summaryrefslogtreecommitdiff
path: root/lex/lexgen.ml
blob: 63d55c686d39da2ce9644e03b20fe6f3fee6fd11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*           Xavier Leroy, projet Cristal, INRIA Rocquencourt             *)
(*           Luc Maranget, projet Moscova, INRIA Rocquencourt             *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(* Compiling a lexer definition *)

open Syntax
(*open Printf*)

exception Memory_overflow

(* Deep abstract syntax for regular expressions *)

type ident = string *  Syntax.location

type tag_info = {id : string ; start : bool ; action : int}

type regexp =
    Empty
  | Chars of int * bool
  | Action of int
  | Tag of tag_info
  | Seq of regexp * regexp
  | Alt of regexp * regexp
  | Star of regexp

type tag_base = Start | End | Mem of int
type tag_addr = Sum of (tag_base * int)
type ident_info =
  | Ident_string of bool * tag_addr * tag_addr
  | Ident_char of bool * tag_addr
type t_env = (ident * ident_info) list

type ('args,'action) lexer_entry =
  { lex_name: string;
    lex_regexp: regexp;
    lex_mem_tags: int ;
    lex_actions: (int *  t_env * 'action) list }


type automata =
    Perform of int * tag_action list
  | Shift of automata_trans * (automata_move * memory_action list) array

and automata_trans =
    No_remember
  | Remember of int * tag_action list

and automata_move =
    Backtrack
  | Goto of int

and memory_action =
  | Copy of int * int
  | Set of int

and tag_action = SetTag of int * int | EraseTag of int

(* Representation of entry points *)

type ('args,'action) automata_entry =
  { auto_name: string;
    auto_args: 'args ;
    auto_mem_size : int ;
    auto_initial_state: int * memory_action list;
    auto_actions: (int * t_env * 'action) list }


(* A lot of sets and map structures *)

module Ints =
  Set.Make(struct type t = int let compare (x:t) y = compare x y end)

let id_compare (id1,_) (id2,_) = String.compare id1 id2

let tag_compare t1 t2 = Pervasives.compare t1 t2

module Tags = Set.Make(struct type t = tag_info let compare = tag_compare end)

module TagMap =
  Map.Make (struct type t = tag_info let compare = tag_compare end)

module IdSet =
  Set.Make (struct type t = ident let compare = id_compare end)

(*********************)
(* Variable cleaning *)
(*********************)

(* Silently eliminate nested variables *)

let rec do_remove_nested to_remove = function
  | Bind (e,x) ->
      if IdSet.mem x to_remove then
        do_remove_nested to_remove e
      else
        Bind (do_remove_nested (IdSet.add x to_remove) e, x)
  | Epsilon|Eof|Characters _ as e -> e
  | Sequence (e1, e2) ->
      Sequence
        (do_remove_nested to_remove  e1, do_remove_nested to_remove  e2)
  | Alternative (e1, e2) ->
      Alternative
        (do_remove_nested to_remove  e1, do_remove_nested to_remove  e2)
  | Repetition e ->
      Repetition (do_remove_nested to_remove  e)

let remove_nested_as e = do_remove_nested IdSet.empty e

(*********************)
(* Variable analysis *)
(*********************)

(*
  Optional variables.
   A variable is optional when matching of regexp does not
   implies it binds.
     The typical case is:
       ("" | 'a' as x) -> optional
       ("" as x | 'a' as x) -> non-optional
*)

let stringset_delta s1 s2 =
  IdSet.union
    (IdSet.diff s1 s2)
    (IdSet.diff s2 s1)

let rec find_all_vars = function
  | Characters _|Epsilon|Eof ->
      IdSet.empty
  | Bind (e,x) ->
      IdSet.add x (find_all_vars e)
  | Sequence (e1,e2)|Alternative (e1,e2) ->
      IdSet.union (find_all_vars e1) (find_all_vars e2)
  | Repetition e -> find_all_vars e


let rec do_find_opt = function
  | Characters _|Epsilon|Eof -> IdSet.empty, IdSet.empty
  | Bind (e,x) ->
      let opt,all = do_find_opt e in
      opt, IdSet.add x all
  | Sequence (e1,e2) ->
      let opt1,all1 = do_find_opt e1
      and opt2,all2 = do_find_opt e2 in
      IdSet.union opt1 opt2, IdSet.union all1 all2
  | Alternative (e1,e2) ->
      let opt1,all1 = do_find_opt e1
      and opt2,all2 = do_find_opt e2 in
      IdSet.union
        (IdSet.union opt1 opt2)
        (stringset_delta all1 all2),
      IdSet.union all1 all2
  | Repetition e  ->
      let r = find_all_vars e in
      r,r

let find_optional e =
  let r,_ = do_find_opt e in r

(*
   Double variables
   A variable is double when it can be bound more than once
   in a single matching
     The typical case is:
       (e1 as x) (e2 as x)

