and
   Sampath Kannan and Todd A. Proebsting
   ``Correction to ``Producing good code for the case statement'' ''
   Software Practice and Experience, 24(2) (1993)
  and
   David L. Spuler
    ``Two-Way Comparison Search Trees, a Generalisation of Binary Search Trees
      and Split Trees''
    ``Compiler Code Generation for Multiway Branch Statement as
      a Static Search Problem''
   Technical Reports, James Cook University

 The article of Bernstein considers how to compile C-style switches:
 arrays of actions indexed over non-negative integers with some "missing"
 cases that are sent to a default action.

 The strategy proposed, which is followed in our implementation below,
 is as follows:
 1. Compute a "clustering" of the cases as a disjoint union of smaller intervals
    with a high enough "density" (few default cases on the interval).
 2. Generate "dense switch" code for each cluster, typically using a jump table.
 3. Generate a sequence of tests for the whole switch, whose leaves
    are the dense switches generated for each cluster.

 Berstein believes that computing the optimal clustering
 (smaller number of clusters) is NP-complete, and only proposes
 a suboptimal heuristic method. Kannan and Proebsting remark that it
 can be solved by a quadratic dynamic algorithm, which is also used in
 our implementation.

 The article of Spuler explains how to generate good test sequences
 (optimal in worst-case number of tests) for a two-way tests instead
 of three-way tests: traditional dichotomic search assumes that we
 check at each step whether the key is (1) equal to the pivot, (2)
 strictly less or (3) strictly more, but the test instructions in our
 intermediate representations typically only let us test for (1)
 lesser or equal or (2) strictly bigger (or: (1) strictly less, (2)
 bigger or equal, which is symmetric.). Spuler proves that, even in
 this two-way setting, dichotomic search generates optimal test
 sequences.

 The code below uses two additional ideas from Luc Maranget.

 1. The code to compute an optimal sequence of tests also makes use of
    an interval check (is the input in the range [m; n]), which
    (as remarked by Bernstein) can be implemented efficiently as
    a subtraction and an unsigned comparison. We don't know of an
    efficient algorithm to compute optimal test sequences using both
    comparison and interval checks, so instead:
    a. on large input intervals, we use the dichotomy
    b. on medium-sized input intervals, we use the best of
       the dichotomy and an interval check carving out
       exactly the lowest and highest cases
    c. on small input intervals, we use optimal exhaustive search.

 2. The works of Bernstein and Kannan-Proebsting compute clusters of
    sufficient density, where density is defined naturally as the
    proportion of non-default cases. Maranget instead computes density
    as the height of the test sequence divided by interval size
    (note that the number of non-default cases is an upperbound on the
    test sequence height, as the length of the linear test sequence).
    As a result, sub-intervals that can be efficiently decided by
    tests get a lower density, so they are more likely to be merged
    into the toplevel test sequence instead of generating a less
    compact jump table.
*)
module Make (Arg : S) =
struct

  (* A representation of switches over intervals rather than discrete
     values the [cases] array stores triples [(low, high, act)], where
     [low] is the lowest input value of the interval, [high] is the
     highest input value, and [act] is an index into the [actions]
     array.

     (There can be substantially less actions than intervals if many
     actions are shared.)
  *)
  type 'a inter = {
    cases : (int * int * int) array ;
    actions : 'a array
  }

  let small_size_limit = 8

  and medium_size_limit = 16

(*
let pint chan i =
  if i = min_int then Printf.fprintf chan "-oo"
  else if i=max_int then Printf.fprintf chan "oo"
  else Printf.fprintf chan "%d" i

let pcases chan cases =
  for i =0 to Array.length cases-1 do
    let l,h,act = cases.(i) in
    if l=h then
      Printf.fprintf chan "%d:%d " l act
    else
      Printf.fprintf chan "%a..%a:%d " pint l pint h act
  done

let prerr_inter i = Printf.fprintf stderr
        "cases=%a" pcases i.cases
*)

  let get_act cases i =
    let _,_,r = cases.(i) in
    r
  and get_low cases i =
    let r,_,_ = cases.(i) in
    r
  and get_high cases i =
    let _,r,_ = cases.(i) in
    r

