summaryrefslogtreecommitdiff
path: root/middle_end/closure/closure.ml
blob: a51768216cc3089f468f8811a00c61d22d2bbc2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(* Introduction of closures, uncurrying, recognition of direct calls *)

open Misc
open Asttypes
open Primitive
open Lambda
open Switch
open Clambda
module P = Clambda_primitives

module Int = Numbers.Int
module Storer =
  Switch.Store
    (struct
      type t = lambda
      type key = lambda
      let make_key =  Lambda.make_key
      let compare_key = Stdlib.compare
    end)

module V = Backend_var
module VP = Backend_var.With_provenance

(* The current backend *)

let no_phantom_lets () =
  Misc.fatal_error "Closure does not support phantom let generation"

(* Auxiliaries for compiling functions *)

let rec split_list n l =
  if n <= 0 then ([], l) else begin
    match l with
      [] -> fatal_error "Closure.split_list"
    | a::l -> let (l1, l2) = split_list (n-1) l in (a::l1, l2)
  end

let rec build_closure_env env_param pos = function
    [] -> V.Map.empty
  | id :: rem ->
      V.Map.add id
        (Uprim(P.Pfield pos, [Uvar env_param], Debuginfo.none))
          (build_closure_env env_param (pos+1) rem)

(* Auxiliary for accessing globals.  We change the name of the global
   to the name of the corresponding asm symbol.  This is done here
   and no longer in Cmmgen so that approximations stored in .cmx files
   contain the right names if the -for-pack option is active. *)

let getglobal dbg id =
  Uprim(P.Pread_symbol (Compilenv.symbol_for_global id), [], dbg)

(* Check if a variable occurs in a [clambda] term. *)

let occurs_var var u =
  let rec occurs = function
      Uvar v -> v = var
    | Uconst _ -> false
    | Udirect_apply(_lbl, args, _) -> List.exists occurs args
    | Ugeneric_apply(funct, args, _) -> occurs funct || List.exists occurs args
    | Uclosure(_fundecls, clos) -> List.exists occurs clos
    | Uoffset(u, _ofs) -> occurs u
    | Ulet(_str, _kind, _id, def, body) -> occurs def || occurs body
    | Uphantom_let _ -> no_phantom_lets ()
    | Uletrec(decls, body) ->
        List.exists (fun (_id, u) -> occurs u) decls || occurs body
    | Uprim(_p, args, _) -> List.exists occurs args
    | Uswitch(arg, s, _dbg) ->
        occurs arg ||
        occurs_array s.us_actions_consts || occurs_array s.us_actions_blocks
    | Ustringswitch(arg,sw,d) ->
        occurs arg ||
        List.exists (fun (_,e) -> occurs e) sw ||
        (match d with None -> false | Some d -> occurs d)
    | Ustaticfail (_, args) -> List.exists occurs args
    | Ucatch(_, _, body, hdlr) -> occurs body || occurs hdlr
    | Utrywith(body, _exn, hdlr) -> occurs body || occurs hdlr
    | Uifthenelse(cond, ifso, ifnot) ->
        occurs cond || occurs ifso || occurs ifnot
    | Usequence(u1, u2) -> occurs u1 || occurs u2
    | Uwhile(cond, body) -> occurs cond || occurs body
    | Ufor(_id, lo, hi, _dir, body) -> occurs lo || occurs hi || occurs body
    | Uassign(id, u) -> id = var || occurs u
    | Usend(_, met, obj, args, _) ->
        occurs met || occurs obj || List.exists occurs args
    | Uunreachable -> false
  and occurs_array a =
    try
      for i = 0 to Array.length a - 1 do
        if occurs a.(i) then raise Exit
      done;
      false
    with Exit ->
      true
  in occurs u

(* Determine whether the estimated size of a clambda term is below
   some threshold *)

let prim_size prim args =
  let open Clambda_primitives in
  match prim with
  | Pread_symbol _ -> 1
  | Pmakeblock _ -> 5 + List.length args
  | Pfield _ -> 1
  | Psetfield(_f, isptr, init) ->
    begin match init with
    | Root_initialization -> 1  (* never causes a write barrier hit *)
    | Assignment | Heap_initialization ->
      match isptr with
      | Pointer -> 4
      | Immediate -> 1
    end
  | Pfloatfield _ -> 1
  | Psetfloatfield _ -> 1
  | Pduprecord _ -> 10 + List.length args
  | Pccall p -> (if p.prim_alloc then 10 else 4) + List.length args
  | Praise _ -> 4
  | Pstringlength -> 5
  | Pbyteslength -> 5
  | Pstringrefs  -> 6
  | Pbytesrefs | Pbytessets -> 6
  | Pmakearray _ -> 5 + List.length args
  | Parraylength kind -> if kind = Pgenarray then 6 else 2
  | Parrayrefu kind -> if kind = Pgenarray then 12 else 2
  | Parraysetu kind -> if kind = Pgenarray then 16 else 4
  | Parrayrefs kind -> if kind = Pgenarray then 18 else 8
  | Parraysets kind -> if kind = Pgenarray then 22 else 10
  | Pbigarrayref(_, ndims, _, _) -> 4 + ndims * 6
  | Pbigarrayset(_, ndims, _, _) -> 4 + ndims * 6
  | _ -> 2 (* arithmetic and comparisons *)

(* Very raw approximation of switch cost *)

let lambda_smaller lam threshold =
  let size = ref 0 in
  let rec lambda_size lam =
    if !size > threshold then raise Exit;
    match lam with
      Uvar _ -> ()
    | Uconst _ -> incr size
    | Udirect_apply(_, args, _) ->
        size := !size + 4; lambda_list_size args
    | Ugeneric_apply(fn, args, _) ->
        size := !size + 6; lambda_size fn; lambda_list_size args
    | Uclosure _ ->
        raise Exit (* inlining would duplicate function definitions *)
    | Uoffset(lam, _ofs) ->
        incr size; lambda_size lam
    | Ulet(_str, _kind, _id, lam, body) ->
        lambda_size lam; lambda_size body
    | Uphantom_let _ -> no_phantom_lets ()
    | Uletrec _ ->
        raise Exit (* usually too large *)
    | Uprim(prim, args, _) ->
        size := !size + prim_size prim args;
        lambda_list_size args
    | Uswitch(lam, cases, _dbg) ->
        if Array.length cases.us_actions_consts > 1 then size := !size + 5 ;
        if Array.length cases.us_actions_blocks > 1 then size := !size + 5 ;
        lambda_size lam;
        lambda_array_size cases.us_actions_consts ;
        lambda_array_size cases.us_actions_blocks
    | Ustringswitch (lam,sw,d) ->
        lambda_size lam ;
       (* as ifthenelse *)
        List.iter
          (fun (_,lam) ->
            size := !size+2 ;
            lambda_size lam)
          sw ;
        Option.iter lambda_size d
    | Ustaticfail (_,args) -> lambda_list_size args
    | Ucatch(_, _, body, handler) ->
        incr size; lambda_size body; lambda_size handler
    | Utrywith(body, _id, handler) ->
        size := !size + 8; lambda_size body; lambda_size handler
    | Uifthenelse(cond, ifso, ifnot) ->
        size := !size + 2;
        lambda_size cond; lambda_size ifso; lambda_size ifnot
    | Usequence(lam1, lam2) ->
        lambda_size lam1; lambda_size lam2
    | Uwhile(cond, body) ->
        size := !size + 2; lambda_size cond; lambda_size body
    | Ufor(_id, low, high, _dir, body) ->
        size := !size + 4; lambda_size low; lambda_size high; lambda_size body
    | Uassign(_id, lam) ->
        incr size;  lambda_size lam
    | Usend(_, met, obj, args, _) ->
        size := !size + 8;
        lambda_size met; lambda_size obj; lambda_list_size args
    | Uunreachable -> ()
  and lambda_list_size l = List.iter lambda_size l
  and lambda_array_size a = Array.iter lambda_size a in
  try
    lambda_size lam; !size <= threshold
  with Exit ->
    false

let is_pure_prim p =
  let open Semantics_of_primitives in
  match Semantics_of_primitives.for_primitive p with
  | (No_effects | Only_generative_effects), _ -> true
  | Arbitrary_effects, _ -> false

