summaryrefslogtreecommitdiff
path: root/runtime/domain.c
blob: 88d7c1469cad0e1be676c08518e424aceb420d81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
/**************************************************************************/
/*                                                                        */
/*                                 OCaml                                  */
/*                                                                        */
/*      KC Sivaramakrishnan, Indian Institute of Technology, Madras       */
/*                 Stephen Dolan, University of Cambridge                 */
/*                   Tom Kelly, OCaml Labs Consultancy                    */
/*                                                                        */
/*   Copyright 2021 OCaml Labs Consultancy Ltd                            */
/*   Copyright 2019 Indian Institute of Technology, Madras                */
/*   Copyright 2019 University of Cambridge                               */
/*                                                                        */
/*   All rights reserved.  This file is distributed under the terms of    */
/*   the GNU Lesser General Public License version 2.1, with the          */
/*   special exception on linking described in the file LICENSE.          */
/*                                                                        */
/**************************************************************************/

#define CAML_INTERNALS

#define _GNU_SOURCE  /* For sched.h CPU_ZERO(3) and CPU_COUNT(3) */
#include "caml/config.h"
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <string.h>
#ifdef HAS_GNU_GETAFFINITY_NP
#include <sched.h>
#ifdef HAS_PTHREAD_NP_H
#include <pthread_np.h>
#endif
#endif
#ifdef HAS_BSD_GETAFFINITY_NP
#include <pthread_np.h>
#include <sys/cpuset.h>
typedef cpuset_t cpu_set_t;
#endif
#ifdef _WIN32
#include <sysinfoapi.h>
#endif
#include "caml/alloc.h"
#include "caml/backtrace.h"
#include "caml/backtrace_prim.h"
#include "caml/callback.h"
#include "caml/debugger.h"
#include "caml/domain.h"
#include "caml/domain_state.h"
#include "caml/runtime_events.h"
#include "caml/fail.h"
#include "caml/fiber.h"
#include "caml/finalise.h"
#include "caml/gc_ctrl.h"
#include "caml/globroots.h"
#include "caml/intext.h"
#include "caml/major_gc.h"
#include "caml/minor_gc.h"
#include "caml/misc.h"
#include "caml/memory.h"
#include "caml/osdeps.h"
#include "caml/platform.h"
#include "caml/shared_heap.h"
#include "caml/signals.h"
#include "caml/startup.h"
#include "caml/sync.h"
#include "caml/weak.h"

/* The runtime can run stop-the-world (STW) sections, during which all
   active domains run the same callback in parallel (with a barrier
   mechanism to synchronize within the callback).

   Stop-the-world sections are used to handle duties such as:
    - minor GC
    - major GC phase changes

   Code within the STW callback can have the guarantee that no mutator
   code runs in parallel -- precisely, the guarantee holds only for
   code that is followed by a barrier. Furthermore, new domains being
   spawned are blocked from running any mutator code while a STW
   section is in progress, and terminating domains cannot stop until
   they have participated to all STW sections currently in progress.

   To provide these guarantees:
    - Domains must register as STW participants before running any
      mutator code.
    - STW sections must not trigger other callbacks into mutator code
      (eg. finalisers or signal handlers).

   See the comments on [caml_try_run_on_all_domains_with_spin_work]
   below for more details on the synchronization mechanisms involved.
*/

/* For timely handling of STW requests, domains registered as STW
   participants must be careful to service STW interrupt requests. The
   compiler inserts "poll points" in mutator code, and the runtime
   uses a "backup thread" mechanism during blocking sections.

   When the main C-stack for a domain enters a blocking call,
   a 'backup thread' becomes responsible for servicing the STW
   sections on behalf of the domain. Care is needed to hand off duties
   for servicing STW sections between the main pthread and the backup
   pthread when caml_enter_blocking_section and
   caml_leave_blocking_section are called.

   When the state for the backup thread is BT_IN_BLOCKING_SECTION
   the backup thread will service the STW section.

   The state machine for the backup thread (and its transitions)
   are:

           BT_INIT  <---------------------------------------+
              |                                             |
   (install_backup_thread)                                  |
       [main pthread]                                       |
              |                                             |
              v                                             |
       BT_ENTERING_OCAML  <-----------------+               |
              |                             |               |
(caml_enter_blocking_section)               |               |
       [main pthread]                       |               |
              |                             |               |
              |                             |               |
              |               (caml_leave_blocking_section) |
              |                      [main pthread]         |
              v                             |               |
    BT_IN_BLOCKING_SECTION  ----------------+               |
              |                                             |
     (domain_terminate)                                     |
       [main pthread]                                       |
              |                                             |
              v                                             |
        BT_TERMINATE                               (backup_thread_func)
              |                                      [backup pthread]
              |                                             |
              +---------------------------------------------+

 */
#define BT_IN_BLOCKING_SECTION 0
#define BT_ENTERING_OCAML 1
#define BT_TERMINATE 2
#define BT_INIT 3

/* control of STW interrupts */
struct interruptor {
  atomic_uintnat* interrupt_word;
  caml_plat_mutex lock;
  caml_plat_cond cond;

  int running;
  int terminating;
  /* unlike the domain ID, this ID number is not reused */
  uintnat unique_id;

  atomic_uintnat interrupt_pending;
};

struct dom_internal {
  /* readonly fields, initialised and never modified */
  int id;
  caml_domain_state* state;
  struct interruptor interruptor;

  /* backup thread */
  int backup_thread_running;
  pthread_t backup_thread;
  atomic_uintnat backup_thread_msg;
  caml_plat_mutex domain_lock;
  caml_plat_cond domain_cond;

  /* modified only during STW sections */
  uintnat minor_heap_area_start;
  uintnat minor_heap_area_end;
};
typedef struct dom_internal dom_internal;


static struct {
  atomic_uintnat domains_still_running;
  atomic_uintnat num_domains_still_processing;
  void (*callback)(caml_domain_state*,
                   void*,
                   int participating_count,
                   caml_domain_state** others_participating);
  void* data;
  void (*enter_spin_callback)(caml_domain_state*, void*);
  void* enter_spin_data;

  /* barrier state */
  int num_domains;
  atomic_uintnat barrier;

  caml_domain_state* participating[Max_domains];
} stw_request = {
  ATOMIC_UINTNAT_INIT(0),
  ATOMIC_UINTNAT_INIT(0),
  NULL,
  NULL,
  NULL,
  NULL,
  0,
  ATOMIC_UINTNAT_INIT(0),
  { 0 },
};

static caml_plat_mutex all_domains_lock = CAML_PLAT_MUTEX_INITIALIZER;
static caml_plat_cond all_domains_cond =
    CAML_PLAT_COND_INITIALIZER(&all_domains_lock);
static atomic_uintnat /* dom_internal* */ stw_leader = 0;
static struct dom_internal all_domains[Max_domains];

CAMLexport atomic_uintnat caml_num_domains_running;



/* size of the virtual memory reservation for the minor heap, per domain */
uintnat caml_minor_heap_max_wsz;
/*
  The amount of memory reserved for all minor heaps of all domains is
  Max_domains * caml_minor_heap_max_wsz. Individual domains can allocate
  smaller minor heaps, but when a domain calls Gc.set to allocate a bigger minor
  heap than this reservation, we perform a new virtual memory reservation based
  on the increased minor heap size.

  New domains are created with a minor heap of size
  caml_params->init_minor_heap_wsz.