  (* a "cost" as a number of tests in the worst case;
     [n] is the total number of tests
     [ni] is the number of interval tests

     If two choices have the same total number of tests, we will prefer
     the one with less interval tests as they cost slightly more.
  *)
  type ctests = {
    mutable n : int ;
    mutable ni : int ;
  }

  let too_much = {n=max_int ; ni=max_int}

(*
let ptests chan {n=n ; ni=ni} =
  Printf.fprintf chan "{n=%d ; ni=%d}" n ni

let pta chan t =
  for i =0 to Array.length t-1 do
    Printf.fprintf chan "%d: %a\n" i ptests t.(i)
  done
*)

  let less_tests c1 c2 =
    if c1.n < c2.n then
      true
    else if c1.n = c2.n then begin
      if c1.ni < c2.ni then
        true
      else
        false
    end else
      false

  and eq_tests c1 c2 = c1.n = c2.n && c1.ni=c2.ni

  let less2tests (c1,d1) (c2,d2) =
    if eq_tests c1 c2 then
      less_tests d1 d2
    else
      less_tests c1 c2

  let add_test t1 t2 =
    t1.n <- t1.n + t2.n ;
    t1.ni <- t1.ni + t2.ni ;

  (* Represents tests in a test sequence
     [Inter (low, high)] is an interval test
     [Sep bound] is [fun x -> x < bound]
     [No] is when no tests are necessary. *)
  type t_ret = Inter of int * int  | Sep of int | No

(*
let pret chan = function
  | Inter (i,j)-> Printf.fprintf chan "Inter %d %d" i j
  | Sep i -> Printf.fprintf chan "Sep %d" i
  | No -> Printf.fprintf chan "No"
*)

  let coupe cases i =
    let l,_,_ = cases.(i) in
    l,
    Array.sub cases 0 i,
    Array.sub cases i (Array.length cases-i)


  let case_append c1 c2 =
    let len1 = Array.length c1
    and len2 = Array.length c2 in
    match len1,len2 with
    | 0,_ -> c2
    | _,0 -> c1
    | _,_ ->
        let l1,h1,act1 = c1.(Array.length c1-1)
        and l2,h2,act2 = c2.(0) in
        if act1 = act2 then
          let r = Array.make (len1+len2-1) c1.(0) in
          for i = 0 to len1-2 do
            r.(i) <- c1.(i)
          done ;
          let l =
            if len1 < 2 then l1
            else begin (* 0 <= len1 - 2 < len1 *)
              let _,h,_ = r.(len1-2) in
              min (h + 1) l1
            end
          and h =
            if len2 < 2 then h2
            else begin (* 0 <= 1 < len2 *)
              let l,_,_ = c2.(1) in
              max h2 (l - 1)
            end
          in
          r.(len1-1) <- (l,h,act1) ;
          for i=1 to len2-1  do
            r.(len1-1+i) <- c2.(i)
          done ;
          r
        else if h1 > l1 then
          let r = Array.make (len1+len2) c1.(0) in
          for i = 0 to len1-2 do
            r.(i) <- c1.(i)
          done ;
          r.(len1-1) <- (l1,l2-1,act1) ;
          for i=0 to len2-1  do
            r.(len1+i) <- c2.(i)
          done ;
          r
        else if h2 > l2 then
          let r = Array.make (len1+len2) c1.(0) in
          for i = 0 to len1-1 do
            r.(i) <- c1.(i)
          done ;
          r.(len1) <- (h1+1,h2,act2) ;
          for i=1 to len2-1  do
            r.(len1+i) <- c2.(i)
          done ;
          r
        else
          Array.append c1 c2


  let coupe_inter i j cases =
    let lcases = Array.length cases in
    let low,_,_ = cases.(i)
    and _,high,_ = cases.(j) in
    low,high,
    Array.sub cases i (j-i+1),
    case_append (Array.sub cases 0 i) (Array.sub cases (j+1) (lcases-(j+1)))