(* Check if a clambda term is ``pure'',
   that is without side-effects *and* not containing function definitions *)

let rec is_pure = function
    Uvar _ -> true
  | Uconst _ -> true
  | Uprim(p, args, _) -> is_pure_prim p && List.for_all is_pure args
  | Uoffset(arg, _) -> is_pure arg
  | Ulet(Immutable, _, _var, def, body) ->
      is_pure def && is_pure body
  | _ -> false

(* Simplify primitive operations on known arguments *)

let make_const c = (Uconst c, Value_const c)
let make_const_ref c =
  make_const(Uconst_ref(Compilenv.new_structured_constant ~shared:true c,
    Some c))
let make_const_int n = make_const (Uconst_int n)
let make_const_bool b = make_const_int(if b then 1 else 0)

let make_integer_comparison cmp x y =
  let open Clambda_primitives in
  make_const_bool
    (match cmp with
       Ceq -> x = y
     | Cne -> x <> y
     | Clt -> x < y
     | Cgt -> x > y
     | Cle -> x <= y
     | Cge -> x >= y)

let make_float_comparison cmp x y =
  make_const_bool
    (match cmp with
     | CFeq -> x = y
     | CFneq -> not (x = y)
     | CFlt -> x < y
     | CFnlt -> not (x < y)
     | CFgt -> x > y
     | CFngt -> not (x > y)
     | CFle -> x <= y
     | CFnle -> not (x <= y)
     | CFge -> x >= y
     | CFnge -> not (x >= y))

let make_const_float n = make_const_ref (Uconst_float n)
let make_const_natint n = make_const_ref (Uconst_nativeint n)
let make_const_int32 n = make_const_ref (Uconst_int32 n)
let make_const_int64 n = make_const_ref (Uconst_int64 n)

(* The [fpc] parameter is true if constant propagation of
   floating-point computations is allowed *)

let simplif_arith_prim_pure ~backend fpc p (args, approxs) dbg =
  let module B = (val backend : Backend_intf.S) in
  let open Clambda_primitives in
  let default = (Uprim(p, args, dbg), Value_unknown) in
  match approxs with
  (* int (or enumerated type) *)
  | [ Value_const(Uconst_int n1) ] ->
      begin match p with
      | Pnot -> make_const_bool (n1 = 0)
      | Pnegint -> make_const_int (- n1)
      | Poffsetint n -> make_const_int (n + n1)
      | Pfloatofint when fpc -> make_const_float (float_of_int n1)
      | Pbintofint Pnativeint -> make_const_natint (Nativeint.of_int n1)
      | Pbintofint Pint32 -> make_const_int32 (Int32.of_int n1)
      | Pbintofint Pint64 -> make_const_int64 (Int64.of_int n1)
      | Pbswap16 -> make_const_int (((n1 land 0xff) lsl 8)
                                    lor ((n1 land 0xff00) lsr 8))
      | _ -> default
      end
  (* int (or enumerated type), int (or enumerated type) *)
  | [ Value_const(Uconst_int n1);
      Value_const(Uconst_int n2) ] ->
      begin match p with
      | Psequand -> make_const_bool (n1 <> 0 && n2 <> 0)
      | Psequor -> make_const_bool (n1 <> 0 || n2 <> 0)
      | Paddint -> make_const_int (n1 + n2)
      | Psubint -> make_const_int (n1 - n2)
      | Pmulint -> make_const_int (n1 * n2)
      | Pdivint _ when n2 <> 0 -> make_const_int (n1 / n2)
      | Pmodint _ when n2 <> 0 -> make_const_int (n1 mod n2)
      | Pandint -> make_const_int (n1 land n2)
      | Porint -> make_const_int (n1 lor n2)
      | Pxorint -> make_const_int (n1 lxor n2)
      | Plslint when 0 <= n2 && n2 < 8 * B.size_int ->
          make_const_int (n1 lsl n2)
      | Plsrint when 0 <= n2 && n2 < 8 * B.size_int ->
          make_const_int (n1 lsr n2)
      | Pasrint when 0 <= n2 && n2 < 8 * B.size_int ->
          make_const_int (n1 asr n2)
      | Pintcomp c -> make_integer_comparison c n1 n2
      | _ -> default
      end
  (* float *)
  | [Value_const(Uconst_ref(_, Some (Uconst_float n1)))] when fpc ->
      begin match p with
      | Pintoffloat -> make_const_int (int_of_float n1)
      | Pnegfloat -> make_const_float (-. n1)
      | Pabsfloat -> make_const_float (abs_float n1)
      | _ -> default
      end
  (* float, float *)
  | [Value_const(Uconst_ref(_, Some (Uconst_float n1)));
     Value_const(Uconst_ref(_, Some (Uconst_float n2)))] when fpc ->
      begin match p with
      | Paddfloat -> make_const_float (n1 +. n2)
      | Psubfloat -> make_const_float (n1 -. n2)
      | Pmulfloat -> make_const_float (n1 *. n2)
      | Pdivfloat -> make_const_float (n1 /. n2)
      | Pfloatcomp c  -> make_float_comparison c n1 n2
      | _ -> default
      end
  (* nativeint *)
  | [Value_const(Uconst_ref(_, Some (Uconst_nativeint n)))] ->
      begin match p with
      | Pintofbint Pnativeint -> make_const_int (Nativeint.to_int n)
      | Pcvtbint(Pnativeint, Pint32) -> make_const_int32 (Nativeint.to_int32 n)
      | Pcvtbint(Pnativeint, Pint64) -> make_const_int64 (Int64.of_nativeint n)
      | Pnegbint Pnativeint -> make_const_natint (Nativeint.neg n)
      | _ -> default
      end
  (* nativeint, nativeint *)
  | [Value_const(Uconst_ref(_, Some (Uconst_nativeint n1)));
     Value_const(Uconst_ref(_, Some (Uconst_nativeint n2)))] ->
      begin match p with
      | Paddbint Pnativeint -> make_const_natint (Nativeint.add n1 n2)
      | Psubbint Pnativeint -> make_const_natint (Nativeint.sub n1 n2)
      | Pmulbint Pnativeint -> make_const_natint (Nativeint.mul n1 n2)
      | Pdivbint {size=Pnativeint} when n2 <> 0n ->
          make_const_natint (Nativeint.div n1 n2)
      | Pmodbint {size=Pnativeint} when n2 <> 0n ->
          make_const_natint (Nativeint.rem n1 n2)
      | Pandbint Pnativeint -> make_const_natint (Nativeint.logand n1 n2)
      | Porbint Pnativeint ->  make_const_natint (Nativeint.logor n1 n2)
      | Pxorbint Pnativeint -> make_const_natint (Nativeint.logxor n1 n2)
      | Pbintcomp(Pnativeint, c)  -> make_integer_comparison c n1 n2
      | _ -> default
      end
  (* nativeint, int *)
  | [Value_const(Uconst_ref(_, Some (Uconst_nativeint n1)));
     Value_const(Uconst_int n2)] ->
      begin match p with
      | Plslbint Pnativeint when 0 <= n2 && n2 < 8 * B.size_int ->
          make_const_natint (Nativeint.shift_left n1 n2)
      | Plsrbint Pnativeint when 0 <= n2 && n2 < 8 * B.size_int ->
          make_const_natint (Nativeint.shift_right_logical n1 n2)
      | Pasrbint Pnativeint when 0 <= n2 && n2 < 8 * B.size_int ->
          make_const_natint (Nativeint.shift_right n1 n2)
      | _ -> default
      end
  (* int32 *)
  | [Value_const(Uconst_ref(_, Some (Uconst_int32 n)))] ->
      begin match p with
      | Pintofbint Pint32 -> make_const_int (Int32.to_int n)
      | Pcvtbint(Pint32, Pnativeint) -> make_const_natint (Nativeint.of_int32 n)
      | Pcvtbint(Pint32, Pint64) -> make_const_int64 (Int64.of_int32 n)
      | Pnegbint Pint32 -> make_const_int32 (Int32.neg n)
      | _ -> default
      end
  (* int32, int32 *)
  | [Value_const(Uconst_ref(_, Some (Uconst_int32 n1)));
     Value_const(Uconst_ref(_, Some (Uconst_int32 n2)))] ->
      begin match p with
      | Paddbint Pint32 -> make_const_int32 (Int32.add n1 n2)
      | Psubbint Pint32 -> make_const_int32 (Int32.sub n1 n2)
      | Pmulbint Pint32 -> make_const_int32 (Int32.mul n1 n2)
      | Pdivbint {size=Pint32} when n2 <> 0l ->
          make_const_int32 (Int32.div n1 n2)
      | Pmodbint {size=Pint32} when n2 <> 0l ->
          make_const_int32 (Int32.rem n1 n2)
      | Pandbint Pint32 -> make_const_int32 (Int32.logand n1 n2)
      | Porbint Pint32 -> make_const_int32 (Int32.logor n1 n2)
      | Pxorbint Pint32 -> make_const_int32 (Int32.logxor n1 n2)
      | Pbintcomp(Pint32, c) -> make_integer_comparison c n1 n2
      | _ -> default
      end
  (* int32, int *)
  | [Value_const(Uconst_ref(_, Some (Uconst_int32 n1)));
     Value_const(Uconst_int n2)] ->
      begin match p with
      | Plslbint Pint32 when 0 <= n2 && n2 < 32 ->
          make_const_int32 (Int32.shift_left n1 n2)
      | Plsrbint Pint32 when 0 <= n2 && n2 < 32 ->
          make_const_int32 (Int32.shift_right_logical n1 n2)
      | Pasrbint Pint32 when 0 <= n2 && n2 < 32 ->
          make_const_int32 (Int32.shift_right n1 n2)
      | _ -> default
      end
  (* int64 *)
  | [Value_const(Uconst_ref(_, Some (Uconst_int64 n)))] ->
      begin match p with
      | Pintofbint Pint64 -> make_const_int (Int64.to_int n)
      | Pcvtbint(Pint64, Pint32) -> make_const_int32 (Int64.to_int32 n)
      | Pcvtbint(Pint64, Pnativeint) -> make_const_natint (Int64.to_nativeint n)
      | Pnegbint Pint64 -> make_const_int64 (Int64.neg n)
      | _ -> default
      end
  (* int64, int64 *)
  | [Value_const(Uconst_ref(_, Some (Uconst_int64 n1)));
     Value_const(Uconst_ref(_, Some (Uconst_int64 n2)))] ->
      begin match p with
      | Paddbint Pint64 -> make_const_int64 (Int64.add n1 n2)
      | Psubbint Pint64 -> make_const_int64 (Int64.sub n1 n2)
      | Pmulbint Pint64 -> make_const_int64 (Int64.mul n1 n2)
      | Pdivbint {size=Pint64} when n2 <> 0L ->
          make_const_int64 (Int64.div n1 n2)
      | Pmodbint {size=Pint64} when n2 <> 0L ->
          make_const_int64 (Int64.rem n1 n2)
      | Pandbint Pint64 -> make_const_int64 (Int64.logand n1 n2)
      | Porbint Pint64 -> make_const_int64 (Int64.logor n1 n2)
      | Pxorbint Pint64 -> make_const_int64 (Int64.logxor n1 n2)
      | Pbintcomp(Pint64, c) -> make_integer_comparison c n1 n2
      | _ -> default
      end
  (* int64, int *)
  | [Value_const(Uconst_ref(_, Some (Uconst_int64 n1)));
     Value_const(Uconst_int n2)] ->
      begin match p with
      | Plslbint Pint64 when 0 <= n2 && n2 < 64 ->
          make_const_int64 (Int64.shift_left n1 n2)
      | Plsrbint Pint64 when 0 <= n2 && n2 < 64 ->
          make_const_int64 (Int64.shift_right_logical n1 n2)
      | Pasrbint Pint64 when 0 <= n2 && n2 < 64 ->
          make_const_int64 (Int64.shift_right n1 n2)
      | _ -> default
      end
  (* TODO: Pbbswap *)
  (* Catch-all *)
  | _ ->
     default