  To perform a new virtual memory reservation for the heaps, we stop the world
  and do a minor collection on all domains.
  See [stw_resize_minor_heap_reservation].
*/

CAMLexport uintnat caml_minor_heaps_start;
CAMLexport uintnat caml_minor_heaps_end;
static __thread dom_internal* domain_self;

/*
 * This structure is protected by all_domains_lock
 * [0, participating_domains) are all the domains taking part in STW sections
 * [participating_domains, Max_domains) are all those domains free to be used
 */
static struct {
  int participating_domains;
  dom_internal* domains[Max_domains];
} stw_domains = {
  0,
  { 0 }
};

static void add_to_stw_domains(dom_internal* dom) {
  int i;
  CAMLassert(stw_domains.participating_domains < Max_domains);
  for(i=stw_domains.participating_domains; stw_domains.domains[i]!=dom; ++i) {
    CAMLassert(i<Max_domains);
  }

  /* swap passed domain with domain at stw_domains.participating_domains */
  dom = stw_domains.domains[stw_domains.participating_domains];
  stw_domains.domains[stw_domains.participating_domains] =
      stw_domains.domains[i];
  stw_domains.domains[i] = dom;
  stw_domains.participating_domains++;
}

static void remove_from_stw_domains(dom_internal* dom) {
  int i;
  for(i=0; stw_domains.domains[i]!=dom; ++i) {
    CAMLassert(i<Max_domains);
  }
  CAMLassert(i < stw_domains.participating_domains);

  /* swap passed domain to first free domain */
  stw_domains.participating_domains--;
  stw_domains.domains[i] =
      stw_domains.domains[stw_domains.participating_domains];
  stw_domains.domains[stw_domains.participating_domains] = dom;
}

static dom_internal* next_free_domain(void) {
  if (stw_domains.participating_domains == Max_domains)
    return NULL;

  CAMLassert(stw_domains.participating_domains < Max_domains);
  return stw_domains.domains[stw_domains.participating_domains];
}

CAMLexport __thread caml_domain_state* caml_state;

#ifndef HAS_FULL_THREAD_VARIABLES
/* Export a getter for caml_state, to be used in DLLs */
CAMLexport caml_domain_state* caml_get_domain_state(void)
{
  return caml_state;
}
#endif

Caml_inline void interrupt_domain(struct interruptor* s)
{
  atomic_store_rel(s->interrupt_word, (uintnat)(-1));
}

int caml_incoming_interrupts_queued(void)
{
  return atomic_load_acq(&domain_self->interruptor.interrupt_pending);
}

/* must NOT be called with s->lock held */
static void stw_handler(caml_domain_state* domain);
static uintnat handle_incoming(struct interruptor* s)
{
  uintnat handled = atomic_load_acq(&s->interrupt_pending);
  CAMLassert (s->running);
  if (handled) {
    atomic_store_rel(&s->interrupt_pending, 0);

    stw_handler(domain_self->state);
  }
  return handled;
}

static void handle_incoming_otherwise_relax (struct interruptor* self)
{
  if (!handle_incoming(self))
    cpu_relax();
}

void caml_handle_incoming_interrupts(void)
{
  handle_incoming(&domain_self->interruptor);
}

int caml_send_interrupt(struct interruptor* target)
{
  /* signal that there is an interrupt pending */
  atomic_store_rel(&target->interrupt_pending, 1);

  /* Signal the condition variable, in case the target is
     itself waiting for an interrupt to be processed elsewhere */
  caml_plat_lock(&target->lock);
  caml_plat_broadcast(&target->cond); // OPT before/after unlock? elide?
  caml_plat_unlock(&target->lock);

  interrupt_domain(target);

  return 1;
}

static void caml_wait_interrupt_serviced(struct interruptor* target)
{
  int i;

  /* Often, interrupt handlers are fast, so spin for a bit before waiting */
  for (i=0; i<1000; i++) {
    if (!atomic_load_acq(&target->interrupt_pending)) {
      return;
    }
    cpu_relax();
  }

  {
    SPIN_WAIT {
      if (!atomic_load_acq(&target->interrupt_pending))
        return;
    }
  }
}

asize_t caml_norm_minor_heap_size (intnat wsize)
{
  asize_t bs;
  if (wsize < Minor_heap_min) wsize = Minor_heap_min;
  bs = caml_mem_round_up_pages(Bsize_wsize (wsize));

  return Wsize_bsize(bs);
}

/* The current minor heap layout is as follows:

- A contiguous memory block of size
   [caml_minor_heap_max_wsz * Max_domains]
  is reserved by [caml_init_domains]. The boundaries
  of this reserved area are stored in the globals
    [caml_minor_heaps_start]
  and
    [caml_minor_heaps_end].

- Each domain gets a reserved section of this block
  of size [caml_minor_heap_max_wsz], whose boundaries are stored as
    [domain_self->minor_heap_area_start]
  and
    [domain_self->minor_heap_area_end]

  These variables accessed in [stw_resize_minor_heap_reservation],
  synchronized by a global barrier.

- Each domain then commits a segment of size
    [domain_state->minor_heap_wsz]
  starting at
    [domain_state->minor_heap_area_start]
  that it actually uses.

  This is done below in
    [caml_reallocate_minor_heap]
  which is called both at domain-initialization (by [domain_create])
  and if a request comes to change the minor heap size.

  The boundaries of this committed memory area are
     [domain_state->young_start]
   and
     [domain_state->young_end].

  Those [young_{start,end}] variables are never accessed by another
  domain, so they need no synchronization.
*/

Caml_inline void check_minor_heap(void) {
  caml_domain_state* domain_state = Caml_state;
  CAMLassert(domain_state->young_ptr == domain_state->young_end);

  caml_gc_log("young_start: %p, young_end: %p, minor_heap_area_start: %p,"
      " minor_heap_area_end: %p, minor_heap_wsz: %"
      ARCH_SIZET_PRINTF_FORMAT "u words",
      domain_state->young_start,
      domain_state->young_end,
      (value*)domain_self->minor_heap_area_start,
      (value*)domain_self->minor_heap_area_end,
      domain_state->minor_heap_wsz);
  CAMLassert(
    (/* uninitialized minor heap */
      domain_state->young_start == NULL
      && domain_state->young_end == NULL)
    ||
    (/* initialized minor heap */
      domain_state->young_start == (value*)domain_self->minor_heap_area_start
      && domain_state->young_end <= (value*)domain_self->minor_heap_area_end));
}

static void free_minor_heap(void) {
  caml_domain_state* domain_state = Caml_state;

  caml_gc_log ("trying to free old minor heap: %"
        ARCH_SIZET_PRINTF_FORMAT "uk words",
        domain_state->minor_heap_wsz / 1024);

  check_minor_heap();

  /* free old minor heap.
     instead of unmapping the heap, we decommit it, so there's
     no race whereby other code could attempt to reuse the memory. */
  caml_mem_decommit(
      (void*)domain_self->minor_heap_area_start,
      Bsize_wsize(domain_state->minor_heap_wsz));

  domain_state->young_start   = NULL;
  domain_state->young_end     = NULL;
  domain_state->young_ptr     = NULL;
  domain_state->young_trigger = NULL;
  atomic_store_rel(&domain_state->young_limit,
                   (uintnat) domain_state->young_start);
}

static int allocate_minor_heap(asize_t wsize) {
  caml_domain_state* domain_state = Caml_state;

  check_minor_heap();

  wsize = caml_norm_minor_heap_size(wsize);

  CAMLassert (wsize <= caml_minor_heap_max_wsz);

  caml_gc_log ("trying to allocate minor heap: %"
               ARCH_SIZET_PRINTF_FORMAT "uk words", wsize / 1024);

  if (!caml_mem_commit(
          (void*)domain_self->minor_heap_area_start, Bsize_wsize(wsize))) {
    return -1;
  }

#ifdef DEBUG
  {
    uintnat* p = (uintnat*)domain_self->minor_heap_area_start;
    for (;
      p < (uintnat*)(domain_self->minor_heap_area_start + Bsize_wsize(wsize));
      p++) {
      *p = Debug_free_minor;
    }
  }
#endif

  domain_state->minor_heap_wsz = wsize;

  domain_state->young_start = (value*)domain_self->minor_heap_area_start;
  domain_state->young_end =
      (value*)(domain_self->minor_heap_area_start + Bsize_wsize(wsize));
  domain_state->young_ptr = domain_state->young_end;
  /* Trigger a GC poll when half of the minor heap is filled. At that point, a
   * major slice is scheduled. */
  domain_state->young_trigger = domain_state->young_start
         + (domain_state->young_end - domain_state->young_start) / 2;
  caml_reset_young_limit(domain_state);

  check_minor_heap();
  return 0;
}

int caml_reallocate_minor_heap(asize_t wsize)
{
  free_minor_heap();
  return allocate_minor_heap(wsize);
}

/* This variable is owned by [all_domains_lock]. */
static uintnat next_domain_unique_id = 0;

/* Precondition: you must own [all_domains_lock].