  type kind = Kvalue of int | Kinter of int | Kempty

(*
let pkind chan = function
  | Kvalue i ->Printf.fprintf chan "V%d" i
  | Kinter i -> Printf.fprintf chan "I%d" i
  | Kempty -> Printf.fprintf chan "E"

let rec pkey chan  = function
  | [] -> ()
  | [k] -> pkind chan k
  | k::rem ->
      Printf.fprintf chan "%a %a" pkey rem pkind k
*)

  let t = Hashtbl.create 17

  let make_key  cases =
    let seen = ref []
    and count = ref 0 in
    let rec got_it act = function
      | [] ->
          seen := (act,!count):: !seen ;
          let r = !count in
          incr count ;
          r
      | (act0,index) :: rem ->
          if act0 = act then
            index
          else
            got_it act rem in

    let make_one l h act =
      if l=h then
        Kvalue (got_it act !seen)
      else
        Kinter (got_it act !seen) in

    let rec make_rec i pl =
      if i < 0 then
        []
      else
        let l,h,act = cases.(i) in
        if pl = h+1 then
          make_one l h act::make_rec (i-1) l
        else
          Kempty::make_one l h act::make_rec (i-1) l in

    let l,h,act = cases.(Array.length cases-1) in
    make_one l h act::make_rec (Array.length cases-2) l


  let same_act t =
    let len = Array.length t in
    let a = get_act t (len-1) in
    let rec do_rec i =
      if i < 0 then true
      else
        let b = get_act t i in
        b=a && do_rec (i-1) in
    do_rec (len-2)


(*
  Interval test x in [l,h] works by checking x-l in [0,h-l]
   * This may be false for arithmetic modulo 2^31
   * Subtracting l may change the relative ordering of values
     and invalid the invariant that matched values are given in
     increasing order

   To avoid this, interval check is allowed only when the
   integers indeed present in the whole case interval are
   in [-2^16 ; 2^16]

   This condition is checked by zyva
*)

  let inter_limit = 1 lsl 16

  let ok_inter = ref false

  (* Compute a good test sequence. *)
  let rec opt_count cases =
    let key = make_key cases in
    try
      Hashtbl.find t key
    with
    | Not_found ->
        let r =
          let lcases = Array.length cases in
          match lcases with
          | 0 -> assert false
          | _ when same_act cases -> No, ({n=0; ni=0},{n=0; ni=0})
          | _ ->
              if lcases < small_size_limit then
                enum cases
              else if lcases < medium_size_limit then
                heuristic cases
              else
                divide cases in
        Hashtbl.add t key r ;
        r

  (* Large inputs: dichotomic sequence. *)
  and divide cases =
    let lcases = Array.length cases in
    let m = lcases/2 in
    let _,left,right = coupe cases m in
    let ci = {n=1 ; ni=0}
    and cm = {n=1 ; ni=0}
    and _,(cml,cleft) = opt_count left
    and _,(cmr,cright) = opt_count right in
    add_test ci cleft ;
    add_test ci cright ;
    (* To compute a worst-case cost, we add the more costly of the
       left/right branches to the running total. *)
    if less_tests cml cmr then
      add_test cm cmr
    else
      add_test cm cml ;
    Sep m,(cm, ci)

  (* Medium-size inputs: dichotomy or interval tests. *)
  and heuristic cases =
    let lcases = Array.length cases in

    let sep,csep = divide cases

    and inter,cinter =
      if !ok_inter then begin
        let _,_,act0 = cases.(0)
        and _,_,act1 = cases.(lcases-1) in
        if act0 = act1 then begin
          let low, high, inside, outside = coupe_inter 1 (lcases-2) cases in
          let _,(cmi,cinside) = opt_count inside
          and _,(cmo,coutside) = opt_count outside
          and cmij = {n=1 ; ni=(if low=high then 0 else 1)}
          and cij = {n=1 ; ni=(if low=high then 0 else 1)} in
          add_test cij cinside ;
          add_test cij coutside ;
          if less_tests cmi cmo then
            add_test cmij cmo
          else
            add_test cmij cmi ;
          Inter (1,lcases-2),(cmij,cij)
        end else
          Inter (-1,-1),(too_much, too_much)
      end else
        Inter (-1,-1),(too_much, too_much) in
    if less2tests csep cinter then
      sep,csep
    else
      inter,cinter