let field_approx n = function
  | Value_tuple a when n < Array.length a -> a.(n)
  | Value_const (Uconst_ref(_, Some (Uconst_block(_, l))))
    when n < List.length l ->
      Value_const (List.nth l n)
  | _ -> Value_unknown

let simplif_prim_pure ~backend fpc p (args, approxs) dbg =
  let open Clambda_primitives in
  match p, args, approxs with
  (* Block construction *)
  | Pmakeblock(tag, Immutable, _kind), _, _ ->
      let field = function
        | Value_const c -> c
        | _ -> raise Exit
      in
      begin try
        let cst = Uconst_block (tag, List.map field approxs) in
        let name =
          Compilenv.new_structured_constant cst ~shared:true
        in
        make_const (Uconst_ref (name, Some cst))
      with Exit ->
        (Uprim(p, args, dbg), Value_tuple (Array.of_list approxs))
      end
  (* Field access *)
  | Pfield n, _, [ Value_const(Uconst_ref(_, Some (Uconst_block(_, l)))) ]
    when n < List.length l ->
      make_const (List.nth l n)
  | Pfield n, [ Uprim(P.Pmakeblock _, ul, _) ], [approx]
    when n < List.length ul ->
      (List.nth ul n, field_approx n approx)
  (* Strings *)
  | (Pstringlength | Pbyteslength),
     _,
     [ Value_const(Uconst_ref(_, Some (Uconst_string s))) ] ->
      make_const_int (String.length s)
  (* Kind test *)
  | Pisint, _, [a1] ->
      begin match a1 with
      | Value_const(Uconst_int _) -> make_const_bool true
      | Value_const(Uconst_ref _) -> make_const_bool false
      | Value_closure _ | Value_tuple _ -> make_const_bool false
      | _ -> (Uprim(p, args, dbg), Value_unknown)
      end
  (* Catch-all *)
  | _ ->
      simplif_arith_prim_pure ~backend fpc p (args, approxs) dbg

let simplif_prim ~backend fpc p (args, approxs as args_approxs) dbg =
  if List.for_all is_pure args
  then simplif_prim_pure ~backend fpc p args_approxs dbg
  else
    (* XXX : always return the same approxs as simplif_prim_pure? *)
    let approx =
      match p with
      | P.Pmakeblock(_, Immutable, _kind) ->
          Value_tuple (Array.of_list approxs)
      | _ ->
          Value_unknown
    in
    (Uprim(p, args, dbg), approx)

