summaryrefslogtreecommitdiff
path: root/runtime/memory.c
blob: 1907d5ce84b6a974de84d5a13cc164e407af56ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
/**************************************************************************/
/*                                                                        */
/*                                 OCaml                                  */
/*                                                                        */
/*              Damien Doligez, projet Para, INRIA Rocquencourt           */
/*                                                                        */
/*   Copyright 1996 Institut National de Recherche en Informatique et     */
/*     en Automatique.                                                    */
/*                                                                        */
/*   All rights reserved.  This file is distributed under the terms of    */
/*   the GNU Lesser General Public License version 2.1, with the          */
/*   special exception on linking described in the file LICENSE.          */
/*                                                                        */
/**************************************************************************/

#define CAML_INTERNALS

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <stddef.h>
#include "caml/config.h"
#include "caml/misc.h"
#include "caml/fail.h"
#include "caml/memory.h"
#include "caml/major_gc.h"
#include "caml/signals.h"
#include "caml/shared_heap.h"
#include "caml/domain.h"
#include "caml/roots.h"
#include "caml/alloc.h"
#include "caml/fiber.h"
#include "caml/platform.h"
#include "caml/runtime_events.h"

/* Note [MM]: Enforcing the memory model.

   Multicore OCaml implements the memory consistency model defined in

     Bounding Data Races in Space and Time (PLDI '18)
     Stephen Dolan, KC Sivaramakrishnan, Anil Madhavapeddy.

   Unlike the C++ (also used in C11) memory model, this model gives
   well-defined behaviour to data races, ensuring that they do not
   affect unrelated computations. In C++, plain (non-atomic) accesses
   have undefined semantics if they race, so it is necessary to use at
   least relaxed atomics to implement all accesses.

   However, simply using C++ relaxed atomics for non-atomic accesses
   and C++ SC atomics for atomic ones is not enough, since the OCaml
   memory model is stronger. The prototypical example where C++
   exhibits a behaviour not allowed by OCaml is below. Assume that the
   reference b and the atomic reference a are initially 0:

       Thread 1            Thread 2
       Atomic.set a 1;     let x = !b in
       b := 1              let y = Atomic.get a in
                           ...
       Outcome: x = 1, y = 0

   This outcome is not permitted by the OCaml memory model, as can be
   seen from the operational model: if !b sees the write b := 1, then
   the Atomic.set must have executed before the Atomic.get, and since
   it is atomic the most recent set must be returned by the get,
   yielding y = 1. In the equivalent axiomatic model, this would be a
   violation of Causality.

   If this example is naively translated to C++ (using atomic_{load,
   store} for atomics, and atomic_{load, store}_explicit(...,
   memory_order_relaxed) for nonatomics), then this outcome becomes
   possible. The C++ model specifies that there is a total order on SC
   accesses, but this total order is surprisingly weak. In this
   example, we can have:

       x = !b ...
          [happens-before]
       y = Atomic.get a
          [SC-before]
       Atomic.set a 1
          [happens-before]
       b := 1

   Sadly, the composition of happens-before and SC-before does not add
   up to anything useful, and the C++ model permits the read 'x = !b'
   to read from the write 'b := 1' in this example, allowing the
   outcome above.

   To remedy this, we need to strengthen the relaxed accesses used for
   non-atomic loads and stores. The most straightforward way to do
   this is to use acquire loads and release stores instead of relaxed
   for non-atomic accesses, which ensures that all reads-from edges
   appear in the C++ synchronises-with relation, outlawing the outcome
   above.

   Using release stores for all writes also ensures publication safety
   for newly-allocated objects, and isn't necessary for initialising
   writes. The cost is free on x86, but requires a fence in
   caml_modify on weakly-ordered architectures (ARM, Power).

