1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Damien Doligez, projet Para, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Pseudo-random number generator
This is a lagged-Fibonacci F(55, 24, +) with a modified addition
function to enhance the mixing of bits.
If we use normal addition, the low-order bit fails tests 1 and 7
of the Diehard test suite, and bits 1 and 2 also fail test 7.
If we use multiplication as suggested by Marsaglia, it doesn't fare
much better.
By mixing the bits of one of the numbers before addition (XOR the
5 high-order bits into the low-order bits), we get a generator that
passes all the Diehard tests.
*)
external random_seed: unit -> int array = "caml_sys_random_seed"
module State = struct
type t = { st : int array; mutable idx : int }
let new_state () = { st = Array.make 55 0; idx = 0 }
let assign st1 st2 =
Array.blit st2.st 0 st1.st 0 55;
st1.idx <- st2.idx
let full_init s seed =
let combine accu x = Digest.string (accu ^ Int.to_string x) in
let extract d =
Char.code d.[0] + (Char.code d.[1] lsl 8) + (Char.code d.[2] lsl 16)
+ (Char.code d.[3] lsl 24)
in
let seed = if Array.length seed = 0 then [| 0 |] else seed in
let l = Array.length seed in
for i = 0 to 54 do
s.st.(i) <- i;
done;
let accu = ref "x" in
for i = 0 to 54 + max 55 l do
let j = i mod 55 in
let k = i mod l in
accu := combine !accu seed.(k);
s.st.(j) <- (s.st.(j) lxor extract !accu) land 0x3FFFFFFF; (* PR#5575 *)
done;
s.idx <- 0
let make seed =
let result = new_state () in
full_init result seed;
result
let make_self_init () = make (random_seed ())
let copy s =
let result = new_state () in
assign result s;
result
(* Returns 30 random bits as an integer 0 <= x < 1073741824 *)
let bits s =
s.idx <- (s.idx + 1) mod 55;
let curval = s.st.(s.idx) in
let newval = s.st.((s.idx + 24) mod 55)
+ (curval lxor ((curval lsr 25) land 0x1F)) in
let newval30 = newval land 0x3FFFFFFF in (* PR#5575 *)
s.st.(s.idx) <- newval30;
newval30
let rec intaux s n =
let r = bits s in
let v = r mod n in
if r - v > 0x3FFFFFFF - n + 1 then intaux s n else v
let int s bound =
if bound > 0x3FFFFFFF || bound <= 0
then invalid_arg "Random.int"
else intaux s bound
let rec int32aux s n =
let b1 = Int32.of_int (bits s) in
let b2 = Int32.shift_left (Int32.of_int (bits s land 1)) 30 in
let r = Int32.logor b1 b2 in
let v = Int32.rem r n in
if Int32.sub r v > Int32.add (Int32.sub Int32.max_int n) 1l
then int32aux s n
else v
let int32 s bound =
if bound <= 0l
then invalid_arg "Random.int32"
else int32aux s bound
let rec int64aux s n =
let b1 = Int64.of_int (bits s) in
let b2 = Int64.shift_left (Int64.of_int (bits s)) 30 in
let b3 = Int64.shift_left (Int64.of_int (bits s land 7)) 60 in
let r = Int64.logor b1 (Int64.logor b2 b3) in
let v = Int64.rem r n in
if Int64.sub r v > Int64.add (Int64.sub Int64.max_int n) 1L
then int64aux s n
else v
let int64 s bound =
if bound <= 0L
then invalid_arg "Random.int64"
else int64aux s bound
let nativeint =
if Nativeint.size = 32
then fun s bound -> Nativeint.of_int32 (int32 s (Nativeint.to_int32 bound))
else fun s bound -> Int64.to_nativeint (int64 s (Int64.of_nativeint bound))
(* Returns a float 0 <= x <= 1 with at most 60 bits of precision. *)
let rawfloat s =
let scale = 1073741824.0 (* 2^30 *)
and r1 = Stdlib.float (bits s)
and r2 = Stdlib.float (bits s)
in (r1 /. scale +. r2) /. scale
let float s bound = rawfloat s *. bound
let bool s = (bits s land 1 = 0)
end
(* This is the state you get with [init 27182818] and then applying
the "land 0x3FFFFFFF" filter to them. See #5575, #5793, #5977. *)
let default = {
State.st = [|
0x3ae2522b; 0x1d8d4634; 0x15b4fad0; 0x18b14ace; 0x12f8a3c4; 0x3b086c47;
0x16d467d6; 0x101d91c7; 0x321df177; 0x0176c193; 0x1ff72bf1; 0x1e889109;
0x0b464b18; 0x2b86b97c; 0x0891da48; 0x03137463; 0x085ac5a1; 0x15d61f2f;