(* Substitute variables in a [ulambda] term (a body of an inlined function)
   and perform some more simplifications on integer primitives.
   Also perform alpha-conversion on let-bound identifiers to avoid
   clashes with locally-generated identifiers, and refresh raise counts
   in order to avoid clashes with inlined code from other modules.
   The variables must not be assigned in the term.
   This is used to substitute "trivial" arguments for parameters
   during inline expansion, and also for the translation of let rec
   over functions. *)

let approx_ulam = function
    Uconst c -> Value_const c
  | _ -> Value_unknown

let find_action idxs acts tag =
  if 0 <= tag && tag < Array.length idxs then begin
    let idx = idxs.(tag) in
    assert(0 <= idx && idx < Array.length acts);
    Some acts.(idx)
  end else
    (* Can this happen? *)
    None

let subst_debuginfo loc dbg =
  if !Clflags.debug then
    Debuginfo.inline loc dbg
  else
    dbg

let rec substitute loc ((backend, fpc) as st) sb rn ulam =
  match ulam with
    Uvar v ->
      begin try V.Map.find v sb with Not_found -> ulam end
  | Uconst _ -> ulam
  | Udirect_apply(lbl, args, dbg) ->
      let dbg = subst_debuginfo loc dbg in
      Udirect_apply(lbl, List.map (substitute loc st sb rn) args, dbg)
  | Ugeneric_apply(fn, args, dbg) ->
      let dbg = subst_debuginfo loc dbg in
      Ugeneric_apply(substitute loc st sb rn fn,
                     List.map (substitute loc st sb rn) args, dbg)
  | Uclosure(defs, env) ->
      (* Question: should we rename function labels as well?  Otherwise,
         there is a risk that function labels are not globally unique.
         This should not happen in the current system because:
         - Inlined function bodies contain no Uclosure nodes
           (cf. function [lambda_smaller])
         - When we substitute offsets for idents bound by let rec
           in [close], case [Lletrec], we discard the original
           let rec body and use only the substituted term. *)
      Uclosure(defs, List.map (substitute loc st sb rn) env)
  | Uoffset(u, ofs) -> Uoffset(substitute loc st sb rn u, ofs)
  | Ulet(str, kind, id, u1, u2) ->
      let id' = VP.rename id in
      Ulet(str, kind, id', substitute loc st sb rn u1,
           substitute loc st
             (V.Map.add (VP.var id) (Uvar (VP.var id')) sb) rn u2)
  | Uphantom_let _ -> no_phantom_lets ()
  | Uletrec(bindings, body) ->
      let bindings1 =
        List.map (fun (id, rhs) ->
          (VP.var id, VP.rename id, rhs)) bindings
      in
      let sb' =
        List.fold_right (fun (id, id', _) s ->
            V.Map.add id (Uvar (VP.var id')) s)
          bindings1 sb
      in
      Uletrec(
        List.map
           (fun (_id, id', rhs) -> (id', substitute loc st sb' rn rhs))
           bindings1,
        substitute loc st sb' rn body)
  | Uprim(p, args, dbg) ->
      let sargs = List.map (substitute loc st sb rn) args in
      let dbg = subst_debuginfo loc dbg in
      let (res, _) =
        simplif_prim ~backend fpc p (sargs, List.map approx_ulam sargs) dbg in
      res
  | Uswitch(arg, sw, dbg) ->
      let sarg = substitute loc st sb rn arg in
      let action =
        (* Unfortunately, we cannot easily deal with the
           case of a constructed block (makeblock) bound to a local
           identifier.  This would require to keep track of
           local let bindings (at least their approximations)
           in this substitute function.
        *)
        match sarg with
        | Uconst (Uconst_ref (_,  Some (Uconst_block (tag, _)))) ->
            find_action sw.us_index_blocks sw.us_actions_blocks tag
        | Uconst (Uconst_int tag) ->
            find_action sw.us_index_consts sw.us_actions_consts tag
        | _ -> None
      in
      begin match action with
      | Some u -> substitute loc st sb rn u
      | None ->
          Uswitch(sarg,
                  { sw with
                    us_actions_consts =
                      Array.map (substitute loc st sb rn) sw.us_actions_consts;
                    us_actions_blocks =
                      Array.map (substitute loc st sb rn) sw.us_actions_blocks;
                  },
                  dbg)
      end
  | Ustringswitch(arg,sw,d) ->
      Ustringswitch
        (substitute loc st sb rn arg,
         List.map (fun (s,act) -> s,substitute loc st sb rn act) sw,
         Option.map (substitute loc st sb rn) d)
  | Ustaticfail (nfail, args) ->
      let nfail =
        match rn with
        | Some rn ->
          begin try
            Int.Map.find nfail rn
          with Not_found ->
            fatal_errorf "Closure.split_list: invalid nfail (%d)" nfail
          end
        | None -> nfail in
      Ustaticfail (nfail, List.map (substitute loc st sb rn) args)
  | Ucatch(nfail, ids, u1, u2) ->
      let nfail, rn =
        match rn with
        | Some rn ->
          let new_nfail = next_raise_count () in
          new_nfail, Some (Int.Map.add nfail new_nfail rn)
        | None -> nfail, rn in
      let ids' = List.map (fun (id, k) -> VP.rename id, k) ids in
      let sb' =
        List.fold_right2
          (fun (id, _) (id', _) s ->
             V.Map.add (VP.var id) (Uvar (VP.var id')) s
          )
          ids ids' sb
      in
      Ucatch(nfail, ids', substitute loc st sb rn u1,
                          substitute loc st sb' rn u2)
  | Utrywith(u1, id, u2) ->
      let id' = VP.rename id in
      Utrywith(substitute loc st sb rn u1, id',
               substitute loc st
                 (V.Map.add (VP.var id) (Uvar (VP.var id')) sb) rn u2)
  | Uifthenelse(u1, u2, u3) ->
      begin match substitute loc st sb rn u1 with
        Uconst (Uconst_int n) ->
          if n <> 0 then
            substitute loc st sb rn u2
          else
            substitute loc st sb rn u3
      | Uprim(P.Pmakeblock _, _, _) ->
          substitute loc st sb rn u2
      | su1 ->
          Uifthenelse(su1, substitute loc st sb rn u2,
                           substitute loc st sb rn u3)
      end
  | Usequence(u1, u2) ->
      Usequence(substitute loc st sb rn u1, substitute loc st sb rn u2)
  | Uwhile(u1, u2) ->
      Uwhile(substitute loc st sb rn u1, substitute loc st sb rn u2)
  | Ufor(id, u1, u2, dir, u3) ->
      let id' = VP.rename id in
      Ufor(id', substitute loc st sb rn u1, substitute loc st sb rn u2, dir,
           substitute loc st
           (V.Map.add (VP.var id) (Uvar (VP.var id')) sb) rn u3)
  | Uassign(id, u) ->
      let id' =
        try
          match V.Map.find id sb with Uvar i -> i | _ -> assert false
        with Not_found ->
          id in
      Uassign(id', substitute loc st sb rn u)
  | Usend(k, u1, u2, ul, dbg) ->
      let dbg = subst_debuginfo loc dbg in
      Usend(k, substitute loc st sb rn u1, substitute loc st sb rn u2,
            List.map (substitute loc st sb rn) ul, dbg)
  | Uunreachable ->
      Uunreachable

type env = {
  backend : (module Backend_intf.S);
  cenv : ulambda V.Map.t;
  fenv : value_approximation V.Map.t;
  mutable_vars : V.Set.t;
}

(* Perform an inline expansion:

   If [f p = body], substitute [f a] by [let p = a in body].

   Under certain conditions, further simplifications are possible (we use the
   terminology of [Semantics_of_primitives], applied to terms of the Clambda
   language):

   - [f a] is equivalent to [body[a/p]] if [a] has no effects and no coeffects.
     However, we only want to do this rewriting if [body[a/p]] does not increase
     the size of [body]. Since this is hard to decide in general, as an
     approximation, only consider the case when [a] is an immutable variable or
     a constant.

   - [f a] is equivalent to [body] if [p] does not occur in [body] and [a] has
     only generative effects.