   However, instead of using acquire loads for all reads, an
   optimisation is possible. (Optimising reads is more important than
   optimising writes because reads are vastly more common). The OCaml
   memory model does not require ordering between non-atomic reads,
   which acquire loads provide. The acquire semantics are only
   necessary between a non-atomic read and an atomic access or a
   write, so we delay the acquire fence until one of those operations
   occurs.

   So, our non-atomic reads are implemented as standard relaxed loads,
   but non-atomic writes and atomic operations (in this file, below)
   contain an odd-looking line:

      atomic_thread_fence(memory_order_acquire)

   which serves to upgrade previous relaxed loads to acquire loads.
   This encodes the OCaml memory model in the primitives provided by
   the C++ model.

   On x86, all loads and all stores have acquire/release semantics by
   default anyway, so all of these fences compile away to nothing
   (They're still useful, though: they serve to inhibit an overeager C
   compiler's optimisations). On ARMv8, actual hardware fences are
   generated.
*/

Caml_inline void write_barrier(
  value obj, intnat field, value old_val, value new_val)
{
  /* HACK: can't assert when get old C-api style pointers
    CAMLassert (Is_block(obj)); */

  if (!Is_young(obj)) {

    if (Is_block(old_val)) {
       /* if old is in the minor heap,
          then this is in a remembered set already */
       if (Is_young(old_val)) return;
       /* old is a block and in the major heap */
       caml_darken(Caml_state, old_val, 0);
     }
     /* this update is creating a new link from major to minor, remember it */
     if (Is_block_and_young(new_val)) {
       Ref_table_add(&Caml_state->minor_tables->major_ref, Op_val(obj) + field);
     }
   }
}

CAMLexport CAMLweakdef void caml_modify (volatile value *fp, value val)
{
  write_barrier((value)fp, 0, *fp, val);

  /* See Note [MM] above */
  atomic_thread_fence(memory_order_acquire);
  atomic_store_release(&Op_atomic_val((value)fp)[0], val);
}

/* Dependent memory is all memory blocks allocated out of the heap
   that depend on the GC (and finalizers) for deallocation.
   For the GC to take dependent memory into account when computing
   its automatic speed setting,
   you must call [caml_alloc_dependent_memory] when you allocate some
   dependent memory, and [caml_free_dependent_memory] when you
   free it.  In both cases, you pass as argument the size (in bytes)
   of the block being allocated or freed.
*/
CAMLexport void caml_alloc_dependent_memory (mlsize_t nbytes)
{
  Caml_state->dependent_size += nbytes / sizeof (value);
  Caml_state->dependent_allocated += nbytes / sizeof (value);
}

CAMLexport void caml_free_dependent_memory (mlsize_t nbytes)
{
  if (Caml_state->dependent_size < nbytes / sizeof (value)){
    Caml_state->dependent_size = 0;
  }else{
    Caml_state->dependent_size -= nbytes / sizeof (value);
  }
}

/* Use this function to tell the major GC to speed up when you use
   finalized blocks to automatically deallocate resources (other
   than memory). The GC will do at least one cycle every [max]
   allocated resources; [res] is the number of resources allocated
   this time.
   Note that only [res/max] is relevant.  The units (and kind of
   resource) can change between calls to [caml_adjust_gc_speed].
*/
CAMLexport void caml_adjust_gc_speed (mlsize_t res, mlsize_t max)
{
  if (max == 0) max = 1;
  if (res > max) res = max;
  Caml_state->extra_heap_resources += (double) res / (double) max;
  if (Caml_state->extra_heap_resources > 1.0){
    CAML_EV_COUNTER (EV_C_REQUEST_MAJOR_ADJUST_GC_SPEED, 1);
    Caml_state->extra_heap_resources = 1.0;
    caml_request_major_slice ();
  }
}

/* You must use [caml_intialize] to store the initial value in a field of a
   block, unless you are sure the value is not a young block, in which case a
   plain assignment would do.