   Specification:
   - returns 0 on the first call
     (we want the main domain to have unique_id 0)
   - returns distinct ids unless there is an overflow
   - never returns 0 again, even in presence of overflow.
 */
static uintnat fresh_domain_unique_id(void) {
    uintnat next = next_domain_unique_id++;

    /* On 32-bit systems, there is a risk of wraparound of the unique
       id counter. We have decided to let that happen and live with
       it, but we still ensure that id 0 is not reused, to avoid
       having new domains believe that they are the main domain. */
    if (next_domain_unique_id == 0)
      next_domain_unique_id++;

    return next;
}

/* must be run on the domain's thread */
static void domain_create(uintnat initial_minor_heap_wsize) {
  dom_internal* d = 0;
  caml_domain_state* domain_state;
  struct interruptor* s;
  uintnat stack_wsize = caml_get_init_stack_wsize();

  CAMLassert (domain_self == 0);

  /* take the all_domains_lock so that we can alter the STW participant
     set atomically */
  caml_plat_lock(&all_domains_lock);

  /* Wait until any in-progress STW sections end. */
  while (atomic_load_acq(&stw_leader)) {
    /* [caml_plat_wait] releases [all_domains_lock] until the current
       STW section ends, and then takes the lock again. */
    caml_plat_wait(&all_domains_cond);
  }

  d = next_free_domain();

  if (d == NULL)
    goto domain_init_complete;

  s = &d->interruptor;
  CAMLassert(!s->running);
  CAMLassert(!s->interrupt_pending);

  domain_self = d;

  /* If the chosen domain slot has not been previously used, allocate a fresh
     domain state. Otherwise, reuse it.

     Reusing the slot ensures that the GC stats are not lost:
     - Heap stats are moved to the free list on domain termination,
       so we don't reuse those stats (caml_init_shared_heap will reset them)
     - But currently there is no orphaning process for allocation stats,
       we just reuse the previous stats from the previous domain
       with the same index.
  */
  if (d->state == NULL) {
    /* FIXME: Never freed. Not clear when to. */
    domain_state = (caml_domain_state*)
      caml_stat_calloc_noexc(1, sizeof(caml_domain_state));
    if (domain_state == NULL)
      goto domain_init_complete;
    d->state = domain_state;
  } else {
    domain_state = d->state;
  }

  caml_state = domain_state;

  s->unique_id = fresh_domain_unique_id();
  s->interrupt_word = &domain_state->young_limit;
  s->running = 1;
  atomic_fetch_add(&caml_num_domains_running, 1);

  caml_plat_lock(&d->domain_lock);

  domain_state->id = d->id;
  domain_state->unique_id = d->interruptor.unique_id;
  CAMLassert(!d->interruptor.interrupt_pending);

  domain_state->extra_heap_resources = 0.0;
  domain_state->extra_heap_resources_minor = 0.0;

  domain_state->dependent_size = 0;
  domain_state->dependent_allocated = 0;

  /* the minor heap will be initialized by
     [caml_reallocate_minor_heap] below. */
  domain_state->young_start = NULL;
  domain_state->young_end = NULL;
  domain_state->young_ptr = NULL;
  domain_state->young_trigger = NULL;

  domain_state->minor_tables = caml_alloc_minor_tables();
  if(domain_state->minor_tables == NULL) {
    goto alloc_minor_tables_failure;
  }

  d->state->shared_heap = caml_init_shared_heap();
  if(d->state->shared_heap == NULL) {
    goto init_shared_heap_failure;
  }

  if (caml_init_major_gc(domain_state) < 0) {
    goto init_major_gc_failure;
  }

  if(caml_reallocate_minor_heap(initial_minor_heap_wsize) < 0) {
    goto reallocate_minor_heap_failure;
  }

  domain_state->dls_root = Val_unit;
  caml_register_generational_global_root(&domain_state->dls_root);

  domain_state->stack_cache = caml_alloc_stack_cache();
  if(domain_state->stack_cache == NULL) {
    goto create_stack_cache_failure;
  }

  domain_state->extern_state = NULL;

  domain_state->intern_state = NULL;

  domain_state->current_stack =
      caml_alloc_main_stack(stack_wsize);
  if(domain_state->current_stack == NULL) {
    goto alloc_main_stack_failure;
  }

  domain_state->c_stack = NULL;
  domain_state->exn_handler = NULL;

  domain_state->action_pending = 0;

  domain_state->gc_regs_buckets = NULL;
  domain_state->gc_regs = NULL;

  domain_state->allocated_words = 0;
  domain_state->swept_words = 0;

  domain_state->local_roots = NULL;

  domain_state->backtrace_buffer = NULL;
  domain_state->backtrace_last_exn = Val_unit;
  domain_state->backtrace_active = 0;
  caml_register_generational_global_root(&domain_state->backtrace_last_exn);

  domain_state->compare_unordered = 0;
  domain_state->oo_next_id_local = 0;

  domain_state->requested_major_slice = 0;
  domain_state->requested_minor_gc = 0;
  domain_state->major_slice_epoch = 0;
  domain_state->requested_external_interrupt = 0;

  domain_state->parser_trace = 0;

  if (caml_params->backtrace_enabled) {
    caml_record_backtraces(1);
  }

#ifndef NATIVE_CODE
  domain_state->external_raise = NULL;
  domain_state->trap_sp_off = 1;
  domain_state->trap_barrier_off = 0;
  domain_state->trap_barrier_block = -1;
#endif

  caml_reset_young_limit(domain_state);
  add_to_stw_domains(domain_self);
  goto domain_init_complete;

alloc_main_stack_failure:
create_stack_cache_failure:
  caml_remove_generational_global_root(&domain_state->dls_root);
reallocate_minor_heap_failure:
  caml_teardown_major_gc();
init_major_gc_failure:
  caml_teardown_shared_heap(d->state->shared_heap);
init_shared_heap_failure:
  caml_free_minor_tables(domain_state->minor_tables);
  domain_state->minor_tables = NULL;
alloc_minor_tables_failure:
  domain_self = NULL;


domain_init_complete:
  caml_gc_log("domain init complete");
  caml_plat_unlock(&all_domains_lock);
}

CAMLexport void caml_reset_domain_lock(void)
{
  dom_internal* self = domain_self;
  // This is only used to reset the domain_lock state on fork.
  caml_plat_mutex_init(&self->domain_lock);
  caml_plat_cond_init(&self->domain_cond, &self->domain_lock);

  return;
}

/* minor heap initialization and resizing */

static void reserve_minor_heaps(void) {
  void* heaps_base;
  uintnat minor_heap_reservation_bsize;
  uintnat minor_heap_max_bsz;

  CAMLassert (caml_mem_round_up_pages(Bsize_wsize(caml_minor_heap_max_wsz))
          == Bsize_wsize(caml_minor_heap_max_wsz));

  minor_heap_max_bsz = (uintnat)Bsize_wsize(caml_minor_heap_max_wsz);
  minor_heap_reservation_bsize = minor_heap_max_bsz * Max_domains;