   - In general [f a] is equivalent to [a; body] if [p] does not occur in
     [body].
*)

(* Approximates "no effects and no coeffects" *)
let is_substituable ~mutable_vars = function
  | Uvar v -> not (V.Set.mem v mutable_vars)
  | Uconst _ -> true
  | _ -> false

(* Approximates "only generative effects" *)
let is_erasable = function
  | Uclosure _ -> true
  | u -> is_pure u

let bind_params { backend; mutable_vars; _ } loc fpc params args body =
  let rec aux subst pl al body =
    match (pl, al) with
      ([], []) -> substitute (Debuginfo.from_location loc) (backend, fpc)
                    subst (Some Int.Map.empty) body
    | (p1 :: pl, a1 :: al) ->
        if is_substituable ~mutable_vars a1 then
          aux (V.Map.add (VP.var p1) a1 subst) pl al body
        else begin
          let p1' = VP.rename p1 in
          let u1, u2 =
            match VP.name p1, a1 with
            | "*opt*", Uprim(P.Pmakeblock(0, Immutable, kind), [a], dbg) ->
                a, Uprim(P.Pmakeblock(0, Immutable, kind),
                         [Uvar (VP.var p1')], dbg)
            | _ ->
                a1, Uvar (VP.var p1')
          in
          let body' = aux (V.Map.add (VP.var p1) u2 subst) pl al body in
          if occurs_var (VP.var p1) body then
            Ulet(Immutable, Pgenval, p1', u1, body')
          else if is_erasable a1 then body'
          else Usequence(a1, body')
        end
    | (_, _) -> assert false
  in
  (* Reverse parameters and arguments to preserve right-to-left
     evaluation order (PR#2910). *)
  aux V.Map.empty (List.rev params) (List.rev args) body

(* Check if a lambda term is ``pure'',
   that is without side-effects *and* not containing function definitions *)

let warning_if_forced_inline ~loc ~attribute warning =
  if attribute = Always_inline then
    Location.prerr_warning (Debuginfo.Scoped_location.to_location loc)
      (Warnings.Inlining_impossible warning)

(* Generate a direct application *)

let direct_apply env fundesc ufunct uargs ~loc ~attribute =
  let app_args =
    if fundesc.fun_closed then uargs else uargs @ [ufunct] in
  let app =
    match fundesc.fun_inline, attribute with
    | _, Never_inline | None, _ ->
      let dbg = Debuginfo.from_location loc in
        warning_if_forced_inline ~loc ~attribute
          "Function information unavailable";
        Udirect_apply(fundesc.fun_label, app_args, dbg)
    | Some(params, body), _  ->
        bind_params env loc fundesc.fun_float_const_prop params app_args
          body
  in
  (* If ufunct can contain side-effects or function definitions,
     we must make sure that it is evaluated exactly once.
     If the function is not closed, we evaluate ufunct as part of the
     arguments.
     If the function is closed, we force the evaluation of ufunct first. *)
  if not fundesc.fun_closed || is_pure ufunct
  then app
  else Usequence(ufunct, app)

(* Add [Value_integer] info to the approximation of an application *)

let strengthen_approx appl approx =
  match approx_ulam appl with
    (Value_const _) as intapprox ->
      intapprox
  | _ -> approx

(* If a term has approximation Value_integer and is pure,
   replace it by an integer constant *)

let check_constant_result ulam approx =
  match approx with
    Value_const c when is_pure ulam -> make_const c
  | Value_global_field (id, i) when is_pure ulam ->
      begin match ulam with
      | Uprim(P.Pfield _, [Uprim(P.Pread_symbol _, _, _)], _) -> (ulam, approx)
      | _ ->
          let glb =
            Uprim(P.Pread_symbol id, [], Debuginfo.none)
          in
          Uprim(P.Pfield i, [glb], Debuginfo.none), approx
      end
  | _ -> (ulam, approx)

(* Evaluate an expression with known value for its side effects only,
   or discard it if it's pure *)

let sequence_constant_expr ulam1 (ulam2, approx2 as res2) =
  if is_pure ulam1 then res2 else (Usequence(ulam1, ulam2), approx2)

(* Maintain the approximation of the global structure being defined *)

let global_approx = ref([||] : value_approximation array)

(* Maintain the nesting depth for functions *)

let function_nesting_depth = ref 0
let excessive_function_nesting_depth = 5

(* Uncurry an expression and explicitate closures.
   Also return the approximation of the expression.
   The approximation environment [fenv] maps idents to approximations.
   Idents not bound in [fenv] approximate to [Value_unknown].
   The closure environment [cenv] maps idents to [ulambda] terms.
   It is used to substitute environment accesses for free identifiers. *)

exception NotClosed

let close_approx_var { fenv; cenv } id =
  let approx = try V.Map.find id fenv with Not_found -> Value_unknown in
  match approx with
    Value_const c -> make_const c
  | approx ->
      let subst = try V.Map.find id cenv with Not_found -> Uvar id in
      (subst, approx)

let close_var env id =
  let (ulam, _app) = close_approx_var env id in ulam

let rec close ({ backend; fenv; cenv ; mutable_vars } as env) lam =
  let module B = (val backend : Backend_intf.S) in
  match lam with
  | Lvar id ->
      close_approx_var env id
  | Lconst cst ->
      let str ?(shared = true) cst =
        let name =
          Compilenv.new_structured_constant cst ~shared
        in
        Uconst_ref (name, Some cst)
      in
      let rec transl = function
        | Const_base(Const_int n) -> Uconst_int n
        | Const_base(Const_char c) -> Uconst_int (Char.code c)
        | Const_block (tag, fields) ->
            str (Uconst_block (tag, List.map transl fields))
        | Const_float_array sl ->
            (* constant float arrays are really immutable *)
            str (Uconst_float_array (List.map float_of_string sl))
        | Const_immstring s ->
            str (Uconst_string s)
        | Const_base (Const_string (s, _, _)) ->
              (* Strings (even literal ones) must be assumed to be mutable...
                 except when OCaml has been configured with
                 -safe-string.  Passing -safe-string at compilation
                 time is not enough, since the unit could be linked
                 with another one compiled without -safe-string, and
                 that one could modify our string literal.  *)
            str ~shared:Config.safe_string (Uconst_string s)
        | Const_base(Const_float x) -> str (Uconst_float (float_of_string x))
        | Const_base(Const_int32 x) -> str (Uconst_int32 x)
        | Const_base(Const_int64 x) -> str (Uconst_int64 x)
        | Const_base(Const_nativeint x) -> str (Uconst_nativeint x)
      in
      make_const (transl cst)
  | Lfunction _ as funct ->
      close_one_function env (Ident.create_local "fun") funct