   [caml_initialize] never calls the GC, so you may call it while a block is
   unfinished (i.e. just after a call to [caml_alloc_shr].) */
CAMLexport CAMLweakdef void caml_initialize (volatile value *fp, value val)
{
#ifdef DEBUG
  /* Previous value should not be a pointer.
     In the debug runtime, it can be either a TMC placeholder,
     or an uninitialized value canary (Debug_uninit_{major,minor}). */
  CAMLassert(Is_long(*fp));
#endif
  *fp = val;
  if (!Is_young((value)fp) && Is_block_and_young (val))
    Ref_table_add(&Caml_state->minor_tables->major_ref, fp);
}

CAMLexport int caml_atomic_cas_field (
  value obj, intnat field, value oldval, value newval)
{
  if (caml_domain_alone()) {
    /* non-atomic CAS since only this thread can access the object */
    volatile value* p = &Field(obj, field);
    if (*p == oldval) {
      *p = newval;
      write_barrier(obj, field, oldval, newval);
      return 1;
    } else {
      return 0;
    }
  } else {
    /* need a real CAS */
    atomic_value* p = &Op_atomic_val(obj)[field];
    int cas_ret = atomic_compare_exchange_strong(p, &oldval, newval);
    atomic_thread_fence(memory_order_release); /* generates `dmb ish` on Arm64*/
    if (cas_ret) {
      write_barrier(obj, field, oldval, newval);
      return 1;
    } else {
      return 0;
    }
  }
}


CAMLprim value caml_atomic_load (value ref)
{
  if (caml_domain_alone()) {
    return Field(ref, 0);
  } else {
    value v;
    /* See Note [MM] above */
    atomic_thread_fence(memory_order_acquire);
    v = atomic_load(Op_atomic_val(ref));
    return v;
  }
}

/* stores are implemented as exchanges */
CAMLprim value caml_atomic_exchange (value ref, value v)
{
  value ret;
  if (caml_domain_alone()) {
    ret = Field(ref, 0);
    Field(ref, 0) = v;
  } else {
    /* See Note [MM] above */
    atomic_thread_fence(memory_order_acquire);
    ret = atomic_exchange(Op_atomic_val(ref), v);
    atomic_thread_fence(memory_order_release); /* generates `dmb ish` on Arm64*/
  }
  write_barrier(ref, 0, ret, v);
  return ret;
}

CAMLprim value caml_atomic_cas (value ref, value oldv, value newv)
{
  if (caml_domain_alone()) {
    value* p = Op_val(ref);
    if (*p == oldv) {
      *p = newv;
      write_barrier(ref, 0, oldv, newv);
      return Val_int(1);
    } else {
      return Val_int(0);
    }
  } else {
    atomic_value* p = &Op_atomic_val(ref)[0];
    int cas_ret = atomic_compare_exchange_strong(p, &oldv, newv);
    atomic_thread_fence(memory_order_release); /* generates `dmb ish` on Arm64*/
    if (cas_ret) {
      write_barrier(ref, 0, oldv, newv);
      return Val_int(1);
    } else {
      return Val_int(0);
    }
  }
}

CAMLprim value caml_atomic_fetch_add (value ref, value incr)
{
  value ret;
  if (caml_domain_alone()) {
    value* p = Op_val(ref);
    CAMLassert(Is_long(*p));
    ret = *p;
    *p = Val_long(Long_val(ret) + Long_val(incr));
    /* no write barrier needed, integer write */
  } else {
    atomic_value *p = &Op_atomic_val(ref)[0];
    ret = atomic_fetch_add(p, 2*Long_val(incr));
    atomic_thread_fence(memory_order_release); /* generates `dmb ish` on Arm64*/
  }
  return ret;
}

CAMLexport void caml_set_fields (value obj, value v)
{
  int i;
  CAMLassert (Is_block(obj));

  for (i = 0; i < Wosize_val(obj); i++) {
    caml_modify(&Field(obj, i), v);
  }
}