  (* Small inputs: exhaustive search for optimal sequence. *)
  and enum cases =
    let lcases = Array.length cases in
    let lim, with_sep =
      let best = ref (-1) and best_cost = ref (too_much,too_much) in

      for i = 1 to lcases-(1) do
        let _,left,right = coupe cases i in
        let ci = {n=1 ; ni=0}
        and cm = {n=1 ; ni=0}
        and _,(cml,cleft) = opt_count left
        and _,(cmr,cright) = opt_count right in
        add_test ci cleft ;
        add_test ci cright ;
        if less_tests cml cmr then
          add_test cm cmr
        else
          add_test cm cml ;

        if
          less2tests (cm,ci) !best_cost
        then begin
          best := i ;
          best_cost := (cm,ci)
        end
      done ;
      !best, !best_cost in

    let ilow, ihigh, with_inter =
      if not !ok_inter then
        let rlow = ref (-1) and rhigh = ref (-1)
        and best_cost= ref (too_much,too_much) in
        for i=1 to lcases-2 do
          let low, high, inside, outside = coupe_inter i i cases in
          if low=high then begin
            let _,(cmi,cinside) = opt_count inside
            and _,(cmo,coutside) = opt_count outside
            and cmij = {n=1 ; ni=0}
            and cij = {n=1 ; ni=0} in
            add_test cij cinside ;
            add_test cij coutside ;
            if less_tests cmi cmo then
              add_test cmij cmo
            else
              add_test cmij cmi ;
            if less2tests (cmij,cij) !best_cost then begin
              rlow := i ;
              rhigh := i ;
              best_cost := (cmij,cij)
            end
          end
        done ;
        !rlow, !rhigh, !best_cost
      else
        let rlow = ref (-1) and rhigh = ref (-1)
        and best_cost= ref (too_much,too_much) in
        for i=1 to lcases-2 do
          for j=i to lcases-2 do
            let low, high, inside, outside = coupe_inter i j cases in
            let _,(cmi,cinside) = opt_count inside
            and _,(cmo,coutside) = opt_count outside
            and cmij = {n=1 ; ni=(if low=high then 0 else 1)}
            and cij = {n=1 ; ni=(if low=high then 0 else 1)} in
            add_test cij cinside ;
            add_test cij coutside ;
            if less_tests cmi cmo then
              add_test cmij cmo
            else
              add_test cmij cmi ;
            if less2tests (cmij,cij) !best_cost then begin
              rlow := i ;
              rhigh := j ;
              best_cost := (cmij,cij)
            end
          done
        done ;
        !rlow, !rhigh, !best_cost in
    let r = ref (Inter (ilow,ihigh)) and rc = ref with_inter in
    if less2tests with_sep !rc then begin
      r := Sep lim ; rc := with_sep
    end ;
    !r, !rc

  (* Consider the following sequence of interval tests:

       if a in [2; 10] then
         if a in [2; 4] then act24
         else if a in [5; 8] then act58
         else act810
       else act_default

     Our interval check works by subtracting the interval lower
     bound, then checking a range [0; n] using an unsigned
     comparison. Naively we would generate code with one subtraction
     to [a] before each comparison:

       let tmp1 = a - 2 in
       if tmp1 <=u 8 then
         let tmp2 = a - 2 in
         if tmp2 <=u 2 then act24
         else
           let tmp3 = a - 5 in
           if tmp3 <=u 3 then act58
           else act810
       else act_default

     but we can avoid some substractions by working with the result
     of the first subtraction, instead of the original index [a],
     inside the interval.

       let a2 = a - 2 in
       if a2 <=u 8 then
         if a2 in <=u 2 then act24
         else
           let a5 = a2 - 3 in
           if a5 <=u 3 then act58
           else act810
       else act_default

     The type [t_ctx] represents an input argument "shifted" by a certain
     (negative) offset by repeated substractions.