    (* We convert [f a] to [let a' = a in let f' = f in fun b c -> f' a' b c]
       when fun_arity > nargs *)
  | Lapply{ap_func = funct; ap_args = args; ap_loc = loc;
        ap_inlined = attribute} ->
      let nargs = List.length args in
      begin match (close env funct, close_list env args) with
        ((ufunct, Value_closure(fundesc, approx_res)),
         [Uprim(P.Pmakeblock _, uargs, _)])
        when List.length uargs = - fundesc.fun_arity ->
          let app =
            direct_apply env ~loc ~attribute fundesc ufunct uargs in
          (app, strengthen_approx app approx_res)
      | ((ufunct, Value_closure(fundesc, approx_res)), uargs)
        when nargs = fundesc.fun_arity ->
          let app =
            direct_apply env ~loc ~attribute fundesc ufunct uargs in
          (app, strengthen_approx app approx_res)

      | ((ufunct, (Value_closure(fundesc, _) as fapprox)), uargs)
          when nargs < fundesc.fun_arity ->
        let first_args = List.map (fun arg ->
          (V.create_local "arg", arg) ) uargs in
        let final_args =
          Array.to_list (Array.init (fundesc.fun_arity - nargs)
                                    (fun _ -> V.create_local "arg")) in
        let rec iter args body =
          match args with
              [] -> body
            | (arg1, arg2) :: args ->
              iter args
                (Ulet (Immutable, Pgenval, VP.create arg1, arg2, body))
        in
        let internal_args =
          (List.map (fun (arg1, _arg2) -> Lvar arg1) first_args)
          @ (List.map (fun arg -> Lvar arg ) final_args)
        in
        let funct_var = V.create_local "funct" in
        let fenv = V.Map.add funct_var fapprox fenv in
        let (new_fun, approx) = close { backend; fenv; cenv; mutable_vars }
          (Lfunction{
               kind = Curried;
               return = Pgenval;
               params = List.map (fun v -> v, Pgenval) final_args;
               body = Lapply{
                 ap_loc=loc;
                 ap_func=(Lvar funct_var);
                 ap_args=internal_args;
                 ap_tailcall=Default_tailcall;
                 ap_inlined=Default_inline;
                 ap_specialised=Default_specialise;
               };
               loc;
               attr = default_function_attribute})
        in
        let new_fun =
          iter first_args
            (Ulet (Immutable, Pgenval, VP.create funct_var, ufunct, new_fun))
        in
        warning_if_forced_inline ~loc ~attribute "Partial application";
        (new_fun, approx)

      | ((ufunct, Value_closure(fundesc, _approx_res)), uargs)
        when fundesc.fun_arity > 0 && nargs > fundesc.fun_arity ->
          let args = List.map (fun arg -> V.create_local "arg", arg) uargs in
          let (first_args, rem_args) = split_list fundesc.fun_arity args in
          let first_args = List.map (fun (id, _) -> Uvar id) first_args in
          let rem_args = List.map (fun (id, _) -> Uvar id) rem_args in
          let dbg = Debuginfo.from_location loc in
          warning_if_forced_inline ~loc ~attribute "Over-application";
          let body =
            Ugeneric_apply(direct_apply env ~loc ~attribute
                              fundesc ufunct first_args,
                           rem_args, dbg)
          in
          let result =
            List.fold_left (fun body (id, defining_expr) ->
                Ulet (Immutable, Pgenval, VP.create id, defining_expr, body))
              body
              args
          in
          result, Value_unknown
      | ((ufunct, _), uargs) ->
          let dbg = Debuginfo.from_location loc in
          warning_if_forced_inline ~loc ~attribute "Unknown function";
          (Ugeneric_apply(ufunct, uargs, dbg), Value_unknown)
      end
  | Lsend(kind, met, obj, args, loc) ->
      let (umet, _) = close env met in
      let (uobj, _) = close env obj in
      let dbg = Debuginfo.from_location loc in
      (Usend(kind, umet, uobj, close_list env args, dbg),
       Value_unknown)
  | Llet(str, kind, id, lam, body) ->
      let (ulam, alam) = close_named env id lam in
      begin match (str, alam) with
        (Variable, _) ->
          let env = {env with mutable_vars = V.Set.add id env.mutable_vars} in
          let (ubody, abody) = close env body in
          (Ulet(Mutable, kind, VP.create id, ulam, ubody), abody)
      | (_, Value_const _)
        when str = Alias || is_pure ulam ->
          close { backend; fenv = (V.Map.add id alam fenv); cenv; mutable_vars }
            body
      | (_, _) ->
          let (ubody, abody) =
            close
              { backend; fenv = (V.Map.add id alam fenv); cenv; mutable_vars }
              body
          in
          (Ulet(Immutable, kind, VP.create id, ulam, ubody), abody)
      end
  | Lletrec(defs, body) ->
      if List.for_all
           (function (_id, Lfunction _) -> true | _ -> false)
           defs
      then begin
        (* Simple case: only function definitions *)
        let (clos, infos) = close_functions env defs in
        let clos_ident = V.create_local "clos" in
        let fenv_body =
          List.fold_right
            (fun (id, _pos, approx) fenv -> V.Map.add id approx fenv)
            infos fenv in
        let (ubody, approx) =
          close { backend; fenv = fenv_body; cenv; mutable_vars } body in
        let sb =
          List.fold_right
            (fun (id, pos, _approx) sb ->
              V.Map.add id (Uoffset(Uvar clos_ident, pos)) sb)
            infos V.Map.empty in
        (Ulet(Immutable, Pgenval, VP.create clos_ident, clos,
              substitute Debuginfo.none (backend, !Clflags.float_const_prop) sb
                None ubody),
         approx)
      end else begin
        (* General case: recursive definition of values *)
        let rec clos_defs = function
          [] -> ([], fenv)
        | (id, lam) :: rem ->
            let (udefs, fenv_body) = clos_defs rem in
            let (ulam, approx) = close_named env id lam in
            ((VP.create id, ulam) :: udefs, V.Map.add id approx fenv_body) in
        let (udefs, fenv_body) = clos_defs defs in
        let (ubody, approx) =
          close { backend; fenv = fenv_body; cenv; mutable_vars } body in
        (Uletrec(udefs, ubody), approx)
      end
  (* Compile-time constants *)
  | Lprim(Pctconst c, [arg], _loc) ->
      let cst, approx =
        match c with
        | Big_endian -> make_const_bool B.big_endian
        | Word_size -> make_const_int (8*B.size_int)
        | Int_size -> make_const_int (8*B.size_int - 1)
        | Max_wosize -> make_const_int ((1 lsl ((8*B.size_int) - 10)) - 1 )
        | Ostype_unix -> make_const_bool (Sys.os_type = "Unix")
        | Ostype_win32 -> make_const_bool (Sys.os_type = "Win32")
        | Ostype_cygwin -> make_const_bool (Sys.os_type = "Cygwin")
        | Backend_type ->
            make_const_int 0 (* tag 0 is the same as Native here *)
      in
      let arg, _approx = close env arg in
      let id = Ident.create_local "dummy" in
      Ulet(Immutable, Pgenval, VP.create id, arg, cst), approx
  | Lprim(Pignore, [arg], _loc) ->
      let expr, approx = make_const_int 0 in
      Usequence(fst (close env arg), expr), approx
  | Lprim((Pidentity | Pbytes_to_string | Pbytes_of_string), [arg], _loc) ->
      close env arg
  | Lprim(Pdirapply,[funct;arg], loc)
  | Lprim(Prevapply,[arg;funct], loc) ->
      close env
        (Lapply{
           ap_loc=loc;
           ap_func=funct;
           ap_args=[arg];
           ap_tailcall=Default_tailcall;
           ap_inlined=Default_inline;
           ap_specialised=Default_specialise;
         })
  | Lprim(Pgetglobal id, [], loc) ->
      let dbg = Debuginfo.from_location loc in
      check_constant_result (getglobal dbg id)
                            (Compilenv.global_approx id)
  | Lprim(Pfield n, [lam], loc) ->
      let (ulam, approx) = close env lam in
      let dbg = Debuginfo.from_location loc in
      check_constant_result (Uprim(P.Pfield n, [ulam], dbg))
                            (field_approx n approx)
  | Lprim(Psetfield(n, is_ptr, init), [Lprim(Pgetglobal id, [], _); lam], loc)->
      let (ulam, approx) = close env lam in
      if approx <> Value_unknown then
        (!global_approx).(n) <- approx;
      let dbg = Debuginfo.from_location loc in
      (Uprim(P.Psetfield(n, is_ptr, init), [getglobal dbg id; ulam], dbg),
       Value_unknown)
  | Lprim(Praise k, [arg], loc) ->
      let (ulam, _approx) = close env arg in
      let dbg = Debuginfo.from_location loc in
      (Uprim(P.Praise k, [ulam], dbg),
       Value_unknown)
  | Lprim (Pmakearray _, [], _loc) -> make_const_ref (Uconst_block (0, []))
  | Lprim(p, args, loc) ->
      let p = Convert_primitives.convert p in
      let dbg = Debuginfo.from_location loc in
      simplif_prim ~backend !Clflags.float_const_prop
                   p (close_list_approx env args) dbg
  | Lswitch(arg, sw, dbg) ->
      let fn fail =
        let (uarg, _) = close env arg in
        let const_index, const_actions, fconst =
          close_switch env sw.sw_consts sw.sw_numconsts fail
        and block_index, block_actions, fblock =
          close_switch env sw.sw_blocks sw.sw_numblocks fail in
        let ulam =
          Uswitch
            (uarg,
             {us_index_consts = const_index;
              us_actions_consts = const_actions;
              us_index_blocks = block_index;
              us_actions_blocks = block_actions},
             Debuginfo.from_location dbg)
        in
        (fconst (fblock ulam),Value_unknown) in
(* NB: failaction might get copied, thus it should be some Lstaticraise *)
      let fail = sw.sw_failaction in
      begin match fail with
      | None|Some (Lstaticraise (_,_)) -> fn fail
      | Some lamfail ->
          if
            (sw.sw_numconsts - List.length sw.sw_consts) +
            (sw.sw_numblocks - List.length sw.sw_blocks) > 1
          then
            let i = next_raise_count () in
            let ubody,_ = fn (Some (Lstaticraise (i,[])))
            and uhandler,_ = close env lamfail in
            Ucatch (i,[],ubody,uhandler),Value_unknown
          else fn fail
      end
  | Lstringswitch(arg,sw,d,_) ->
      let uarg,_ = close env arg in
      let usw =
        List.map
          (fun (s,act) ->
            let uact,_ = close env act in
            s,uact)
          sw in
      let ud =
        Option.map
          (fun d ->
            let ud,_ = close env d in
            ud) d in
      Ustringswitch (uarg,usw,ud),Value_unknown
  | Lstaticraise (i, args) ->
      (Ustaticfail (i, close_list env args), Value_unknown)
  | Lstaticcatch(body, (i, vars), handler) ->
      let (ubody, _) = close env body in
      let (uhandler, _) = close env handler in
      let vars = List.map (fun (var, k) -> VP.create var, k) vars in
      (Ucatch(i, vars, ubody, uhandler), Value_unknown)
  | Ltrywith(body, id, handler) ->
      let (ubody, _) = close env body in
      let (uhandler, _) = close env handler in
      (Utrywith(ubody, VP.create id, uhandler), Value_unknown)
  | Lifthenelse(arg, ifso, ifnot) ->
      begin match close env arg with
        (uarg, Value_const (Uconst_int n)) ->
          sequence_constant_expr uarg
            (close env (if n = 0 then ifnot else ifso))
      | (uarg, _ ) ->
          let (uifso, _) = close env ifso in
          let (uifnot, _) = close env ifnot in
          (Uifthenelse(uarg, uifso, uifnot), Value_unknown)
      end
  | Lsequence(lam1, lam2) ->
      let (ulam1, _) = close env lam1 in
      let (ulam2, approx) = close env lam2 in
      (Usequence(ulam1, ulam2), approx)
  | Lwhile(cond, body) ->
      let (ucond, _) = close env cond in
      let (ubody, _) = close env body in
      (Uwhile(ucond, ubody), Value_unknown)
  | Lfor(id, lo, hi, dir, body) ->
      let (ulo, _) = close env lo in
      let (uhi, _) = close env hi in
      let (ubody, _) = close env body in
      (Ufor(VP.create id, ulo, uhi, dir, ubody), Value_unknown)
  | Lassign(id, lam) ->
      let (ulam, _) = close env lam in
      (Uassign(id, ulam), Value_unknown)
  | Levent(lam, _) ->
      close env lam
  | Lifused _ ->
      assert false