Caml_inline value alloc_shr(mlsize_t wosize, tag_t tag, reserved_t reserved,
                            int noexc)
{
  Caml_check_caml_state();
  caml_domain_state *dom_st = Caml_state;
  value *v = caml_shared_try_alloc(dom_st->shared_heap,
                                   wosize, tag, reserved, 0);
  if (v == NULL) {
    if (!noexc)
      caml_raise_out_of_memory();
    else
      return (value)NULL;
  }

  dom_st->allocated_words += Whsize_wosize(wosize);
  if (dom_st->allocated_words > dom_st->minor_heap_wsz) {
    CAML_EV_COUNTER (EV_C_REQUEST_MAJOR_ALLOC_SHR, 1);
    caml_request_major_slice();
  }

#ifdef DEBUG
  if (tag < No_scan_tag) {
    mlsize_t i;
    for (i = 0; i < wosize; i++)
      Op_hp(v)[i] = Debug_uninit_major;
  }
#endif
  return Val_hp(v);
}

CAMLexport value caml_alloc_shr(mlsize_t wosize, tag_t tag)
{
  return alloc_shr(wosize, tag, 0, 0);
}

CAMLexport value caml_alloc_shr_reserved(mlsize_t wosize,
                                         tag_t tag,
                                         reserved_t reserved)
{
  return alloc_shr(wosize, tag, reserved, 0);
}


CAMLexport value caml_alloc_shr_noexc(mlsize_t wosize, tag_t tag) {
  return alloc_shr(wosize, tag, 0, 1);
}

/* Global memory pool.

   The pool is structured as a ring of blocks, where each block's header
   contains two links: to the previous and to the next block. The data
   structure allows for insertions and removals of blocks in constant time,
   given that a pointer to the operated block is provided.

   Initially, the pool contains a single block -- a pivot with no data, the
   guaranteed existence of which makes for a more concise implementation.

   The API functions that operate on the pool receive not pointers to the
   block's header, but rather pointers to the block's "data" field. This
   behaviour is required to maintain compatibility with the interfaces of
   [malloc], [realloc], and [free] family of functions, as well as to hide
   the implementation from the user.
*/

/* A type with the most strict alignment requirements */
union max_align {
  char c;
  short s;
  long l;
  int i;
  float f;
  double d;
  void *v;
  void (*q)(void);
};

struct pool_block {
#ifdef DEBUG
  intnat magic;
#endif
  struct pool_block *next;
  struct pool_block *prev;
  /* Use C99's flexible array types if possible */
#if (__STDC_VERSION__ >= 199901L)
  union max_align data[];  /* not allocated, used for alignment purposes */
#else
  union max_align data[1];
#endif
};

#if (__STDC_VERSION__ >= 199901L)
#define SIZEOF_POOL_BLOCK sizeof(struct pool_block)
#else
#define SIZEOF_POOL_BLOCK offsetof(struct pool_block, data)
#endif

static struct pool_block *pool = NULL;
static caml_plat_mutex pool_mutex = CAML_PLAT_MUTEX_INITIALIZER;

/* Returns a pointer to the block header, given a pointer to "data" */
static struct pool_block* get_pool_block(caml_stat_block b)
{
  if (b == NULL)
    return NULL;

  else {
    struct pool_block *pb =
      (struct pool_block*)(((char*)b) - SIZEOF_POOL_BLOCK);
#ifdef DEBUG
    CAMLassert(pb->magic == Debug_pool_magic);
#endif
    return pb;
  }
}

/* Linking a pool block into the ring */
static void link_pool_block(struct pool_block *pb)
{
  caml_plat_lock(&pool_mutex);
  pb->next = pool->next;
  pb->prev = pool;
  pool->next->prev = pb;
  pool->next = pb;
  caml_plat_unlock(&pool_mutex);
}