*)

let rec do_find_double = function
  | Characters _|Epsilon|Eof -> IdSet.empty, IdSet.empty
  | Bind (e,x) ->
      let dbl,all = do_find_double e in
      (if IdSet.mem x all then
        IdSet.add x dbl
      else
        dbl),
      IdSet.add x all
  | Sequence (e1,e2) ->
      let dbl1, all1 = do_find_double e1
      and dbl2, all2 = do_find_double e2 in
      IdSet.union
        (IdSet.inter all1 all2)
        (IdSet.union dbl1 dbl2),
      IdSet.union all1 all2
  | Alternative (e1,e2) ->
      let dbl1, all1 = do_find_double e1
      and dbl2, all2 = do_find_double e2 in
      IdSet.union dbl1 dbl2,
      IdSet.union all1 all2
  | Repetition e ->
      let r = find_all_vars e in
      r,r

let find_double e = do_find_double e

(*
   Type of variables:
    A variable is bound to a char when all its occurences
    bind a pattern of length 1.
     The typical case is:
       (_ as x) -> char
*)

let add_some x = function
  | Some i -> Some (x+i)
  | None   -> None

let add_some_some x y = match x,y with
| Some i, Some j -> Some (i+j)
| _,_            -> None

let rec do_find_chars sz = function
  | Epsilon|Eof    -> IdSet.empty, IdSet.empty, sz
  | Characters _ -> IdSet.empty, IdSet.empty, add_some 1 sz
  | Bind (e,x)   ->
      let c,s,e_sz = do_find_chars (Some 0) e in
      begin match e_sz  with
      | Some 1 ->
          IdSet.add x c,s,add_some 1 sz
      | _ ->
          c, IdSet.add x s, add_some_some sz e_sz
      end
  | Sequence (e1,e2) ->
      let c1,s1,sz1 = do_find_chars sz e1 in
      let c2,s2,sz2 = do_find_chars sz1 e2 in
      IdSet.union c1 c2,
      IdSet.union s1 s2,
      sz2
  | Alternative (e1,e2) ->
      let c1,s1,sz1 = do_find_chars sz e1
      and c2,s2,sz2 = do_find_chars sz e2 in
      IdSet.union c1 c2,
      IdSet.union s1 s2,
      (if sz1 = sz2 then sz1 else None)
  | Repetition e -> do_find_chars None e



let find_chars e =
  let c,s,_ = do_find_chars (Some 0) e in
  IdSet.diff c s

(*******************************)
(* From shallow to deep syntax *)
(*******************************)

let chars = ref ([] : Cset.t list)
let chars_count = ref 0


let rec encode_regexp char_vars act = function
    Epsilon -> Empty
  | Characters cl ->
      let n = !chars_count in
      chars := cl :: !chars;
      incr chars_count;
      Chars(n,false)
  | Eof ->
      let n = !chars_count in
      chars := Cset.eof :: !chars;
      incr chars_count;
      Chars(n,true)
  | Sequence(r1,r2) ->
      let r1 = encode_regexp char_vars act r1 in
      let r2 = encode_regexp char_vars act r2 in
      Seq (r1, r2)
  | Alternative(r1,r2) ->
      let r1 = encode_regexp char_vars act r1 in
      let r2 = encode_regexp char_vars act r2 in
      Alt(r1, r2)
  | Repetition r ->
      let r = encode_regexp char_vars act r in
      Star r
  | Bind (r,((name,_) as x)) ->
      let r = encode_regexp char_vars act r in
      if IdSet.mem x char_vars then
        Seq (Tag {id=name ; start=true ; action=act},r)
      else
        Seq (Tag {id=name ; start=true ; action=act},
          Seq (r, Tag {id=name ; start=false ; action=act}))