and close_list env = function
    [] -> []
  | lam :: rem ->
      let (ulam, _) = close env lam in
      ulam :: close_list env rem

and close_list_approx env = function
    [] -> ([], [])
  | lam :: rem ->
      let (ulam, approx) = close env lam in
      let (ulams, approxs) = close_list_approx env rem in
      (ulam :: ulams, approx :: approxs)

and close_named env id = function
    Lfunction _ as funct ->
      close_one_function env id funct
  | lam ->
      close env lam

(* Build a shared closure for a set of mutually recursive functions *)

and close_functions { backend; fenv; cenv; mutable_vars } fun_defs =
  let fun_defs =
    List.flatten
      (List.map
         (function
           | (id, Lfunction{kind; params; return; body; attr; loc}) ->
               Simplif.split_default_wrapper ~id ~kind ~params
                 ~body ~attr ~loc ~return
           | _ -> assert false
         )
         fun_defs)
  in
  let inline_attribute = match fun_defs with
    | [_, Lfunction{attr = { inline; }}] -> inline
    | _ -> Default_inline (* recursive functions can't be inlined *)
  in
  (* Update and check nesting depth *)
  incr function_nesting_depth;
  let initially_closed =
    !function_nesting_depth < excessive_function_nesting_depth in
  (* Determine the free variables of the functions *)
  let fv =
    V.Set.elements (free_variables (Lletrec(fun_defs, lambda_unit))) in
  (* Build the function descriptors for the functions.
     Initially all functions are assumed not to need their environment
     parameter. *)
  let uncurried_defs =
    List.map
      (function
          (id, Lfunction{kind; params; return; body; loc}) ->
            let label = Compilenv.make_symbol (Some (V.unique_name id)) in
            let arity = List.length params in
            let fundesc =
              {fun_label = label;
               fun_arity = (if kind = Tupled then -arity else arity);
               fun_closed = initially_closed;
               fun_inline = None;
               fun_float_const_prop = !Clflags.float_const_prop } in
            let dbg = Debuginfo.from_location loc in
            (id, params, return, body, fundesc, dbg)
        | (_, _) -> fatal_error "Closure.close_functions")
      fun_defs in
  (* Build an approximate fenv for compiling the functions *)
  let fenv_rec =
    List.fold_right
      (fun (id, _params, _return, _body, fundesc, _dbg) fenv ->
        V.Map.add id (Value_closure(fundesc, Value_unknown)) fenv)
      uncurried_defs fenv in
  (* Determine the offsets of each function's closure in the shared block *)
  let env_pos = ref (-1) in
  let clos_offsets =
    List.map
      (fun (_id, _params, _return, _body, fundesc, _dbg) ->
        let pos = !env_pos + 1 in
        env_pos := !env_pos + 1 + (if fundesc.fun_arity <> 1 then 3 else 2);
        pos)
      uncurried_defs in
  let fv_pos = !env_pos in
  (* This reference will be set to false if the hypothesis that a function
     does not use its environment parameter is invalidated. *)
  let useless_env = ref initially_closed in
  (* Translate each function definition *)
  let clos_fundef (id, params, return, body, fundesc, dbg) env_pos =
    let env_param = V.create_local "env" in
    let cenv_fv =
      build_closure_env env_param (fv_pos - env_pos) fv in
    let cenv_body =
      List.fold_right2
        (fun (id, _params, _return, _body, _fundesc, _dbg) pos env ->
          V.Map.add id (Uoffset(Uvar env_param, pos - env_pos)) env)
        uncurried_defs clos_offsets cenv_fv in
    let (ubody, approx) =
      close { backend; fenv = fenv_rec; cenv = cenv_body; mutable_vars } body
    in
    if !useless_env && occurs_var env_param ubody then raise NotClosed;
    let fun_params =
      if !useless_env
      then params
      else params @ [env_param, Pgenval]
    in
    let f =
      {
        label  = fundesc.fun_label;
        arity  = fundesc.fun_arity;
        params = List.map (fun (var, kind) -> VP.create var, kind) fun_params;
        return;
        body   = ubody;
        dbg;
        env = Some env_param;
      }
    in
    (* give more chance of function with default parameters (i.e.
       their wrapper functions) to be inlined *)
    let n =
      List.fold_left
        (fun n (id, _) -> n + if V.name id = "*opt*" then 8 else 1)
        0
        fun_params
    in
    let threshold =
      match inline_attribute with
      | Default_inline ->
          let inline_threshold =
            Clflags.Float_arg_helper.get ~key:0 !Clflags.inline_threshold
          in
          let magic_scale_constant = 8. in
          int_of_float (inline_threshold *. magic_scale_constant) + n
      | Always_inline | Hint_inline -> max_int
      | Never_inline -> min_int
      | Unroll _ -> assert false
    in
    let fun_params = List.map (fun (var, _) -> VP.create var) fun_params in
    if lambda_smaller ubody threshold
    then fundesc.fun_inline <- Some(fun_params, ubody);