/* Unlinking a pool block from the ring */
static void unlink_pool_block(struct pool_block *pb)
{
    caml_plat_lock(&pool_mutex);
    pb->prev->next = pb->next;
    pb->next->prev = pb->prev;
    caml_plat_unlock(&pool_mutex);
}

CAMLexport void caml_stat_create_pool(void)
{
  if (pool == NULL) {
    pool = malloc(SIZEOF_POOL_BLOCK);
    if (pool == NULL)
      caml_fatal_error("Fatal error: out of memory.\n");
#ifdef DEBUG
    pool->magic = Debug_pool_magic;
#endif
    pool->next = pool;
    pool->prev = pool;
  }
}

CAMLexport void caml_stat_destroy_pool(void)
{
  caml_plat_lock(&pool_mutex);
  if (pool != NULL) {
    pool->prev->next = NULL;
    while (pool != NULL) {
      struct pool_block *next = pool->next;
      free(pool);
      pool = next;
    }
    pool = NULL;
  }
  caml_plat_unlock(&pool_mutex);
}

/* [sz] is a number of bytes */
CAMLexport caml_stat_block caml_stat_alloc_noexc(asize_t sz)
{
  /* Backward compatibility mode */
  if (pool == NULL)
    return malloc(sz);
  else {
    struct pool_block *pb = malloc(sz + SIZEOF_POOL_BLOCK);
    if (pb == NULL) return NULL;
#ifdef DEBUG
    memset(&(pb->data), Debug_uninit_stat, sz);
    pb->magic = Debug_pool_magic;
#endif
    link_pool_block(pb);
    return &(pb->data);
  }
}

/* [sz] and [modulo] are numbers of bytes */
CAMLexport void* caml_stat_alloc_aligned_noexc(asize_t sz, int modulo,
                                               caml_stat_block *b)
{
  char *raw_mem;
  uintnat aligned_mem;
  CAMLassert (0 <= modulo && modulo < Page_size);
  raw_mem = (char *) caml_stat_alloc_noexc(sz + Page_size);
  if (raw_mem == NULL) return NULL;
  *b = raw_mem;
  raw_mem += modulo;                /* Address to be aligned */
  aligned_mem = (((uintnat) raw_mem / Page_size + 1) * Page_size);
#ifdef DEBUG
  {
    uintnat *p;
    uintnat *p0 = (void *) *b;
    uintnat *p1 = (void *) (aligned_mem - modulo);
    uintnat *p2 = (void *) (aligned_mem - modulo + sz);
    uintnat *p3 = (void *) ((char *) *b + sz + Page_size);
    for (p = p0; p < p1; p++) *p = Debug_filler_align;
    for (p = p1; p < p2; p++) *p = Debug_uninit_align;
    for (p = p2; p < p3; p++) *p = Debug_filler_align;
  }
#endif
  return (char *) (aligned_mem - modulo);
}

/* [sz] and [modulo] are numbers of bytes */
CAMLexport void* caml_stat_alloc_aligned(asize_t sz, int modulo,
                                         caml_stat_block *b)
{
  void *result = caml_stat_alloc_aligned_noexc(sz, modulo, b);
  /* malloc() may return NULL if size is 0 */
  if ((result == NULL) && (sz != 0))
    caml_raise_out_of_memory();
  return result;
}

/* [sz] is a number of bytes */
CAMLexport caml_stat_block caml_stat_alloc(asize_t sz)
{
  void *result = caml_stat_alloc_noexc(sz);
  /* malloc() may return NULL if size is 0 */
  if ((result == NULL) && (sz != 0))
    caml_raise_out_of_memory();
  return result;
}

CAMLexport void caml_stat_free(caml_stat_block b)
{
  /* Backward compatibility mode */
  if (pool == NULL)
    free(b);
  else {
    struct pool_block *pb = get_pool_block(b);
    if (pb == NULL) return;
    unlink_pool_block(pb);
    free(pb);
  }
}