0x3bced359; 0x29c1c132; 0x3a86766e; 0x366d8c86; 0x1f5b6222; 0x3ce1b59f;
0x2ebf78e1; 0x27cd1b86; 0x258f3dc3; 0x389a8194; 0x02e4c44c; 0x18c43f7d;
0x0f6e534f; 0x1e7df359; 0x055d0b7e; 0x10e84e7e; 0x126198e4; 0x0e7722cb;
0x1cbede28; 0x3391b964; 0x3d40e92a; 0x0c59933d; 0x0b8cd0b7; 0x24efff1c;
0x2803fdaa; 0x08ebc72e; 0x0f522e32; 0x05398edc; 0x2144a04c; 0x0aef3cbd;
0x01ad4719; 0x35b93cd6; 0x2a559d4f; 0x1e6fd768; 0x26e27f36; 0x186f18c3;
0x2fbf967a;
|];
State.idx = 0;
}
let bits () = State.bits default
let int bound = State.int default bound
let int32 bound = State.int32 default bound
let nativeint bound = State.nativeint default bound
let int64 bound = State.int64 default bound
let float scale = State.float default scale
let bool () = State.bool default
let full_init seed = State.full_init default seed
let init seed = State.full_init default [| seed |]
let self_init () = full_init (random_seed())
(* Manipulating the current state. *)
let get_state () = State.copy default
let set_state s = State.assign default s
(********************
(* Test functions. Not included in the library.
The [chisquare] function should be called with n > 10r.
It returns a triple (low, actual, high).
If low <= actual <= high, the [g] function passed the test,
otherwise it failed.
Some results:
init 27182818; chisquare int 100000 1000
init 27182818; chisquare int 100000 100
init 27182818; chisquare int 100000 5000
init 27182818; chisquare int 1000000 1000
init 27182818; chisquare int 100000 1024
init 299792643; chisquare int 100000 1024
init 14142136; chisquare int 100000 1024
init 27182818; init_diff 1024; chisquare diff 100000 1024
init 27182818; init_diff 100; chisquare diff 100000 100
init 27182818; init_diff2 1024; chisquare diff2 100000 1024
init 27182818; init_diff2 100; chisquare diff2 100000 100
init 14142136; init_diff2 100; chisquare diff2 100000 100
init 299792643; init_diff2 100; chisquare diff2 100000 100
- : float * float * float = (936.754446796632465, 997.5, 1063.24555320336754)
# - : float * float * float = (80., 89.7400000000052387, 120.)
# - : float * float * float = (4858.57864376269, 5045.5, 5141.42135623731)
# - : float * float * float =
(936.754446796632465, 944.805999999982305, 1063.24555320336754)
# - : float * float * float = (960., 1019.19744000000355, 1088.)
# - : float * float * float = (960., 1059.31776000000536, 1088.)
# - : float * float * float = (960., 1039.98463999999512, 1088.)
# - : float * float * float = (960., 1054.38207999999577, 1088.)
# - : float * float * float = (80., 90.096000000005, 120.)
# - : float * float * float = (960., 1076.78720000000612, 1088.)
# - : float * float * float = (80., 85.1760000000067521, 120.)
# - : float * float * float = (80., 85.2160000000003492, 120.)
# - : float * float * float = (80., 80.6220000000030268, 120.)
*)
(* Return the sum of the squares of v[i0,i1[ *)
let rec sumsq v i0 i1 =
if i0 >= i1 then 0.0
else if i1 = i0 + 1 then Stdlib.float v.(i0) *. Stdlib.float v.(i0)
else sumsq v i0 ((i0+i1)/2) +. sumsq v ((i0+i1)/2) i1
let chisquare g n r =
if n <= 10 * r then invalid_arg "chisquare";
let f = Array.make r 0 in
for i = 1 to n do
let t = g r in
f.(t) <- f.(t) + 1
done;
let t = sumsq f 0 r
and r = Stdlib.float r
and n = Stdlib.float n in
let sr = 2.0 *. sqrt r in
(r -. sr, (r *. t /. n) -. n, r +. sr)
(* This is to test for linear dependencies between successive random numbers.
*)
let st = ref 0
let init_diff r = st := int r
let diff r =
let x1 = !st
and x2 = int r
in
st := x2;
if x1 >= x2 then
x1 - x2
else
r + x1 - x2
let st1 = ref 0
and st2 = ref 0
(* This is to test for quadratic dependencies between successive random
numbers.
*)
let init_diff2 r = st1 := int r; st2 := int r
let diff2 r =
let x1 = !st1
and x2 = !st2
and x3 = int r
in
st1 := x2;
st2 := x3;
(x3 - x2 - x2 + x1 + 2*r) mod r
********************)
|