     In the example above, [a5] would be represented with [off = -5].
  *)
  type 'a t_ctx =  {off : int ; arg : 'a}

  let make_if_test test arg i ifso ifnot =
    Arg.make_if
      (Arg.make_prim test [arg ; Arg.make_const i])
      ifso ifnot

  let make_if_lt arg i  ifso ifnot = match i with
    | 1 ->
        make_if_test Arg.leint arg 0 ifso ifnot
    | _ ->
        make_if_test Arg.ltint arg i ifso ifnot

  and make_if_ge arg i  ifso ifnot = match i with
    | 1 ->
        make_if_test Arg.gtint arg 0 ifso ifnot
    | _ ->
        make_if_test Arg.geint arg i ifso ifnot

  and make_if_eq  arg i ifso ifnot =
    make_if_test Arg.eqint arg i ifso ifnot

  and make_if_ne  arg i ifso ifnot =
    make_if_test Arg.neint arg i ifso ifnot

  let make_if_nonzero arg ifso ifnot =
    Arg.make_if (Arg.make_is_nonzero arg) ifso ifnot

  let make_if_bool arg ifso ifnot =
    Arg.make_if (Arg.arg_as_test arg) ifso ifnot

  let do_make_if_out h arg ifso ifno =
    Arg.make_if (Arg.make_isout h arg) ifso ifno

  let make_if_out ctx l d mk_ifso mk_ifno = match l with
    | 0 ->
        do_make_if_out
          (Arg.make_const d) ctx.arg (mk_ifso ctx) (mk_ifno ctx)
    | _ ->
        Arg.bind
          (Arg.make_offset ctx.arg (-l))
          (fun arg ->
             let ctx = {off= (-l+ctx.off) ; arg=arg} in
             do_make_if_out
               (Arg.make_const d) arg (mk_ifso ctx) (mk_ifno ctx))

  let do_make_if_in h arg ifso ifno =
    Arg.make_if (Arg.make_isin h arg) ifso ifno

  let make_if_in ctx l d mk_ifso mk_ifno = match l with
    | 0 ->
        do_make_if_in
          (Arg.make_const d) ctx.arg (mk_ifso ctx) (mk_ifno ctx)
    | _ ->
        Arg.bind
          (Arg.make_offset ctx.arg (-l))
          (fun arg ->
             let ctx = {off= (-l+ctx.off) ; arg=arg} in
             do_make_if_in
               (Arg.make_const d) arg (mk_ifso ctx) (mk_ifno ctx))

  (* Generate the code for a good test sequence. *)
  let rec c_test ctx ({cases=cases ; actions=actions} as s) =
    let lcases = Array.length cases in
    assert(lcases > 0) ;
    if lcases = 1 then
      actions.(get_act cases 0) ctx

    else begin

      let w,_c = opt_count cases in
(*
  Printf.fprintf stderr
  "off=%d tactic=%a for %a\n"
  ctx.off pret w pcases cases ;
  *)
      match w with
      | No -> actions.(get_act cases 0) ctx
      | Inter (i,j) ->
          let low,high,inside, outside = coupe_inter i j cases in
          let _,(cinside,_) = opt_count inside
          and _,(coutside,_) = opt_count outside in
          (* Costs are retrieved to put the code with more remaining tests
             in the privileged (positive) branch of ``if'' *)
          if low=high then begin
            if less_tests coutside cinside then
              make_if_eq
                ctx.arg
                (low+ctx.off)
                (c_test ctx {s with cases=inside})
                (c_test ctx {s with cases=outside})
            else
              make_if_ne
                ctx.arg
                (low+ctx.off)
                (c_test ctx {s with cases=outside})
                (c_test ctx {s with cases=inside})
          end else begin
            if less_tests coutside cinside then
              make_if_in
                ctx
                (low+ctx.off)
                (high-low)
                (fun ctx -> c_test ctx {s with cases=inside})
                (fun ctx -> c_test ctx {s with cases=outside})
            else
              make_if_out
                ctx
                (low+ctx.off)
                (high-low)
                (fun ctx -> c_test ctx {s with cases=outside})
                (fun ctx -> c_test ctx {s with cases=inside})
          end
      | Sep i ->
          let lim,left,right = coupe cases i in
          let _,(cleft,_) = opt_count left
          and _,(cright,_) = opt_count right in
          let left = {s with cases=left}
          and right = {s with cases=right} in