    (f, (id, env_pos, Value_closure(fundesc, approx))) in
  (* Translate all function definitions. *)
  let clos_info_list =
    if initially_closed then begin
      let snap = Compilenv.snapshot () in
      try List.map2 clos_fundef uncurried_defs clos_offsets
      with NotClosed ->
      (* If the hypothesis that the environment parameters are useless has been
         invalidated, then set [fun_closed] to false in all descriptions and
         recompile *)
        Compilenv.backtrack snap; (* PR#6337 *)
        List.iter
          (fun (_id, _params, _return, _body, fundesc, _dbg) ->
             fundesc.fun_closed <- false;
             fundesc.fun_inline <- None;
          )
          uncurried_defs;
        useless_env := false;
        List.map2 clos_fundef uncurried_defs clos_offsets
    end else
      (* Excessive closure nesting: assume environment parameter is used *)
        List.map2 clos_fundef uncurried_defs clos_offsets
    in
  (* Update nesting depth *)
  decr function_nesting_depth;
  (* Return the Uclosure node and the list of all identifiers defined,
     with offsets and approximations. *)
  let (clos, infos) = List.split clos_info_list in
  let fv = if !useless_env then [] else fv in
  (Uclosure(clos,
            List.map (close_var { backend; fenv; cenv; mutable_vars }) fv),
   infos)

(* Same, for one non-recursive function *)

and close_one_function env id funct =
  match close_functions env [id, funct] with
  | (clos, (i, _, approx) :: _) when id = i -> (clos, approx)
  | _ -> fatal_error "Closure.close_one_function"

(* Close a switch *)

and close_switch env cases num_keys default =
  let ncases = List.length cases in
  let index = Array.make num_keys 0
  and store = Storer.mk_store () in

  (* First default case *)
  begin match default with
  | Some def when ncases < num_keys ->
      assert (store.act_store () def = 0)
  | _ -> ()
  end ;
  (* Then all other cases *)
  List.iter
    (fun (key,lam) ->
     index.(key) <- store.act_store () lam)
    cases ;

  (*  Explicit sharing with catch/exit, as switcher compilation may
      later unshare *)
  let acts = store.act_get_shared () in
  let hs = ref (fun e -> e) in

  (* Compile actions *)
  let actions =
    Array.map
      (function
        | Single lam|Shared (Lstaticraise (_,[]) as lam) ->
            let ulam,_ = close env lam in
            ulam
        | Shared lam ->
            let ulam,_ = close env lam in
            let i = next_raise_count () in
(*
            let string_of_lambda e =
              Printlambda.lambda Format.str_formatter e ;
              Format.flush_str_formatter () in
            Printf.eprintf "SHARE CLOSURE %i [%s]\n%s\n" i
                (string_of_lambda arg)
                (string_of_lambda lam) ;
*)
            let ohs = !hs in
            hs := (fun e -> Ucatch (i,[],ohs e,ulam)) ;
            Ustaticfail (i,[]))
      acts in
  match actions with
  | [| |] -> [| |], [| |], !hs (* May happen when default is None *)
  | _     -> index, actions, !hs


(* Collect exported symbols for structured constants *)

let collect_exported_structured_constants a =
  let rec approx = function
    | Value_closure (fd, a) ->
        approx a;
        begin match fd.fun_inline with
        | Some (_, u) -> ulam u
        | None -> ()
        end
    | Value_tuple a -> Array.iter approx a
    | Value_const c -> const c
    | Value_unknown | Value_global_field _ -> ()
  and const = function
    | Uconst_ref (s, (Some c)) ->
        Compilenv.add_exported_constant s;
        structured_constant c
    | Uconst_ref (_s, None) -> assert false (* Cannot be generated *)
    | Uconst_int _ -> ()
  and structured_constant = function
    | Uconst_block (_, ul) -> List.iter const ul
    | Uconst_float _ | Uconst_int32 _
    | Uconst_int64 _ | Uconst_nativeint _
    | Uconst_float_array _ | Uconst_string _ -> ()
    | Uconst_closure _ -> assert false (* Cannot be generated *)
  and ulam = function
    | Uvar _ -> ()
    | Uconst c -> const c
    | Udirect_apply (_, ul, _) -> List.iter ulam ul
    | Ugeneric_apply (u, ul, _) -> ulam u; List.iter ulam ul
    | Uclosure (fl, ul) ->
        List.iter (fun f -> ulam f.body) fl;
        List.iter ulam ul
    | Uoffset(u, _) -> ulam u
    | Ulet (_str, _kind, _, u1, u2) -> ulam u1; ulam u2
    | Uphantom_let _ -> no_phantom_lets ()
    | Uletrec (l, u) -> List.iter (fun (_, u) -> ulam u) l; ulam u
    | Uprim (_, ul, _) -> List.iter ulam ul
    | Uswitch (u, sl, _dbg) ->
        ulam u;
        Array.iter ulam sl.us_actions_consts;
        Array.iter ulam sl.us_actions_blocks
    | Ustringswitch (u,sw,d) ->
        ulam u ;
        List.iter (fun (_,act) -> ulam act) sw ;
        Option.iter ulam d
    | Ustaticfail (_, ul) -> List.iter ulam ul
    | Ucatch (_, _, u1, u2)
    | Utrywith (u1, _, u2)
    | Usequence (u1, u2)
    | Uwhile (u1, u2)  -> ulam u1; ulam u2
    | Uifthenelse (u1, u2, u3)
    | Ufor (_, u1, u2, _, u3) -> ulam u1; ulam u2; ulam u3
    | Uassign (_, u) -> ulam u
    | Usend (_, u1, u2, ul, _) -> ulam u1; ulam u2; List.iter ulam ul
    | Uunreachable -> ()
  in
  approx a

let reset () =
  global_approx := [||];
  function_nesting_depth := 0

(* The entry point *)

let intro ~backend ~size lam =
  reset ();
  let id = Compilenv.make_symbol None in
  global_approx := Array.init size (fun i -> Value_global_field (id, i));
  Compilenv.set_global_approx(Value_tuple !global_approx);
  let (ulam, _approx) =
    close { backend; fenv = V.Map.empty;
            cenv = V.Map.empty; mutable_vars = V.Set.empty } lam
  in
  let opaque =
    !Clflags.opaque
    || Env.is_imported_opaque (Compilenv.current_unit_name ())
  in
  if opaque
  then Compilenv.set_global_approx(Value_unknown)
  else collect_exported_structured_constants (Value_tuple !global_approx);
  global_approx := [||];
  ulam