  /* reserve memory space for minor heaps */
  heaps_base = caml_mem_map(minor_heap_reservation_bsize, caml_plat_pagesize,
                1 /* reserve_only */);
  if (heaps_base == NULL)
    caml_fatal_error("Not enough heap memory to reserve minor heaps");

  caml_minor_heaps_start = (uintnat) heaps_base;
  caml_minor_heaps_end = (uintnat) heaps_base + minor_heap_reservation_bsize;

  caml_gc_log("new minor heap reserved from %p to %p",
              (value*)caml_minor_heaps_start, (value*)caml_minor_heaps_end);

  for (int i = 0; i < Max_domains; i++) {
    struct dom_internal* dom = &all_domains[i];

    uintnat domain_minor_heap_area = caml_minor_heaps_start +
      minor_heap_max_bsz * (uintnat)i;

    dom->minor_heap_area_start = domain_minor_heap_area;
    dom->minor_heap_area_end =
         domain_minor_heap_area + minor_heap_max_bsz;

    CAMLassert(dom->minor_heap_area_end <= caml_minor_heaps_end);
  }
}

static void unreserve_minor_heaps(void) {
  uintnat size;

  caml_gc_log("unreserve_minor_heaps");

  for (int i = 0; i < Max_domains; i++) {
    struct dom_internal* dom = &all_domains[i];

    CAMLassert(
      /* this domain is not running */
      !dom->interruptor.running
      || (
        /* or its minor heap must already be uninitialized */
        dom->state != NULL
        && dom->state->young_start == NULL
        && dom->state->young_end == NULL
      ));
    /* Note: interruptor.running does not guarantee that dom->state is
       correctly initialized, but domain initialization cannot run
       concurrently with STW sections so we cannot observe partial
       initialization states. */

    /* uninitialize the minor heap area */
    dom->minor_heap_area_start = dom->minor_heap_area_end = 0;
  }

  size = caml_minor_heaps_end - caml_minor_heaps_start;
  CAMLassert (Bsize_wsize(caml_minor_heap_max_wsz) * Max_domains == size);
  caml_mem_unmap((void *) caml_minor_heaps_start, size);
}

static void stw_resize_minor_heap_reservation(caml_domain_state* domain,
                                       void* minor_wsz_data,
                                       int participating_count,
                                       caml_domain_state** participating) {
  barrier_status b;
  uintnat new_minor_wsz = (uintnat) minor_wsz_data;

  caml_gc_log("stw_resize_minor_heap_reservation: "
              "caml_empty_minor_heap_no_major_slice_from_stw");
  caml_empty_minor_heap_no_major_slice_from_stw(domain, NULL,
                                            participating_count, participating);

  caml_gc_log("stw_resize_minor_heap_reservation: free_minor_heap");
  free_minor_heap();

  b = caml_global_barrier_begin ();
  if (caml_global_barrier_is_final(b)) {
    CAML_EV_BEGIN(EV_DOMAIN_RESIZE_HEAP_RESERVATION);
    caml_gc_log("stw_resize_minor_heap_reservation: "
                "unreserve_minor_heaps");

    unreserve_minor_heaps();
    /* new_minor_wsz is page-aligned because caml_norm_minor_heap_size has
       been called to normalize it earlier.
    */
    caml_minor_heap_max_wsz = new_minor_wsz;
    caml_gc_log("stw_resize_minor_heap_reservation: reserve_minor_heaps");
    reserve_minor_heaps();
    /* The call to [reserve_minor_heaps] makes a new reservation,
       and it also updates the reservation boundaries of each domain
       by mutating its [minor_heap_area_start{,_end}] variables.

       These variables are synchronized by the fact that we are inside
       a STW section: no other domains are running in parallel, and
       the participating domains will synchronize with this write by
       exiting the barrier, before they read those variables in
       [allocate_minor_heap] below. */
    CAML_EV_END(EV_DOMAIN_RESIZE_HEAP_RESERVATION);
  }
  caml_global_barrier_end(b);

  caml_gc_log("stw_resize_minor_heap_reservation: "
              "allocate_minor_heap");
  /* Note: each domain allocates its own minor heap. This seems
     important to get good NUMA behavior. We don't want a single
     domain to allocate all minor heaps, which could create locality
     issues we don't understand very well. */
  if (allocate_minor_heap(Caml_state->minor_heap_wsz) < 0) {
    caml_fatal_error("Fatal error: No memory for minor heap");
  }
}

void caml_update_minor_heap_max(uintnat requested_wsz) {
  caml_gc_log("Changing heap_max_wsz from %" ARCH_INTNAT_PRINTF_FORMAT
              "u to %" ARCH_INTNAT_PRINTF_FORMAT "u.",
              caml_minor_heap_max_wsz, requested_wsz);
  while (requested_wsz > caml_minor_heap_max_wsz) {
    caml_try_run_on_all_domains(
      &stw_resize_minor_heap_reservation, (void*)requested_wsz, 0);
  }
  check_minor_heap();
}

void caml_init_domains(uintnat minor_heap_wsz) {
  int i;

  reserve_minor_heaps();
  for (i = 0; i < Max_domains; i++) {
    struct dom_internal* dom = &all_domains[i];

    stw_domains.domains[i] = dom;

    dom->id = i;

    dom->interruptor.interrupt_word = 0;
    caml_plat_mutex_init(&dom->interruptor.lock);
    caml_plat_cond_init(&dom->interruptor.cond,
                        &dom->interruptor.lock);
    dom->interruptor.running = 0;
    dom->interruptor.terminating = 0;
    dom->interruptor.unique_id = 0;
    dom->interruptor.interrupt_pending = 0;

    caml_plat_mutex_init(&dom->domain_lock);
    caml_plat_cond_init(&dom->domain_cond, &dom->domain_lock);
    dom->backup_thread_running = 0;
    dom->backup_thread_msg = BT_INIT;
  }

  domain_create(minor_heap_wsz);
  if (!domain_self) caml_fatal_error("Failed to create main domain");
  CAMLassert (domain_self->state->unique_id == 0);

  caml_init_signal_handling();
}

void caml_init_domain_self(int domain_id) {
  CAMLassert (domain_id >= 0 && domain_id < Max_domains);
  domain_self = &all_domains[domain_id];
  caml_state = domain_self->state;
}

enum domain_status { Dom_starting, Dom_started, Dom_failed };

struct domain_ml_values {
  value callback;
  value term_mutex;
};

static void init_domain_ml_values(struct domain_ml_values* ml_values,
                                  value callback, value term_mutex)
{
  ml_values->callback = callback;
  ml_values->term_mutex = term_mutex;
  caml_register_generational_global_root(&ml_values->callback);
  caml_register_generational_global_root(&ml_values->term_mutex);
}

static void free_domain_ml_values(struct domain_ml_values* ml_values) {
  caml_remove_generational_global_root(&ml_values->callback);
  caml_remove_generational_global_root(&ml_values->term_mutex);
  caml_stat_free(ml_values);
}

/* This is the structure of the data exchanged between the parent
   domain and child domain during domain_spawn. Some fields are 'in'
   parameters, passed from the parent to the child, others are 'out'
   parameters returned to the parent by the child.
*/
struct domain_startup_params {
  struct interruptor* parent; /* in */
  enum domain_status status; /* in+out:
                                parent and child synchronize on this value. */
  struct domain_ml_values* ml_values; /* in */
  dom_internal* newdom; /* out */
  uintnat unique_id; /* out */
#ifndef _WIN32
  /* signal mask to set after it is safe to do so */
  sigset_t* mask; /* in */
#endif
};

static void* backup_thread_func(void* v)
{
  dom_internal* di = (dom_internal*)v;
  uintnat msg;
  struct interruptor* s = &di->interruptor;

  domain_self = di;
  caml_state = di->state;

  msg = atomic_load_acq (&di->backup_thread_msg);
  while (msg != BT_TERMINATE) {
    CAMLassert (msg <= BT_TERMINATE);
    switch (msg) {
      case BT_IN_BLOCKING_SECTION:
        /* Handle interrupts on behalf of the main thread:
         *  - must hold domain_lock to handle interrupts
         *  - need to guarantee no blocking so that backup thread
         *    can be signalled from caml_leave_blocking_section
         */
        if (caml_incoming_interrupts_queued()) {
          if (caml_plat_try_lock(&di->domain_lock)) {
            caml_handle_incoming_interrupts();
            caml_plat_unlock(&di->domain_lock);
          }
        }
        /* Wait safely if there is nothing to do.
         * Will be woken from caml_leave_blocking_section
         */
        caml_plat_lock(&s->lock);
        msg = atomic_load_acq (&di->backup_thread_msg);
        if (msg == BT_IN_BLOCKING_SECTION &&
            !caml_incoming_interrupts_queued())
          caml_plat_wait(&s->cond);
        caml_plat_unlock(&s->lock);
        break;
      case BT_ENTERING_OCAML:
        /* Main thread wants to enter OCaml
         * Will be woken from caml_bt_exit_ocaml
         * or domain_terminate
         */
        caml_plat_lock(&di->domain_lock);
        msg = atomic_load_acq (&di->backup_thread_msg);
        if (msg == BT_ENTERING_OCAML)
          caml_plat_wait(&di->domain_cond);
        caml_plat_unlock(&di->domain_lock);
        break;
      default:
        cpu_relax();
        break;
    };
    msg = atomic_load_acq (&di->backup_thread_msg);
  }