/* [sz] is a number of bytes */
CAMLexport caml_stat_block caml_stat_resize_noexc(caml_stat_block b, asize_t sz)
{
  if(b == NULL)
    return caml_stat_alloc_noexc(sz);
  /* Backward compatibility mode */
  if (pool == NULL)
    return realloc(b, sz);
  else {
    struct pool_block *pb = get_pool_block(b);
    struct pool_block *pb_new;
    /* Unlinking the block because it can be freed by realloc
       while other domains access the pool concurrently. */
    unlink_pool_block(pb);
    /* Reallocating */
    pb_new = realloc(pb, sz + SIZEOF_POOL_BLOCK);
    if (pb_new == NULL) {
      /* The old block is still there, relinking it */
      link_pool_block(pb);
      return NULL;
    } else {
      link_pool_block(pb_new);
      return &(pb_new->data);
    }
  }
}

/* [sz] is a number of bytes */
CAMLexport caml_stat_block caml_stat_resize(caml_stat_block b, asize_t sz)
{
  void *result = caml_stat_resize_noexc(b, sz);
  if (result == NULL)
    caml_raise_out_of_memory();
  return result;
}

/* [sz] is a number of bytes */
CAMLexport caml_stat_block caml_stat_calloc_noexc(asize_t num, asize_t sz)
{
  uintnat total;
  if (caml_umul_overflow(sz, num, &total))
    return NULL;
  else {
    caml_stat_block result = caml_stat_alloc_noexc(total);
    if (result != NULL)
      memset(result, 0, total);
    return result;
  }
}

CAMLexport caml_stat_string caml_stat_strdup_noexc(const char *s)
{
  size_t slen = strlen(s);
  caml_stat_block result = caml_stat_alloc_noexc(slen + 1);
  if (result == NULL)
    return NULL;
  memcpy(result, s, slen + 1);
  return result;
}

CAMLexport caml_stat_string caml_stat_strdup(const char *s)
{
  caml_stat_string result = caml_stat_strdup_noexc(s);
  if (result == NULL)
    caml_raise_out_of_memory();
  return result;
}

#ifdef _WIN32

CAMLexport wchar_t * caml_stat_wcsdup(const wchar_t *s)
{
  int slen = wcslen(s);
  wchar_t* result = caml_stat_alloc((slen + 1)*sizeof(wchar_t));
  if (result == NULL)
    caml_raise_out_of_memory();
  memcpy(result, s, (slen + 1)*sizeof(wchar_t));
  return result;
}

#endif

CAMLexport caml_stat_string caml_stat_strconcat(int n, ...)
{
  va_list args;
  char *result, *p;
  size_t len = 0;
  int i;

  va_start(args, n);
  for (i = 0; i < n; i++) {
    const char *s = va_arg(args, const char*);
    len += strlen(s);
  }
  va_end(args);

  result = caml_stat_alloc(len + 1);

  va_start(args, n);
  p = result;
  for (i = 0; i < n; i++) {
    const char *s = va_arg(args, const char*);
    size_t l = strlen(s);
    memcpy(p, s, l);
    p += l;
  }
  va_end(args);

  *p = 0;
  return result;
}

#ifdef _WIN32

CAMLexport wchar_t* caml_stat_wcsconcat(int n, ...)
{
  va_list args;
  wchar_t *result, *p;
  size_t len = 0;
  int i;

  va_start(args, n);
  for (i = 0; i < n; i++) {
    const wchar_t *s = va_arg(args, const wchar_t*);
    len += wcslen(s);
  }
  va_end(args);

  result = caml_stat_alloc((len + 1)*sizeof(wchar_t));

  va_start(args, n);
  p = result;
  for (i = 0; i < n; i++) {
    const wchar_t *s = va_arg(args, const wchar_t*);
    size_t l = wcslen(s);
    memcpy(p, s, l*sizeof(wchar_t));
    p += l;
  }
  va_end(args);

  *p = 0;
  return result;
}

#endif