(* Optimisation,
    Static optimization :
      Replace tags by offsets relative to the beginning
      or end of matched string.
    Dynamic optimization:
      Replace some non-optional, non-double tags by offsets w.r.t
      a previous similar tag.
*)

let opt = true

let mk_seq r1 r2 = match r1,r2  with
| Empty,_ -> r2
| _,Empty -> r1
| _,_     -> Seq (r1,r2)

let add_pos p i = match p with
| Some (Sum (a,n)) -> Some (Sum (a,n+i))
| None -> None

let mem_name name id_set =
  IdSet.exists (fun (id_name,_) -> name = id_name) id_set

let opt_regexp all_vars char_vars optional_vars double_vars r =

(* From removed tags to their addresses *)
  let env = Hashtbl.create 17 in

(* First static optimizations, from start position *)
  let rec size_forward pos = function
    | Empty|Chars (_,true)|Tag _ -> Some pos
    | Chars (_,false) -> Some (pos+1)
    | Seq (r1,r2) ->
        begin match size_forward pos r1 with
        | None -> None
        | Some pos  -> size_forward pos r2
        end
    | Alt (r1,r2) ->
        let pos1 = size_forward pos r1
        and pos2 = size_forward pos r2 in
        if pos1=pos2 then pos1 else None
    | Star _ -> None
    | Action _ -> assert false in

  let rec simple_forward pos r = match r with
    | Tag n ->
        if mem_name n.id double_vars then
          r,Some pos
        else begin
          Hashtbl.add env (n.id,n.start) (Sum (Start, pos)) ;
          Empty,Some pos
        end
    | Empty -> r, Some pos
    | Chars (_,is_eof) ->
        r,Some (if is_eof then  pos else pos+1)
    | Seq (r1,r2) ->
        let r1,pos = simple_forward pos r1 in
        begin match pos with
        | None -> mk_seq r1 r2,None
        | Some pos ->
            let r2,pos = simple_forward pos r2 in
            mk_seq r1 r2,pos
        end
    | Alt (r1,r2) ->
        let pos1 = size_forward pos r1
        and pos2 = size_forward pos r2 in
        r,(if pos1=pos2 then pos1 else None)
    | Star _ -> r,None
    | Action _ -> assert false in

(* Then static optimizations, from end position *)
  let rec size_backward pos = function
    | Empty|Chars (_,true)|Tag _ -> Some pos
    | Chars (_,false) -> Some (pos-1)
    | Seq (r1,r2) ->
        begin match size_backward pos r2 with
        | None -> None
        | Some pos  -> size_backward pos r1
        end
    | Alt (r1,r2) ->
        let pos1 = size_backward pos r1
        and pos2 = size_backward pos r2 in
        if pos1=pos2 then pos1 else None
    | Star _ -> None
    | Action _ -> assert false in


  let rec simple_backward pos r = match r with
    | Tag n ->
        if mem_name n.id double_vars then
          r,Some pos
        else begin
          Hashtbl.add env (n.id,n.start) (Sum (End, pos)) ;
          Empty,Some pos
        end
    | Empty -> r,Some pos
    | Chars (_,is_eof) ->
        r,Some (if is_eof then pos else pos-1)
    | Seq (r1,r2) ->
        let r2,pos = simple_backward pos r2 in
        begin match pos with
        | None -> mk_seq r1 r2,None
        | Some pos ->
            let r1,pos = simple_backward pos r1 in
            mk_seq r1 r2,pos
        end
    | Alt (r1,r2) ->
        let pos1 = size_backward pos r1
        and pos2 = size_backward pos r2 in
        r,(if pos1=pos2 then pos1 else None)
    | Star _ -> r,None
    | Action _ -> assert false in

  let r =
    if opt then
      let r,_ = simple_forward 0 r in
      let r,_ = simple_backward 0 r in
      r
    else
      r in

  let loc_count = ref 0 in
  let get_tag_addr t =
    try
     Hashtbl.find env t
    with
    | Not_found ->
        let n = !loc_count in
        incr loc_count ;
        Hashtbl.add env t (Sum (Mem n,0)) ;
        Sum (Mem n,0) in

  let rec alloc_exp pos r = match r with
    | Tag n ->
        if mem_name n.id double_vars then
          r,pos
        else begin match pos with
        | Some a ->
            Hashtbl.add env (n.id,n.start) a ;
            Empty,pos
        | None ->
            let a = get_tag_addr (n.id,n.start) in
            r,Some a
        end