  /* doing terminate */
  atomic_store_rel(&di->backup_thread_msg, BT_INIT);

  return 0;
}

static void install_backup_thread (dom_internal* di)
{
  int err;
#ifndef _WIN32
  sigset_t mask, old_mask;
#endif

  if (di->backup_thread_running == 0) {
    CAMLassert (di->backup_thread_msg == BT_INIT || /* Using fresh domain */
            di->backup_thread_msg == BT_TERMINATE); /* Reusing domain */

    while (atomic_load_acq(&di->backup_thread_msg) != BT_INIT) {
      /* Give a chance for backup thread on this domain to terminate */
      caml_plat_unlock (&di->domain_lock);
      cpu_relax ();
      caml_plat_lock (&di->domain_lock);
    }

#ifndef _WIN32
    /* No signals on the backup thread */
    sigfillset(&mask);
    pthread_sigmask(SIG_BLOCK, &mask, &old_mask);
#endif

    atomic_store_rel(&di->backup_thread_msg, BT_ENTERING_OCAML);
    err = pthread_create(&di->backup_thread, 0, backup_thread_func, (void*)di);

#ifndef _WIN32
    pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
#endif

    if (err)
      caml_failwith("failed to create domain backup thread");
    di->backup_thread_running = 1;
    pthread_detach(di->backup_thread);
  }
}

static void caml_domain_initialize_default(void)
{
  return;
}

static void caml_domain_stop_default(void)
{
  return;
}

static void caml_domain_external_interrupt_hook_default(void)
{
  return;
}

CAMLexport void (*caml_domain_initialize_hook)(void) =
   caml_domain_initialize_default;

CAMLexport void (*caml_domain_stop_hook)(void) =
   caml_domain_stop_default;

CAMLexport void (*caml_domain_external_interrupt_hook)(void) =
   caml_domain_external_interrupt_hook_default;

CAMLexport _Atomic caml_timing_hook caml_domain_terminated_hook =
  (caml_timing_hook)NULL;

static void domain_terminate(void);

static void* domain_thread_func(void* v)
{
  struct domain_startup_params* p = v;
  struct domain_ml_values *ml_values = p->ml_values;
#ifndef _WIN32
  sigset_t mask = *(p->mask);
  void * signal_stack;

  signal_stack = caml_init_signal_stack();
  if (signal_stack == NULL) {
    caml_fatal_error("Failed to create domain: signal stack");
  }
#endif

  domain_create(caml_params->init_minor_heap_wsz);
  /* this domain is now part of the STW participant set */
  p->newdom = domain_self;

  /* handshake with the parent domain */
  caml_plat_lock(&p->parent->lock);
  if (domain_self) {
    p->status = Dom_started;
    p->unique_id = domain_self->interruptor.unique_id;
  } else {
    p->status = Dom_failed;
  }
  caml_plat_broadcast(&p->parent->cond);
  caml_plat_unlock(&p->parent->lock);
  /* Cannot access p below here. */

  if (domain_self) {
    install_backup_thread(domain_self);

#ifndef _WIN32
    /* It is now safe for us to handle signals */
    pthread_sigmask(SIG_SETMASK, &mask, NULL);
#endif

    caml_gc_log("Domain starting (unique_id = %"ARCH_INTNAT_PRINTF_FORMAT"u)",
                domain_self->interruptor.unique_id);
    CAML_EV_LIFECYCLE(EV_DOMAIN_SPAWN, getpid());
    caml_domain_initialize_hook();
    caml_callback(ml_values->callback, Val_unit);
    domain_terminate();

    /* This domain currently holds the [term_mutex], and has signaled all the
       waiting domains to be woken up. We unlock the [term_mutex] to release
       the joining domains. The unlock is done after [domain_terminate] to
       ensure that this domain has released all of its runtime state. */
    caml_mutex_unlock(Mutex_val(ml_values->term_mutex));

    /* [ml_values] must be freed after unlocking [term_mutex]. This ensures
       that [term_mutex] is only removed from the root set after [term_mutex]
       is unlocked. Otherwise, there is a risk of [term_mutex] being destroyed
       by [caml_mutex_finalize] finaliser while it remains locked, leading to
       undefined behaviour. */
    free_domain_ml_values(ml_values);
  } else {
    caml_gc_log("Failed to create domain");
  }
#ifndef _WIN32
  caml_free_signal_stack(signal_stack);
#endif
  return 0;
}

CAMLprim value caml_domain_spawn(value callback, value mutex)
{
  CAMLparam2 (callback, mutex);
  struct domain_startup_params p;
  pthread_t th;
  int err;
#ifndef _WIN32
  sigset_t mask, old_mask;
#endif

#ifndef NATIVE_CODE
  if (caml_debugger_in_use)
    caml_fatal_error("ocamldebug does not support spawning multiple domains");
#endif
  p.parent = &domain_self->interruptor;
  p.status = Dom_starting;

  p.ml_values =
      (struct domain_ml_values*) caml_stat_alloc_noexc(
                                    sizeof(struct domain_ml_values));
  if (!p.ml_values) {
    caml_failwith("failed to create ml values for domain thread");
  }
  init_domain_ml_values(p.ml_values, callback, mutex);

/* We block all signals while we spawn the new domain. This is because
   pthread_create inherits the current signals set, and we want to avoid a
   signal handler being triggered in the new domain before the domain_state is
   fully populated. */
#ifndef _WIN32
  sigfillset(&mask);
  pthread_sigmask(SIG_BLOCK, &mask, &old_mask);
  p.mask = &old_mask;
#endif
  err = pthread_create(&th, 0, domain_thread_func, (void*)&p);
#ifndef _WIN32
  /* We can restore the signal mask we had initially now. */
  pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
#endif

  if (err) {
    caml_failwith("failed to create domain thread");
  }

  /* While waiting for the child thread to start up, we need to service any
     stop-the-world requests as they come in. */
  caml_plat_lock(&domain_self->interruptor.lock);
  while (p.status == Dom_starting) {
    if (caml_incoming_interrupts_queued()) {
      caml_plat_unlock(&domain_self->interruptor.lock);
      handle_incoming(&domain_self->interruptor);
      caml_plat_lock(&domain_self->interruptor.lock);
    } else {
      caml_plat_wait(&domain_self->interruptor.cond);
    }
  }
  caml_plat_unlock(&domain_self->interruptor.lock);

  if (p.status == Dom_started) {
    /* successfully created a domain.
       p.ml_values is now owned by that domain */
    pthread_detach(th);
  } else {
    CAMLassert (p.status == Dom_failed);
    /* failed */
    pthread_join(th, 0);
    free_domain_ml_values(p.ml_values);
    caml_failwith("failed to allocate domain");
  }
  /* When domain 0 first spawns a domain, the backup thread is not active, we
     ensure it is started here. */
  install_backup_thread(domain_self);