          if i=1 && (lim+ctx.off)=1 && get_low cases 0+ctx.off=0 then
            if lcases = 2 && get_high cases 1+ctx.off = 1 then
              make_if_bool
                ctx.arg
                (c_test ctx right) (c_test ctx left)
            else
              make_if_nonzero
                ctx.arg
                (c_test ctx right) (c_test ctx left)
          else if less_tests cright cleft then
            make_if_lt
              ctx.arg (lim+ctx.off)
              (c_test ctx left) (c_test ctx right)
          else
            make_if_ge
              ctx.arg (lim+ctx.off)
              (c_test ctx right) (c_test ctx left)

    end


  (* Minimal density of dense switches. *)
  let theta = 0.33333

  (* Minimal number of tests to make a dense switch. *)
  let switch_min = 3

  (* Particular case 0, 1, 2. *)
  let particular_case cases i j =
    j-i = 2 &&
    (let l1,_h1,act1 = cases.(i)
     and  l2,_h2,_act2 = cases.(i+1)
     and  l3,h3,act3 = cases.(i+2) in
     l1+1=l2 && l2+1=l3 && l3=h3 &&
     act1 <> act3)

  (* Approximation of the test sequence height,
     used to determine cluster density. *)
  let approx_count cases i j =
    let l = j-i+1 in
    if l < small_size_limit then
      (* on small input intervals, use test sequence height *)
      let _,(_,{n=ntests}) = opt_count (Array.sub cases i l) in
      ntests
    else
      (* otherwise use the standard notion of density
         (number of non-default cases) *)
      l-1

  (* Sends back a boolean that says whether it is worth making a jump table. *)
  let dense {cases} i j =
    if i=j then true
    else
      let l,_,_ = cases.(i)
      and _,h,_ = cases.(j) in
      let ntests = approx_count cases i j in
(*
  (ntests+1) >= theta * (h-l+1)
*)
      particular_case cases i j ||
      ((* The switch_min test guarantees that we don't use jump tables
          for very small switches. *)
       ntests >= switch_min &&
       float_of_int ntests +. 1.0 >=
       theta *. (float_of_int h -. float_of_int l +. 1.0))

  (* Compute an optimal clustering by dynamic programming. *)
  let comp_clusters s =
    let len = Array.length s.cases in
    let min_clusters = Array.make len max_int
    and k = Array.make len 0 in
    let get_min i = if i < 0 then 0 else min_clusters.(i) in

    for i = 0 to len-1 do
      for j = 0 to i do
        if
          dense s j i &&
          get_min (j-1) + 1 < min_clusters.(i)
        then begin
          k.(i) <- j ;
          min_clusters.(i) <- get_min (j-1) + 1
        end
      done ;
    done ;
    min_clusters.(len-1),k