    | Empty -> r,pos
    | Chars (_,is_eof) -> r,(if is_eof then pos else add_pos pos 1)
    | Seq (r1,r2) ->
        let r1,pos = alloc_exp pos r1 in
        let r2,pos = alloc_exp pos r2 in
        mk_seq r1 r2,pos
    | Alt (_,_) ->
        let off = size_forward 0 r in
        begin match off with
        | Some i -> r,add_pos pos i
        | None -> r,None
        end
    | Star _ -> r,None
    | Action _ -> assert false in

  let r,_ = alloc_exp None r in
  let m =
    IdSet.fold
      (fun ((name,_) as x) r ->

        let v =
          if IdSet.mem x char_vars then
            Ident_char
              (IdSet.mem x optional_vars, get_tag_addr (name,true))
          else
            Ident_string
              (IdSet.mem x optional_vars,
               get_tag_addr (name,true),
               get_tag_addr (name,false)) in
        (x,v)::r)
      all_vars [] in
  m,r, !loc_count



let encode_casedef casedef =
  let r =
    List.fold_left
      (fun (reg,actions,count,ntags) (expr, act) ->
        let expr = remove_nested_as expr in
        let char_vars = find_chars expr in
        let r = encode_regexp char_vars count expr
        and opt_vars = find_optional expr
        and double_vars,all_vars = find_double expr in
        let m,r,loc_ntags =
          opt_regexp all_vars char_vars opt_vars double_vars r in
        Alt(reg, Seq(r, Action count)),
        (count, m ,act) :: actions,
        (succ count),
        max loc_ntags ntags)
      (Empty, [], 0, 0)
      casedef in
  r

let encode_lexdef def =
  chars := [];
  chars_count := 0;
  let entry_list =
    List.map
      (fun {name=entry_name; args=args; shortest=shortest; clauses=casedef} ->
        let (re,actions,_,ntags) = encode_casedef casedef in
        { lex_name = entry_name;
          lex_regexp = re;
          lex_mem_tags = ntags ;
          lex_actions = List.rev actions },args,shortest)
      def in
  let chr = Array.of_list (List.rev !chars) in
  chars := [];
  (chr, entry_list)

(* To generate directly a NFA from a regular expression.
     Confer Aho-Sethi-Ullman, dragon book, chap. 3
   Extension to tagged automata.
     Confer
       Ville Larikari
       'NFAs with Tagged Transitions, their Conversion to Deterministic
        Automata and Application to Regular Expressions'.
       Symposium on String Processing and Information Retrieval (SPIRE 2000),
     http://kouli.iki.fi/~vlaurika/spire2000-tnfa.ps
(See also)
     http://kouli.iki.fi/~vlaurika/regex-submatch.ps.gz
*)

type t_transition =
    OnChars of int
  | ToAction of int

type transition = t_transition * Tags.t

let trans_compare (t1,tags1) (t2,tags2) =
  match Pervasives.compare  t1 t2 with
  | 0 -> Tags.compare tags1 tags2
  | r -> r


module TransSet =
  Set.Make(struct type t = transition let compare = trans_compare end)

let rec nullable = function
  | Empty|Tag _ -> true
  | Chars (_,_)|Action _ -> false
  | Seq(r1,r2) -> nullable r1 && nullable r2
  | Alt(r1,r2) -> nullable r1 || nullable r2
  | Star _     -> true

let rec emptymatch = function
  | Empty | Chars (_,_) | Action _ -> Tags.empty
  | Tag t       -> Tags.add t Tags.empty
  | Seq (r1,r2) -> Tags.union (emptymatch r1) (emptymatch r2)
  | Alt(r1,r2)  ->
      if nullable r1 then
        emptymatch r1
      else
        emptymatch r2
  | Star r ->
      if nullable r then
        emptymatch r
      else
        Tags.empty

let addtags transs tags =
  TransSet.fold
    (fun (t,tags_t) r -> TransSet.add (t, Tags.union tags tags_t) r)
    transs TransSet.empty


let rec firstpos = function
    Empty|Tag _ -> TransSet.empty
  | Chars (pos,_) -> TransSet.add (OnChars pos,Tags.empty) TransSet.empty
  | Action act -> TransSet.add (ToAction act,Tags.empty) TransSet.empty
  | Seq(r1,r2) ->
      if nullable r1 then
        TransSet.union (firstpos r1) (addtags (firstpos r2) (emptymatch r1))
      else
        firstpos r1
  | Alt(r1,r2) -> TransSet.union (firstpos r1) (firstpos r2)
  | Star r     -> firstpos r