  CAMLreturn (Val_long(p.unique_id));
}

CAMLprim value caml_ml_domain_id(value unit)
{
  CAMLnoalloc;
  return Val_long(domain_self->interruptor.unique_id);
}

CAMLprim value caml_ml_domain_unique_token (value unit)
{
  return Val_unit;
}

/* sense-reversing barrier */
#define BARRIER_SENSE_BIT 0x100000

barrier_status caml_global_barrier_begin(void)
{
  uintnat b = 1 + atomic_fetch_add(&stw_request.barrier, 1);
  return b;
}

int caml_global_barrier_is_final(barrier_status b)
{
  return ((b & ~BARRIER_SENSE_BIT) == stw_request.num_domains);
}

void caml_global_barrier_end(barrier_status b)
{
  uintnat sense = b & BARRIER_SENSE_BIT;
  if (caml_global_barrier_is_final(b)) {
    /* last domain into the barrier, flip sense */
    atomic_store_rel(&stw_request.barrier, sense ^ BARRIER_SENSE_BIT);
  } else {
    /* wait until another domain flips the sense */
    SPIN_WAIT {
      uintnat barrier = atomic_load_acq(&stw_request.barrier);
      if ((barrier & BARRIER_SENSE_BIT) != sense) break;
    }
  }
}

void caml_global_barrier(void)
{
  barrier_status b = caml_global_barrier_begin();
  caml_global_barrier_end(b);
}

int caml_global_barrier_num_domains(void)
{
  return stw_request.num_domains;
}

static void decrement_stw_domains_still_processing(void)
{
  /* we check if we are the last to leave a stw section
     if so, clear the stw_leader to allow the new stw sections to start.
   */
  intnat am_last =
      atomic_fetch_add(&stw_request.num_domains_still_processing, -1) == 1;

  if( am_last ) {
    /* release the STW lock to allow new STW sections */
    caml_plat_lock(&all_domains_lock);
    atomic_store_rel(&stw_leader, 0);
    caml_plat_broadcast(&all_domains_cond);
    caml_gc_log("clearing stw leader");
    caml_plat_unlock(&all_domains_lock);
  }
}

static void stw_handler(caml_domain_state* domain)
{
  CAML_EV_BEGIN(EV_STW_HANDLER);
  CAML_EV_BEGIN(EV_STW_API_BARRIER);
  {
    SPIN_WAIT {
      if (atomic_load_acq(&stw_request.domains_still_running) == 0)
        break;

      if (stw_request.enter_spin_callback)
        stw_request.enter_spin_callback(domain, stw_request.enter_spin_data);
    }
  }
  CAML_EV_END(EV_STW_API_BARRIER);

  #ifdef DEBUG
  Caml_state->inside_stw_handler = 1;
  #endif
  stw_request.callback(
      domain,
      stw_request.data,
      stw_request.num_domains,
      stw_request.participating);
  #ifdef DEBUG
  Caml_state->inside_stw_handler = 0;
  #endif

  decrement_stw_domains_still_processing();

  CAML_EV_END(EV_STW_HANDLER);

  /* poll the GC to check for deferred work
     we do this here because blocking or waiting threads only execute
     the interrupt handler and do not poll for deferred work*/
  caml_poll_gc_work();
}


#ifdef DEBUG
int caml_domain_is_in_stw(void) {
  return Caml_state->inside_stw_handler;
}
#endif

/* During a stop-the-world (STW), all currently running domains stop
   their usual work and synchronize to all call the same function.

   STW sections use [all_domains_lock] and the variable [stw_leader]
   (0 when no STW section is running, the dom_internal* pointer of the
   STW leader when a STW section is running) to guarantee that no
   domain is running something else:

   - If two STW sections are attempted in parallel, only one will
     manage to take the lock, and the domain starting the other will
     join that winning STW section, without running its own STW
     callback at all. (This is the [_try_] in the function name: if it
     returns 0, the STW section did not run at all, so you should call
     this function in a loop.)

   - Domain initialization code from [domain_create] will not run in
     parallel with a STW section, as [domain_create] starts by
     looping until (1) it has the [all_domains_lock] and (2) there is
     no current STW section (using the [stw_leader] variable).

   - Domain cleanup code runs after the terminating domain may run in
     parallel to a STW section, but only after that domain has safely
     removed itself from the STW participant set: the
     [domain_terminate] function is careful to only leave the STW set
     when (1) it has the [all_domains_lock] and (2) it hasn't received
     any request to participate in a STW section.

   Each domain leaves the section as soon as it is finished running
   the STW section callback. In particular, a mutator may resume while
   some other domains are still in the section. Any code within the STW
   callback that needs to happen before any mutator must be followed
   by a barrier, forcing all STW participants to synchronize.

   Taken together, these properties guarantee that STW sections act as
   a proper exclusion mechanism: for example, some mutable state
   global to all domains can be "protected by STW" if it is only
   mutated within STW section, with a barrier before the next
   read. Such state can be safely updated by domain initialization,
   but additional synchronization would be required to update it
   during domain cleanup.

   Note: in the case of both [domain_create] and [domain_terminate] it
   is important that the loops (waiting for STW sections to finish)
   regularly release [all_domains_lock], to avoid deadlocks scenario
   with in-progress STW sections.
    - For [domain_terminate] we release the lock and join
      the STW section before resuming.
    - For [domain_create] we wait until the end of the section using
      the condition variable [all_domains_cond] over
      [all_domains_lock], which is broadcasted when a STW section
      finishes.
   The same logic would apply for any other situations in which a domain
   wants to join or leave the set of STW participants.
*/
int caml_try_run_on_all_domains_with_spin_work(
  void (*handler)(caml_domain_state*, void*, int, caml_domain_state**),
  void* data,
  void (*leader_setup)(caml_domain_state*),
  void (*enter_spin_callback)(caml_domain_state*, void*),
  void* enter_spin_data)
{
  int i;
  caml_domain_state* domain_state = domain_self->state;

  caml_gc_log("requesting STW");

  /* Don't touch the lock if there's already a stw leader
     OR we can't get the lock.

     Note: this read on [stw_leader] is an optimization, giving up
     faster (before trying to take the lock) in contended
     situations. Without this read, [stw_leader] would be protected by
     [all_domains_lock] and could be a non-atomic variable.
  */
  if (atomic_load_acq(&stw_leader) ||
      !caml_plat_try_lock(&all_domains_lock)) {
    caml_handle_incoming_interrupts();
    return 0;
  }

  /* see if there is a stw_leader already */
  if (atomic_load_acq(&stw_leader)) {
    caml_plat_unlock(&all_domains_lock);
    caml_handle_incoming_interrupts();
    return 0;
  }

  /* we have the lock and can claim the stw_leader */
  atomic_store_rel(&stw_leader, (uintnat)domain_self);

  CAML_EV_BEGIN(EV_STW_LEADER);
  caml_gc_log("causing STW");

  /* setup all fields for this stw_request, must have those needed
     for domains waiting at the enter spin barrier */
  stw_request.enter_spin_callback = enter_spin_callback;
  stw_request.enter_spin_data = enter_spin_data;
  stw_request.callback = handler;
  stw_request.data = data;
  atomic_store_rel(&stw_request.barrier, 0);
  atomic_store_rel(&stw_request.domains_still_running, 1);
  stw_request.num_domains = stw_domains.participating_domains;
  atomic_store_rel(&stw_request.num_domains_still_processing,
                   stw_domains.participating_domains);

  if( leader_setup ) {
    leader_setup(domain_state);
  }

#ifdef DEBUG
  {
    int domains_participating = 0;
    for(i=0; i<Max_domains; i++) {
      if(all_domains[i].interruptor.running)
        domains_participating++;
    }
    CAMLassert(domains_participating == stw_domains.participating_domains);
    CAMLassert(domains_participating > 0);
  }
#endif

  /* Next, interrupt all domains */
  for(i = 0; i < stw_domains.participating_domains; i++) {
    dom_internal * d = stw_domains.domains[i];
    stw_request.participating[i] = d->state;
    CAMLassert(!d->interruptor.interrupt_pending);
    if (d->state != domain_state) caml_send_interrupt(&d->interruptor);
  }


  /* Domains now know they are part of the STW.