  (* The code to generate a dense switch is provided
     by the functor parameter as Arg.make_switch
     (which will typically use a jump table) *)
  let make_switch loc {cases=cases ; actions=actions} i j =
    (* Assume j > i *)
    let ll,_,_ = cases.(i)
    and _,hh,_ = cases.(j) in
    let tbl = Array.make (hh-ll+1) 0
    and t = Hashtbl.create 17
    and index = ref 0 in
    let get_index act =
      try
        Hashtbl.find t act
      with
      | Not_found ->
          let i = !index in
          incr index ;
          Hashtbl.add t act i ;
          i in

    for k=i to j do
      let l,h,act = cases.(k) in
      let index = get_index act in
      for kk=l-ll to h-ll do
        tbl.(kk) <- index
      done
    done ;
    let acts = Array.make !index actions.(0) in
    Hashtbl.iter
      (fun act i -> acts.(i) <- actions.(act))
      t ;
    (fun ctx ->
       match -ll-ctx.off with
       | 0 -> Arg.make_switch loc ctx.arg tbl acts
       | _ ->
           Arg.bind
             (Arg.make_offset ctx.arg (-ll-ctx.off))
             (fun arg -> Arg.make_switch loc arg tbl acts))

  (* Generate code from a clustering choice. *)
  let make_clusters loc ({cases=cases ; actions=actions} as s) n_clusters k =
    let len = Array.length cases in
    let r = Array.make n_clusters (0,0,0)
    and t = Hashtbl.create 17
    and index = ref 0
    and bidon = ref (Array.length actions) in
    let get_index act =
      try
        let i,_ = Hashtbl.find t act in
        i
      with
      | Not_found ->
          let i = !index in
          incr index ;
          Hashtbl.add
            t act
            (i,(fun _ -> actions.(act))) ;
          i
    and add_index act =
      let i = !index in
      incr index ;
      incr bidon ;
      Hashtbl.add t !bidon (i,act) ;
      i in

    let rec zyva j ir =
      let i = k.(j) in
      begin if i=j then
          let l,h,act = cases.(i) in
          r.(ir) <- (l,h,get_index act)
        else (* assert i < j *)
          let l,_,_ = cases.(i)
          and _,h,_ = cases.(j) in
          r.(ir) <- (l,h,add_index (make_switch loc s i j))
      end ;
      if i > 0 then zyva (i-1) (ir-1) in

    zyva (len-1) (n_clusters-1) ;
    let acts = Array.make !index (fun _ -> assert false) in
    Hashtbl.iter (fun _ (i,act) -> acts.(i) <- act) t ;
    {cases = r ; actions = acts}


  let do_zyva loc (low,high) arg cases actions =
    let old_ok = !ok_inter in
    ok_inter := (abs low <= inter_limit && abs high <= inter_limit) ;
    if !ok_inter <> old_ok then Hashtbl.clear t ;

    let s = {cases=cases ; actions=actions} in

(*
  Printf.eprintf "ZYVA: %B [low=%i,high=%i]\n" !ok_inter low high ;
  pcases stderr cases ;
  prerr_endline "" ;
*)
    let n_clusters,k = comp_clusters s in
    let clusters = make_clusters loc s n_clusters k in
    c_test {arg=arg ; off=0} clusters

  let abstract_shared actions =
    let handlers = ref (fun x -> x) in
    let actions =
      Array.map
        (fun act -> match  act with
           | Single act -> act
           | Shared act ->
               let i,h = Arg.make_catch act in
               let oh = !handlers in
               handlers := (fun act -> h (oh act)) ;
               Arg.make_exit i)
        actions in
    !handlers,actions

  (* Standard entry point. *)
  let zyva loc lh arg cases actions =
    assert (Array.length cases > 0) ;
    let actions = actions.act_get_shared () in
    let hs,actions = abstract_shared actions in
    hs (do_zyva loc lh arg cases actions)

  (* Generate code using test sequences only, not Arg.make_switch *)
  and test_sequence arg cases actions =
    assert (Array.length cases > 0) ;
    let actions = actions.act_get_shared () in
    let hs,actions = abstract_shared actions in
    let old_ok = !ok_inter in
    ok_inter := false ;
    if !ok_inter <> old_ok then Hashtbl.clear t ;
    let s =
      {cases=cases ;
       actions=Array.map (fun act -> (fun _ -> act)) actions} in
(*
  Printf.eprintf "SEQUENCE: %B\n" !ok_inter ;
  pcases stderr cases ;
  prerr_endline "" ;
*)
    hs (c_test {arg=arg ; off=0} s)

end