(* Berry-sethi followpos *)
let followpos size entry_list =
  let v = Array.make size TransSet.empty in
  let rec fill s = function
    | Empty|Action _|Tag _ -> ()
    | Chars (n,_) -> v.(n) <- s
    | Alt (r1,r2) ->
        fill s r1 ; fill s r2
    | Seq (r1,r2) ->
        fill
          (if nullable r2 then
            TransSet.union (firstpos r2) (addtags s (emptymatch r2))
          else
            (firstpos r2))
          r1 ;
        fill s r2
    | Star r ->
        fill (TransSet.union (firstpos r) s) r in
  List.iter (fun (entry,_,_) -> fill TransSet.empty entry.lex_regexp)
            entry_list;
  v

(************************)
(* The algorithm itself *)
(************************)

let no_action = max_int

module StateSet =
  Set.Make (struct type t = t_transition let compare = Pervasives.compare end)


module MemMap =
  Map.Make (struct type t = int
                   let compare (x:t) y = Pervasives.compare x y end)

type 'a dfa_state =
  {final : int * ('a * int TagMap.t) ;
   others : ('a * int TagMap.t) MemMap.t}


(*
let dtag oc t =
  fprintf oc "%s<%s>" t.id (if t.start then "s" else "e")

let dmem_map dp ds m =
  MemMap.iter
    (fun k x ->
      eprintf "%d -> " k ; dp x ; ds ())
    m

and dtag_map dp ds m =
  TagMap.iter
    (fun t x ->
      dtag stderr t ; eprintf " -> " ; dp x ; ds ())
    m

let dstate {final=(act,(_,m)) ; others=o} =
  if act <> no_action then begin
    eprintf "final=%d " act ;
    dtag_map (fun x -> eprintf "%d" x) (fun () -> prerr_string " ,") m ;
    prerr_endline ""
  end ;
  dmem_map
    (fun (_,m) ->
      dtag_map (fun x -> eprintf "%d" x) (fun () -> prerr_string " ,") m)
    (fun () -> prerr_endline "")
    o
*)


let dfa_state_empty =
  {final=(no_action, (max_int,TagMap.empty)) ;
   others=MemMap.empty}

and dfa_state_is_empty {final=(act,_) ; others=o} =
  act = no_action &&
  o = MemMap.empty


(* A key is an abstraction on a dfa state,
   two states with the same key can be made the same by
   copying some memory cells into others *)


module StateSetSet =
  Set.Make (struct type t = StateSet.t let compare = StateSet.compare end)

type t_equiv = {tag:tag_info ; equiv:StateSetSet.t}

module MemKey =
  Set.Make
   (struct
     type t = t_equiv

     let compare e1 e2 = match Pervasives.compare e1.tag e2.tag with
     | 0 -> StateSetSet.compare e1.equiv e2.equiv
     | r -> r
   end)

type dfa_key = {kstate : StateSet.t ; kmem : MemKey.t}

(* Map a state to its key *)
let env_to_class m =
  let env1 =
    MemMap.fold
      (fun _ (tag,s) r ->
         TagMap.update tag (function
             | None -> Some (StateSetSet.singleton s)
             | Some ss -> Some (StateSetSet.add s ss)
           ) r)
      m TagMap.empty in
  TagMap.fold
    (fun tag ss r -> MemKey.add {tag=tag ; equiv=ss} r)
    env1 MemKey.empty


(* trans is nfa_state, m is associated memory map *)
let inverse_mem_map trans m r =
  TagMap.fold
    (fun tag addr r ->
       MemMap.update addr (function
           | None -> Some (tag, StateSet.singleton trans)
           | Some (otag, s) ->
               assert (tag = otag);
               Some (tag, StateSet.add trans s)
         ) r)
    m r

let inverse_mem_map_other n (_,m) r = inverse_mem_map (OnChars n) m r

let get_key {final=(act,(_,m_act)) ; others=o} =
  let env =
    MemMap.fold inverse_mem_map_other
      o
      (if act = no_action then MemMap.empty
      else inverse_mem_map (ToAction act) m_act MemMap.empty) in
  let state_key =
    MemMap.fold (fun n _ r -> StateSet.add (OnChars n) r) o
      (if act=no_action then StateSet.empty
      else StateSet.add (ToAction act) StateSet.empty) in
  let mem_key = env_to_class  env in
  {kstate = state_key ; kmem = mem_key}


let key_compare k1 k2 = match StateSet.compare k1.kstate k2.kstate with
| 0 -> MemKey.compare k1.kmem k2.kmem
| r -> r