     Note: releasing the lock will not allow new domain to be created
     in parallel with the rest of the STW section, as new domains
     follow the protocol of waiting on [all_domains_cond] which is
     only broadcast at the end of the STW section.

     The reason we use a condition variable [all_domains_cond] instead
     of just holding the lock until the end of the STW section is that
     the last domain to exit the section (and broadcast the condition)
     is not necessarily the same as the domain starting the section
     (and taking the lock) -- whereas POSIX mutexes must be unlocked
     by the same thread that locked them.
  */
  caml_plat_unlock(&all_domains_lock);

  for(i = 0; i < stw_request.num_domains; i++) {
    int id = stw_request.participating[i]->id;
    caml_wait_interrupt_serviced(&all_domains[id].interruptor);
  }

  /* release from the enter barrier */
  atomic_store_rel(&stw_request.domains_still_running, 0);

  #ifdef DEBUG
  domain_state->inside_stw_handler = 1;
  #endif
  handler(domain_state, data,
          stw_request.num_domains, stw_request.participating);
  #ifdef DEBUG
  domain_state->inside_stw_handler = 0;
  #endif

  /* Note: the last domain passing through this function will
     temporarily take [all_domains_lock] again and use it to broadcast
     [all_domains_cond], waking up any domain waiting to be created. */
  decrement_stw_domains_still_processing();

  CAML_EV_END(EV_STW_LEADER);

  return 1;
}

int caml_try_run_on_all_domains(
  void (*handler)(caml_domain_state*, void*, int, caml_domain_state**),
  void* data,
  void (*leader_setup)(caml_domain_state*))
{
  return
      caml_try_run_on_all_domains_with_spin_work(handler,
                                                 data,
                                                 leader_setup, 0, 0);
}

void caml_interrupt_self(void) {
  interrupt_domain(&domain_self->interruptor);
}

void caml_reset_young_limit(caml_domain_state * dom_st)
{
  CAMLassert ((uintnat)dom_st->young_ptr > (uintnat)dom_st->young_trigger);
  /* An interrupt might have been queued in the meanwhile; this
     achieves the proper synchronisation. */
  atomic_exchange(&dom_st->young_limit, (uintnat)dom_st->young_trigger);
  dom_internal * d = &all_domains[dom_st->id];
  if (atomic_load_relaxed(&d->interruptor.interrupt_pending)
      || dom_st->requested_minor_gc
      || dom_st->requested_major_slice
      || dom_st->major_slice_epoch < atomic_load (&caml_major_slice_epoch)
      || atomic_load_relaxed(&dom_st->requested_external_interrupt)
      || dom_st->action_pending) {
    atomic_store_rel(&dom_st->young_limit, (uintnat)-1);
    CAMLassert(caml_check_gc_interrupt(dom_st));
  }
}

Caml_inline void advance_global_major_slice_epoch (caml_domain_state* d)
{
  uintnat old_value;

  CAMLassert (atomic_load (&caml_major_slice_epoch) <=
              atomic_load (&caml_minor_collections_count));

  old_value = atomic_exchange (&caml_major_slice_epoch,
                               atomic_load (&caml_minor_collections_count));

  if (old_value != atomic_load (&caml_minor_collections_count)) {
    /* This domain is the first one to use up half of its minor heap arena
        in this minor cycle. Trigger major slice on other domains. */
    if (caml_plat_try_lock(&all_domains_lock)) {
      /* Note that this interrupt is best-effort. If we get the lock,
         then interrupt all the domains. If not, either some other domain
         is calling for a stop-the-world section interrupting all the
         domains, or a domain is being created or terminated. All of these
         actions also try to lock [all_domains_lock] mutex, and the above
         lock acquisition may fail.

         If we don't get the lock, we don't interrupt other domains. This is
         acceptable since it does not affect safety but only liveness -- the
         speed of the major gc. The other domains may themselves fill half of
         their minor heap triggering a major slice, or will certainly do a
         major slice right after their next minor GC when they observe that
         their domain-local [Caml_state->major_slice_epoch] is less than the
         global one [caml_major_slice_epoch]. */
      for(int i = 0; i < stw_domains.participating_domains; i++) {
        dom_internal * di = stw_domains.domains[i];
        if (di->state != d) interrupt_domain(&di->interruptor);
      }
      caml_plat_unlock (&all_domains_lock);
    }
  }
}

void caml_poll_gc_work(void)
{
  CAMLalloc_point_here;

  caml_domain_state* d = Caml_state;

  if ((uintnat)d->young_ptr - Bhsize_wosize(Max_young_wosize) <
      (uintnat)d->young_trigger) {

    if (d->young_trigger == d->young_start) {
      /* Trigger minor GC */
      d->requested_minor_gc = 1;
    } else {
      CAMLassert (d->young_trigger ==
                  d->young_start + (d->young_end - d->young_start) / 2);
      /* We have used half of our minor heap arena. Request a major slice on
         this domain. */
      advance_global_major_slice_epoch (d);
      /* Advance the [young_trigger] to [young_start] so that the allocation
         fails when the minor heap is full. */
      d->young_trigger = d->young_start;
    }
  } else if (d->requested_minor_gc) {
    /* This domain has _not_ used up half of its minor heap arena, but a minor
       collection has been requested. Schedule a major collection slice so as
       to not lag behind. */
    advance_global_major_slice_epoch (d);
  }

  if (d->major_slice_epoch < atomic_load (&caml_major_slice_epoch)) {
    d->requested_major_slice = 1;
  }

  if (d->requested_minor_gc) {
    /* out of minor heap or collection forced */
    d->requested_minor_gc = 0;
    caml_empty_minor_heaps_once();
  }

  if (d->requested_major_slice) {
    CAML_EV_BEGIN(EV_MAJOR);
    d->requested_major_slice = 0;
    caml_major_collection_slice(AUTO_TRIGGERED_MAJOR_SLICE);
    CAML_EV_END(EV_MAJOR);
  }

  if (atomic_load_acq(&d->requested_external_interrupt)) {
    caml_domain_external_interrupt_hook();
  }
  caml_reset_young_limit(d);
}

void caml_handle_gc_interrupt(void)
{
  CAMLalloc_point_here;

  if (caml_incoming_interrupts_queued()) {
    /* interrupt */
    CAML_EV_BEGIN(EV_INTERRUPT_REMOTE);
    caml_handle_incoming_interrupts();
    CAML_EV_END(EV_INTERRUPT_REMOTE);
  }

  caml_poll_gc_work();
}

CAMLexport int caml_bt_is_in_blocking_section(void)
{
  uintnat status = atomic_load_acq(&domain_self->backup_thread_msg);
  return status == BT_IN_BLOCKING_SECTION;
}

CAMLexport int caml_bt_is_self(void)
{
  return pthread_equal(domain_self->backup_thread, pthread_self());
}

CAMLexport intnat caml_domain_is_multicore (void)
{
  dom_internal *self = domain_self;
  return (!caml_domain_alone() || self->backup_thread_running);
}

CAMLexport void caml_acquire_domain_lock(void)
{
  dom_internal* self = domain_self;
  caml_plat_lock(&self->domain_lock);
  caml_state = self->state;
}

CAMLexport void caml_bt_enter_ocaml(void)
{
  dom_internal* self = domain_self;

  CAMLassert(caml_domain_alone() || self->backup_thread_running);

  if (self->backup_thread_running) {
    atomic_store_rel(&self->backup_thread_msg, BT_ENTERING_OCAML);
  }
}

CAMLexport void caml_release_domain_lock(void)
{
  dom_internal* self = domain_self;
  caml_state = NULL;
  caml_plat_unlock(&self->domain_lock);
}