(* Association dfa_state -> state_num *)

module StateMap =
  Map.Make(struct type t = dfa_key let compare = key_compare end)

let state_map = ref (StateMap.empty : int StateMap.t)
let todo = Stack.create()
let next_state_num = ref 0
let next_mem_cell = ref 0
let temp_pending = ref false
let tag_cells = Hashtbl.create 17
let state_table = Table.create dfa_state_empty


(* Initial reset of state *)
let reset_state () =
  Stack.clear todo;
  next_state_num := 0 ;
  let _ = Table.trim state_table in
  ()

(* Reset state before processing a given automata.
   We clear both the memory mapping and
   the state mapping, as state sharing beetween different
   automata may lead to incorret estimation of the cell memory size
   BUG ID 0004517 *)


let reset_state_partial ntags =
  next_mem_cell := ntags ;
  Hashtbl.clear tag_cells ;
  temp_pending := false ;
  state_map := StateMap.empty

let do_alloc_temp () =
  temp_pending := true ;
  let n = !next_mem_cell in
  n

let do_alloc_cell used t =
  let available =
    try Hashtbl.find tag_cells t with Not_found -> Ints.empty in
  try
    Ints.choose (Ints.diff available used)
  with
  | Not_found ->
      temp_pending := false ;
      let n = !next_mem_cell in
      if n >= 255 then raise Memory_overflow ;
      Hashtbl.replace tag_cells t (Ints.add n available) ;
      incr next_mem_cell ;
      n

let is_old_addr a = a >= 0
and is_new_addr a = a < 0

let old_in_map m r =
  TagMap.fold
    (fun _ addr r ->
      if is_old_addr addr then
        Ints.add addr r
      else
        r)
    m r

let alloc_map used m mvs =
  TagMap.fold
    (fun tag a (r,mvs) ->
      let a,mvs =
        if is_new_addr a then
          let a = do_alloc_cell used tag in
          a,Ints.add a mvs
        else a,mvs in
      TagMap.add tag a r,mvs)
    m (TagMap.empty,mvs)

let create_new_state {final=(act,(_,m_act)) ; others=o} =
  let used =
    MemMap.fold (fun _ (_,m) r -> old_in_map m r)
      o (old_in_map m_act Ints.empty) in

  let new_m_act,mvs  = alloc_map used m_act Ints.empty in
  let new_o,mvs =
    MemMap.fold (fun k (x,m) (r,mvs) ->
      let m,mvs = alloc_map used m mvs in
      MemMap.add k (x,m) r,mvs)
      o (MemMap.empty,mvs) in
  {final=(act,(0,new_m_act)) ; others=new_o},
  Ints.fold (fun x r -> Set x::r) mvs []

type new_addr_gen = {mutable count : int ; mutable env : int TagMap.t}

let create_new_addr_gen () = {count = -1 ; env = TagMap.empty}

let alloc_new_addr tag r =
  try
    TagMap.find tag r.env
  with
  | Not_found ->
      let a = r.count in
      r.count <- a-1 ;
      r.env <- TagMap.add tag a r.env ;
      a


let create_mem_map tags gen =
  Tags.fold
    (fun tag r -> TagMap.add tag (alloc_new_addr tag gen) r)
    tags TagMap.empty

let create_init_state pos =
  let gen = create_new_addr_gen () in
  let st =
    TransSet.fold
      (fun (t,tags) st ->
        match t with
        | ToAction n ->
            let on,_otags = st.final in
            if n < on then
              {st with final = (n, (0,create_mem_map tags gen))}
            else
              st
        | OnChars n ->
            try
              let _ = MemMap.find n st.others in assert false
            with
            | Not_found ->
                {st with others =
                  MemMap.add n (0,create_mem_map tags gen) st.others})
      pos dfa_state_empty in
  st


let get_map t st = match t with
| ToAction _ -> let _,(_,m) = st.final in m
| OnChars n  ->
    let (_,m) = MemMap.find n st.others in
    m

let dest = function | Copy (d,_) | Set d  -> d
and orig = function | Copy (_,o) -> o | Set _ -> -1

(*
let pmv oc mv = fprintf oc "%d <- %d" (dest mv) (orig mv)
let pmvs oc mvs =
  List.iter (fun mv -> fprintf oc "%a " pmv  mv) mvs ;
  output_char oc '\n' ; flush oc
*)


(* Topological sort << a la louche >> *)
let sort_mvs mvs =
  let rec do_rec r mvs = match mvs with
  | [] -> r
  | _  ->
      let dests =
        List.fold_left
          (fun r mv -> Ints.add (dest mv) r)
          Ints.empty mvs in
      let rem,here =
        List.partition
          (fun mv -> Ints.mem (orig mv) dests)
          mvs in
      match here with
      | [] ->
          begin match rem with
          | Copy (d,_)::_ ->
              let d' = do_alloc_temp () in
              Copy (d',d)::
              do_rec r
                (List.map
                   (fun mv ->
                     if orig mv = d then
                       Copy (dest mv,d')
                     else
                       mv)
                   rem)
          | _ -> assert false
          end
      | _  -> do_rec (here@r) rem  in
  do_rec [] mvs

let move_to mem_key src tgt =
  let mvs =
    MemKey.fold
      (fun {tag=tag ; equiv=m} r ->
        StateSetSet.fold
          (fun s r ->
            try
              let t = StateSet.choose s  in
              let src = TagMap.find tag (get_map t src)
              and tgt = TagMap.find tag (get_map t tgt) in
              if src <> tgt then begin
                if is_new_addr src then
                  Set tgt::r
                else
                  Copy (tgt, src)::r
              end else
                r
            with
            | Not_found -> assert false)
          m r)
      mem_key [] in
(* Moves are topologically sorted *)
  sort_mvs mvs


let get_state st =
  let key = get_key st in
  try
    let num = StateMap.find key !state_map in
    num,move_to key.kmem st (Table.get state_table num)
  with Not_found ->
    let num = !next_state_num in
    incr next_state_num;
    let st,mvs = create_new_state st in
    Table.emit state_table st ;
    state_map := StateMap.add key num !state_map;
    Stack.push (st, num) todo;
    num,mvs

let map_on_all_states f old_res =
  let res = ref old_res in
  begin try
    while true do
      let (st, i) = Stack.pop todo in
      let r = f st in
      res := (r, i) :: !res
    done
  with Stack.Empty -> ()
  end;
  !res

let goto_state st =
  if
    dfa_state_is_empty st
  then
    Backtrack,[]
  else
    let n,moves = get_state st in
    Goto n,moves

(****************************)
(* compute reachable states *)
(****************************)

let add_tags_to_map gen tags m =
  Tags.fold
    (fun tag m ->
      let m = TagMap.remove tag m in
      TagMap.add tag (alloc_new_addr tag gen) m)
    tags m

let apply_transition gen r pri m = function
  | ToAction n,tags ->
      let on,(opri,_) = r.final in
      if n < on || (on=n && pri < opri) then
        let m = add_tags_to_map gen tags m in
        {r with final=n,(pri,m)}
      else r
  |  OnChars n,tags ->
      try
        let (opri,_) = MemMap.find n r.others in
        if pri < opri then
          let m = add_tags_to_map gen tags m in
          {r with others=MemMap.add n (pri,m) (MemMap.remove n r.others)}
        else
          r
      with
      | Not_found ->
          let m = add_tags_to_map gen tags m in
          {r with others=MemMap.add n (pri,m) r.others}

(* add transitions ts to new state r
   transitions in ts start from state pri and memory map m
*)
let apply_transitions gen r pri m ts =
  TransSet.fold
    (fun t r -> apply_transition gen r pri m t)
    ts r


(* For a given nfa_state pos, refine char partition *)
let rec split_env gen follow pos m s = function
  | [] -> (* Can occur ! because of non-matching regexp ([^'\000'-'\255']) *)
      []
  | (s1,st1) as p::rem ->
      let here = Cset.inter s s1 in
      if Cset.is_empty here then
        p::split_env gen follow pos m s rem
      else
        let rest = Cset.diff s here in
        let rem =
          if Cset.is_empty rest then
            rem
          else
            split_env gen follow pos m rest rem
        and new_st = apply_transitions gen st1 pos m follow in
        let stay = Cset.diff s1 here in
        if Cset.is_empty stay then
          (here, new_st)::rem
        else
          (stay, st1)::(here, new_st)::rem