CAMLexport void caml_bt_exit_ocaml(void)
{
  dom_internal* self = domain_self;

  CAMLassert(caml_domain_alone() || self->backup_thread_running);

  if (self->backup_thread_running) {
    atomic_store_rel(&self->backup_thread_msg, BT_IN_BLOCKING_SECTION);
    /* Wakeup backup thread if it is sleeping */
    caml_plat_signal(&self->domain_cond);
  }
}

/* default handler for unix_fork, will be called by unix_fork. */
static void caml_atfork_default(void) {
  caml_reset_domain_lock();
  caml_acquire_domain_lock();
}

CAMLexport void (*caml_atfork_hook)(void) = caml_atfork_default;

static void handover_ephemerons(caml_domain_state* domain_state)
{
  if (domain_state->ephe_info->todo == 0 &&
      domain_state->ephe_info->live == 0 &&
      domain_state->ephe_info->must_sweep_ephe == 0)
    return;

  caml_add_to_orphaned_ephe_list(domain_state->ephe_info);
  CAMLassert (domain_state->ephe_info->live == 0);
  CAMLassert (domain_state->ephe_info->todo == 0);
}

static void handover_finalisers(caml_domain_state* domain_state)
{
  struct caml_final_info* f = domain_state->final_info;

  if (f->todo_head != NULL || f->first.size != 0 || f->last.size != 0) {
    /* have some final structures */
    if (caml_gc_phase != Phase_sweep_and_mark_main) {
      /* Force a major GC cycle to simplify constraints for
       * handing over finalisers. */
      caml_finish_major_cycle();
      CAMLassert(caml_gc_phase == Phase_sweep_and_mark_main);
    }
    caml_add_orphaned_finalisers (f);
    /* Create a dummy final info */
    domain_state->final_info = caml_alloc_final_info();
  }
  caml_final_domain_terminate(domain_state);
}

int caml_domain_is_terminating (void)
{
  struct interruptor* s = &domain_self->interruptor;
  return s->terminating;
}

static void domain_terminate (void)
{
  caml_domain_state* domain_state = domain_self->state;
  struct interruptor* s = &domain_self->interruptor;
  int finished = 0;
#ifndef _WIN32
  sigset_t mask;
#endif

  caml_gc_log("Domain terminating");
  s->terminating = 1;

#ifndef _WIN32
  /* Block all signals so that signal handlers do not run on this thread */
  sigfillset(&mask);
  pthread_sigmask(SIG_BLOCK, &mask, NULL);
#endif

  /* Join ongoing systhreads, if necessary, and then run user-defined
     termination hooks. No OCaml code can run on this domain after
     this. */
  caml_domain_stop_hook();
  call_timing_hook(&caml_domain_terminated_hook);

  while (!finished) {
    caml_orphan_allocated_words();
    caml_finish_sweeping();

    caml_empty_minor_heaps_once();
    /* Note: [caml_empty_minor_heaps_once] will also join any ongoing
       STW sections that has sent an interrupt to this domain. */

    caml_finish_marking();
    handover_ephemerons(domain_state);
    handover_finalisers(domain_state);

    /* take the all_domains_lock to try and exit the STW participant set
       without racing with a STW section being triggered */
    caml_plat_lock(&all_domains_lock);

    /* The interaction of termination and major GC is quite subtle.
     *
     * At the end of the major GC, we decide the number of domains to mark and
     * sweep for the next cycle. If a STW section has been started, it will
     * require this domain to participate, which in turn could involve a
     * major GC cycle. This would then require finish marking and sweeping
     * again in order to decrement the globals [num_domains_to_mark] and
     * [num_domains_to_sweep] (see major_gc.c).
     */

    if (!caml_incoming_interrupts_queued() &&
        domain_state->marking_done &&
        domain_state->sweeping_done) {

      finished = 1;
      s->terminating = 0;
      s->running = 0;

      /* Remove this domain from stw_domains */
      remove_from_stw_domains(domain_self);

      /* signal the interruptor condition variable
       * because the backup thread may be waiting on it
       */
      caml_plat_lock(&s->lock);
      caml_plat_broadcast(&s->cond);
      caml_plat_unlock(&s->lock);

      CAMLassert (domain_self->backup_thread_running);
      domain_self->backup_thread_running = 0;
    }
    caml_plat_unlock(&all_domains_lock);
  }
  /* We can not touch domain_self->interruptor after here
     because it may be reused */
  caml_remove_generational_global_root(&domain_state->dls_root);
  caml_remove_generational_global_root(&domain_state->backtrace_last_exn);
  caml_stat_free(domain_state->final_info);
  caml_stat_free(domain_state->ephe_info);
  caml_free_intern_state();
  caml_free_extern_state();
  caml_teardown_major_gc();
  CAML_EV_LIFECYCLE(EV_DOMAIN_TERMINATE, getpid());

  caml_teardown_shared_heap(domain_state->shared_heap);
  domain_state->shared_heap = 0;
  caml_free_minor_tables(domain_state->minor_tables);
  domain_state->minor_tables = 0;

  caml_orphan_alloc_stats(domain_state);
  /* Heap stats were orphaned by caml_teardown_shared_heap above.
     At this point, the stats of the domain must be empty;
     we also clear the sampled copy.

     Note: We cannot call caml_collect_gc_stats_sample to clear the
     sample at this point as the shared heap is gone. */
  caml_clear_gc_stats_sample(domain_state);

  /* TODO: can this ever be NULL? can we remove this check? */
  if(domain_state->current_stack != NULL) {
    caml_free_stack(domain_state->current_stack);
  }
  caml_free_backtrace_buffer(domain_state->backtrace_buffer);
  caml_free_gc_regs_buckets(domain_state->gc_regs_buckets);

  /* signal the domain termination to the backup thread
     NB: for a program with no additional domains, the backup thread
     will not have been started */
  atomic_store_rel(&domain_self->backup_thread_msg, BT_TERMINATE);
  caml_plat_signal(&domain_self->domain_cond);
  caml_plat_unlock(&domain_self->domain_lock);

  caml_plat_assert_all_locks_unlocked();
  /* This is the last thing we do because we need to be able to rely
     on caml_domain_alone (which uses caml_num_domains_running) in at least
     the shared_heap lockfree fast paths */
  atomic_fetch_add(&caml_num_domains_running, -1);
}

CAMLprim value caml_ml_domain_cpu_relax(value t)
{
  struct interruptor* self = &domain_self->interruptor;
  handle_incoming_otherwise_relax (self);
  return Val_unit;
}

CAMLprim value caml_domain_dls_set(value t)
{
  CAMLnoalloc;
  caml_modify_generational_global_root(&Caml_state->dls_root, t);
  return Val_unit;
}

CAMLprim value caml_domain_dls_get(value unused)
{
  CAMLnoalloc;
  return Caml_state->dls_root;
}

CAMLprim value caml_recommended_domain_count(value unused)
{
  intnat n = -1;

#if defined(HAS_GNU_GETAFFINITY_NP) || defined(HAS_BSD_GETAFFINITY_NP)
  cpu_set_t cpuset;

  CPU_ZERO(&cpuset);
  /* error case fallsback into next method */
  if (pthread_getaffinity_np(pthread_self(), sizeof(cpuset), &cpuset) == 0)
    n = CPU_COUNT(&cpuset);
#endif /* HAS_GNU_GETAFFINITY_NP || HAS_BSD_GETAFFINITY_NP */

#ifdef _SC_NPROCESSORS_ONLN
  if (n == -1)
    n = sysconf(_SC_NPROCESSORS_ONLN);
#endif /* _SC_NPROCESSORS_ONLN */

#ifdef _WIN32
  SYSTEM_INFO sysinfo;
  GetSystemInfo(&sysinfo);
  n = sysinfo.dwNumberOfProcessors;
#endif /* _WIN32 */

  /* At least one, even if system says zero */
  if (n <= 0)
    n = 1;
  else if (n > Max_domains)
    n = Max_domains;

  return (Val_long(n));
}