(* For all nfa_state pos in a dfa state st *)
let comp_shift gen chars follow st =
  MemMap.fold
    (fun pos (_,m) env -> split_env gen follow.(pos) pos m chars.(pos) env)
    st [Cset.all_chars_eof,dfa_state_empty]


let reachs chars follow st =
  let gen = create_new_addr_gen () in
(* build a association list (char set -> new state) *)
  let env = comp_shift gen chars follow st in
(* change it into (char set -> new state_num) *)
  let env =
    List.map
      (fun (s,dfa_state) -> s,goto_state dfa_state) env in
(* finally build the char indexed array -> new state num *)
  let shift = Cset.env_to_array env in
  shift


let get_tag_mem n env t =
  try
    TagMap.find t env.(n)
  with
  | Not_found -> assert false

let do_tag_actions n env  m =

  let used,r =
    TagMap.fold (fun t m (used,r) ->
      let a = get_tag_mem n env t in
      Ints.add a used,SetTag (a,m)::r) m (Ints.empty,[]) in
  let _,r =
    TagMap.fold
      (fun tag m (used,r) ->
        if not (Ints.mem m used) && tag.start then
          Ints.add m used, EraseTag m::r
        else
          used,r)
      env.(n) (used,r) in
  r


let translate_state shortest_match tags chars follow st =
  let (n,(_,m)) = st.final in
  if MemMap.empty = st.others then
    Perform (n,do_tag_actions n tags m)
  else if shortest_match then begin
    if n=no_action then
      Shift (No_remember,reachs chars follow st.others)
    else
      Perform(n, do_tag_actions n tags m)
  end else begin
    Shift (
    (if n = no_action then
      No_remember
    else
      Remember (n,do_tag_actions n tags m)),
    reachs chars follow st.others)
  end

(*
let dtags chan tags =
  Tags.iter
    (fun t -> fprintf chan " %a" dtag t)
    tags

let dtransset s =
  TransSet.iter
    (fun trans -> match trans with
    | OnChars i,tags ->
        eprintf " (-> %d,%a)" i dtags tags
    | ToAction i,tags ->
        eprintf " ([%d],%a)" i dtags tags)
    s

let dfollow t =
  eprintf "follow=[" ;
  for i = 0 to Array.length t-1 do
    eprintf "%d:" i ;
    dtransset t.(i)
  done ;
  prerr_endline "]"
*)


let make_tag_entry id start act a r = match a with
  | Sum (Mem m,0) ->
      TagMap.add {id=id ; start=start ; action=act} m r
  | _ -> r

let extract_tags l =
  let envs = Array.make (List.length l) TagMap.empty in
  List.iter
    (fun (act,m,_) ->
      envs.(act) <-
         List.fold_right
           (fun ((name,_),v) r -> match v with
           | Ident_char (_,t) -> make_tag_entry name true act t r
           | Ident_string (_,t1,t2) ->
               make_tag_entry name true act t1
               (make_tag_entry name false act t2 r))
           m TagMap.empty)
    l ;
  envs


let make_dfa lexdef =
  let (chars, entry_list) = encode_lexdef lexdef in
  let follow = followpos (Array.length chars) entry_list in
(*
  dfollow follow ;
*)
  reset_state () ;
  let r_states = ref [] in
  let initial_states =
    List.map
      (fun (le,args,shortest) ->
        let tags = extract_tags le.lex_actions in
        reset_state_partial le.lex_mem_tags ;
        let pos_set = firstpos le.lex_regexp in
(*
        prerr_string "trans={" ; dtransset pos_set ; prerr_endline "}" ;
*)
        let init_state = create_init_state pos_set in
        let init_num = get_state init_state in
        r_states :=
           map_on_all_states
             (translate_state shortest tags chars follow) !r_states ;
        { auto_name = le.lex_name;
          auto_args = args ;
          auto_mem_size =
            (if !temp_pending then !next_mem_cell+1 else !next_mem_cell) ;
          auto_initial_state = init_num ;
          auto_actions = le.lex_actions })
      entry_list in
  let states = !r_states in
(*
  prerr_endline "** states **" ;
  for i = 0 to !next_state_num-1 do
    eprintf "+++ %d +++\n" i ;
    dstate (Table.get state_table i) ;
    prerr_endline ""
  done ;
  eprintf "%d states\n" !next_state_num ;
*)
  let actions = Array.make !next_state_num (Perform (0,[])) in
  List.iter (fun (act, i) -> actions.(i) <- act) states;
(* Useless state reset, so as to restrict GC roots *)
  reset_state  () ;
  reset_state_partial  0 ;
  (initial_states, actions)